PVDIS: 12 GeV at JLab

For the SOLID Collaboration
OUTLINE

• PVDIS
• Physics Potential
 – Electroweak couplings
 – CSV
 – Higher Twist
• Apparatus
• Conclusions
First Electron Parity Experiment

It was realized independently in the mid 70s at SLAC:
A_{PV} in Deep Inelastic Scattering off liquid Deuterium: $Q^2 \sim 1 \text{ (GeV)}^2$

$A_{PV} \sim 10^{-4} \cdot Q^2 \text{ (GeV}^2\text{)}$

This experiment convinced the world that the Z-boson violated parity
PV Asymmetries: Any Target

\[\sigma \propto |A_{\gamma} + A_{\text{weak}}|^2 \]

\[-A_{LR} = A_{PV} = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} \sim \frac{A_{\text{weak}}}{A_{\gamma}} \sim \frac{G_F Q^2}{4 \pi \alpha} \left(g_A^e g_V^T + \beta g_V^e g_A^T \right) \]

• The couplings \(g \) depend on electroweak physics as well as on the weak vector and axial-vector hadronic current
• Both new physics at high energy scales as well as interesting features of hadronic structure come into play
• A program with many targets and a broad kinematic range can untangle the physics

June 23, 2009
PVDIS at 12 GeV
Electron-Quark Phenomenology

\[C_{1i} = 2g^e_A g^i_V \]
\[C_{2i} = 2g^e_V g^i_A \]

\[C_{1u} = -\frac{1}{2} + \frac{4}{3} \sin^2(\theta_W) + \delta C_{1u} \approx -0.19 \]
\[C_{1d} = \frac{1}{2} - \frac{2}{3} \sin^2(\theta_W) + \delta C_{1d} \approx 0.35 \]
\[C_{2u} = -\frac{1}{2} + 2 \sin^2(\theta_W) + \delta C_{2u} \approx -0.030 \]
\[C_{2d} = \frac{1}{2} - 2 \sin^2(\theta_W) + \delta C_{2d} \approx 0.025 \]

Moller PV is insensitive to the C_{ij}

\(C_{1u} \) and \(C_{1d} \) will be determined to high precision by \(Q_{\text{weak}}, \text{APV Cs} \)

\(C_{2u} \) and \(C_{2d} \) are small and poorly known:
one combination can be accessed in PV DIS

New physics such as compositeness, leptoquarks:
\(\text{Deviations to } C_{2u} \) and \(C_{2d} \) might be fractionally large

June 23, 2009

PVDIS at 12 GeV
Deep Inelastic Scattering

\[A_{PV} = \frac{G_F Q^2}{\sqrt{2} \pi \alpha} \left[a(x) + Y(y) b(x) \right] \]

\[x \equiv x_{Bjorken} \]
\[y \equiv 1 - E'/E \]
\[f_i^\pm \equiv f_i \pm \bar{f}_i \]
\[a(x) = \frac{\sum C_{2i} Q_i f_i^+(x)}{\sum Q_i^2 f_i^+(x)} \]
\[b(x) = \frac{\sum C_{2i} Q_i f_i^-(x)}{\sum Q_i^2 f_i^+(x)} \]

For an isoscalar target like \(^2\text{H},\) structure functions largely cancel in the ratio at high \(x\)

At high \(x\), \(A_{PV}\) becomes independent of \(x, W\), with well-defined SM prediction for \(Q^2\) and \(y\)

\[a(x) = \frac{3}{10} (2C_{1u} - C_{1d}) \left(1 + \frac{0.6 s^+}{u^+ + d^+} \right) \]
\[b(x) = \frac{3}{10} (2C_{2u} - C_{2d}) \left(\frac{u_v + d_v}{u^+ + d^+} \right) + \cdots \]

\(C_{2q}\) inaccessible in elastic scattering
DIS at high x (Approved)

\[
\frac{2C_{2u} - C_{2d}}{2C_{1u} - C_{1d}} \sim 0.14
\]

0.5% fractional precision on the asymmetry is needed!

\[
\frac{\delta(A_{PV})}{A_{PV}} \sim 0.5% \\
\frac{\delta(2C_{2u} - C_{2d})}{(2C_{2u} - C_{2d})} \sim 5%
\]

Feasible (in narrow kinematics) with existing JLab spectrometers.

JLab 11 GeV proposal: Conditional approval
Paschke, Reimer, Zheng et al.

• Experimental systematic errors challenging
• Averaged over large Q^2, W, and x range
PVDIS with SOLID

• Solenoid (from BaBar, CDF or CLEO II) contains low energy backgrounds (Moller, pions, etc) trajectories measured after baffles
 • Fast tracking, particle ID, calorimetry,
 • and pipeline electronics
 • Precision polarimetry (0.4%)

• High Luminosity on LH$_2$ & LD$_2$
• Better than 1% errors for small bins
• x-range 0.25-0.75
• $W^2 > 4$ GeV2
• Q^2 range a factor of 2 for each
• Moderate running times
Statistical Errors (%) vs Kinematics

For SOLID Spectrometer

Error bar σ_A/A (%) shown at center of bins in Q^2, x

4 months at 11 GeV
2 months at 6.6 GeV

June 23, 2009 PVDIS at 12 GeV 9 PAC34
Why do we need so many data points?

• Possible new physics
 – New interactions
 – Charge symmetry violation (CSV)
 – Higher twist effects

Like neutron beta decay experiments: many diverse physics topics
Sensitivity: C_1 and C_2 Plots

World’s data

Precision Data

June 23, 2009 PVDIS at 12 GeV
Search for CSV in PV DIS

\[u^p(x) = d^n(x) ? \]
\[d^p(x) = u^n(x) ? \]

• u-d mass difference
• electromagnetic effects

\[\delta u(x) = u^p(x) - d^n(x) \]
\[\delta d(x) = d^p(x) - u^n(x) \]

• Direct observation of parton-level CSV would be very exciting!
• Important implications for high energy collider pdfs
• Could explain significant portion of the NuTeV anomaly

For \(A_{PV} \) in electron-\(^2H \) DIS:

\[\frac{\delta A_{PV}}{A_{PV}} = 0.28 \frac{\delta u - \delta d}{u + d} \]

Sensitivity will be further enhanced if \(u+d \) falls off more rapidly than \(\delta u-\delta d \) as \(x \to 1 \)

June 23, 2009
PVDIS at 12 GeV
CSV Theory and Data

Broad minimum (90% C.L.)

fully explains NuTeV

doubles NuTeV deviation

MRST PDF global with fit of CSV
Martin, Roberts, Stirling, Thorne [Eur Phys J C35, 325 (04)]:

June 23, 2009

PVDIS at 12 GeV
Sensitivity with PVDIS

\[R_{CSV} = \frac{\delta A_{PV}(x)}{A_{PV}(x)} = 0.28 \frac{\delta u(x) - \delta d(x)}{u(x) + d(x)} \]
Higher Twist

Subject of recent workshop at Madison, Wisconsin

- A_{PV} sensitive to diquarks: ratio of weak to electromagnetic charge depends on amount of coherence (elastic He vs PVDIS)
- Do diquarks have twice the x of single quarks?
- If Spin 0 diquarks dominate, likely only $1/Q^4$ effects
Need Full Phenomenology

\[
\left[\frac{d^2 \sigma}{dx dy} \right]_{EM} \propto 2xyF_1^\gamma + \frac{2}{y} \left(1 - y - \frac{xyM}{2E} \right)F_2^\gamma
\]

\[
\left[\frac{d^2 \sigma}{dx dy} \right]_\gamma \propto \frac{G}{2 \sqrt{2 } \pi \alpha} \left[-g_A \{ 2xyF_1^{\gamma Z} + \frac{2}{y} \left(1 - y - \frac{xyM}{2E} \right)F_2^{\gamma Z} \} \right]
\]

\[
\left[\frac{d^2 \sigma}{dx dy} \right]_\gamma \propto \frac{G}{2 \sqrt{2 } \pi \alpha} \left[-g_V x (2 - y)F_3^{\gamma Z} \right]
\]

\[
A_B^{PV} = \frac{\sigma^V_{\gamma Z} + \sigma^A_{\gamma Z}}{\sigma_{EM}}
\]

\[
a(x) = \frac{\sigma^V_{\gamma Z}}{\sigma_{EM}}
\]

\[
f(y)b(x) = \frac{\sigma^A_{\gamma Z}}{\sigma_{EM}}
\]

There are 5 relevant structure functions

June 23, 2009

PVDIS at 12 GeV

(Higher twist workshop at Madison, Wisconsin)
Best HT Data

F_2 dominates the cross section

Higher twist is clearly seen at the PVDIS kinematics. What can we add?

Analysis of Blumlein and Botcher

June 23, 2009

PVDIS at 12 GeV
MRST Fits

\[F_2(x, Q^2) = F_2(x)(1 + D(x)/Q^2) \quad Q^2 = (W^2 - M^2)/(1/x - 1) \quad Q^2_{\text{min}} = Q^2(W=2) \]

\[
| \begin{array}{|c|c|c|c|c|c|}
\hline
x & D(x) & D(x)/Q^2_{\text{min}} & D/Q^2_{\text{min}}(\%) & D/Q^2_{\text{min}}(\%) \\
\hline
& \text{LO} & \text{NNNLO} & \text{LO} & \text{NNNLO} \\
0.1-0.2 & -0.007 & 0.001 & 0.5 & -14 \\
0.2-0.3 & -0.11 & 0.003 & 1.0 & -11 \\
0.3-0.4 & -0.06 & -0.001 & 1.7 & -3.5 \\
0.4-0.5 & 0.22 & 0.11 & 2.6 & 8 \\
0.5-0.6 & 0.85 & 0.39 & 3.8 & 22 \\
0.6-0.7 & 2.6 & 1.4 & 5.8 & 45 \\
0.7-0.8 & 7.3 & 4.4 & 9.4 & 78 \\
\hline
\end{array}
\]

\[A_{PV} = A_{PV}(1 + C(x)/Q^2) \]

MRST, PLB582, 222 (04)

June 23, 2009

PVDIS at 12 GeV
F$_2$D(x): All x on Same Scale

Order of DGLAP influences size of HT

Higher twist falls slowly compared to PDF’s at large x.
D(x) versus x

If C(x)≈D(x), there is large sensitivity at large x.
Why HT in PVDIS is Special

Bjorken,
PRD 18, 3239 (78)

Wolfenstein,
NPB146, 477 (78)

\[
l_{\mu\nu} \int \langle D | j^\mu(x)J^\nu(0) + J^\mu(x)j^\nu(0) | D \rangle e^{iq\cdot x} d^4 x
\]

\[
l_{\mu\nu} \int \langle D | j^\mu(x)j^\nu(0) | D \rangle e^{iq\cdot x} d^4 x
\]

\[
V_\mu = \left(u\gamma_\mu u - \bar{d}\gamma_\mu d \right) \Leftrightarrow S_\mu = \left(u\gamma_\mu u + \bar{d}\gamma_\mu d \right)
\]

\[
\langle VV \rangle = l_{\mu\nu} \int \langle D | V^\mu(x)V^\nu(0) | D \rangle e^{iq\cdot x} d^4 x
\]

\[
A = \frac{(C_{iu} - C_{id}) \langle VV \rangle + \frac{1}{3} (C_{iu} + C_{id}) \langle SS \rangle}{\langle VV \rangle + \frac{1}{3} \langle SS \rangle}
\]

Isospin decomposition before using PDF's

\[
\langle VV \rangle - \langle SS \rangle = \langle (V - S)(V + S) \rangle \propto l_{\mu\nu} \int \langle D | \bar{u}(x)\gamma^\mu u(x)\bar{d}(0)\gamma^\nu d(0) | D \rangle e^{iq\cdot x} d^4 x
\]

HT in F_2 may be dominated by quark-gluon correlations

Vector-hadronic piece only

Use ν data for small b(x) term.

June 23, 2009
PVDIS at 12 GeV

Zero in QPM

Higher-Twist valance quark-quark correlations
What is a true quark-gluon operator?

Di-quarks correspond to transverse momentum.

Quark-gluon operators correspond to transverse momentum.

QCD equations of motion.
Test Questions

1. Which diagram is HT?
2. Is the HT diagram qq or qg?

Diagrams (a)-(c) cancel in A_{PV}
Coherent Program of PVDIS Study

Strategy: requires precise kinematics and broad range

Fit data to:
\[A = A \left[1 + \beta_{HT} \frac{1}{(1-x)^3 Q^2} + \beta_{CSV} x^2 \right] \]

\[C(x) = \frac{\beta_{HT}}{(1-x)^3} \]

- Measure \(A_D \) in NARROW bins of \(x, Q^2 \) with 0.5% precision
- Cover broad \(Q^2 \) range for \(x \) in \([0.3,0.6]\) to constrain HT
- Search for CSV with \(x \) dependence of \(A_D \) at high \(x \)
- Use \(x>0.4 \), high \(Q^2 \), and \(\ldots \) to measure a combination of the \(C_{iq} \)'s

<table>
<thead>
<tr>
<th></th>
<th>(x)</th>
<th>(y)</th>
<th>(Q^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Physics</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>CSV</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Higher Twist</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

June 23, 2009
Other Targets

• Hydrogen: d/u
• EMC effect
• N≠Z nuclei
PVDIS on the Proton: d/u at High X

\[a^P(x) \approx \frac{u(x) + 0.91d(x)}{u(x) + 0.25d(x)} \]

Deuteron analysis has large nuclear corrections (Yellow)

\(A_{PV} \) for the proton has no such corrections (complementary to BONUS)

The challenge is to get statistical and systematic errors \(\sim 2\% \)

June 23, 2009

PVDIS at 12 GeV
CSV in Heavy Nuclei: EMC Effect

Additional possible application of SoLID

Isovector-vector mean field. (Cloet, Bentz, and Thomas)
SoLID Spectrometer

Gas Cerenkov

Shashlyk

Baffles

GEM’s

June 23, 2009

PVDIS at 12 GeV
Collaboration

Jefferson Lab
P. A. Souder, R. Holmes

Syracuse University
K. Kumar, D. McNulty, L. Mercado, R. Miskimen

U. Massachusetts

University of Virginia
J. Arrington, K. Hafidi, P. E. Reimer, P. Sovvignon

Argonne
D. Armstrong, T. Averett, J. M. Finn

William and Mary
P. Decowski

Smith College

June 23, 2009

PVDIS at 12 GeV
STATUS and PLANS

- Jan. 2009: Conditional approval
- Jan. 2010: Seek full approval
- Fall 2010: Director’s review
- Spring 2011: Seek CD0
Kinematics at large x
Baffles

Rates in detectors reduced by more than 10
Physics Resolution (%) vs Detector Resolution and Angle
Conclusions

• PVDIS addresses many physics topics
 – Electroweak couplings
 – CSV at the quark level
 – Di-quarks
 – d/u for the proton
 – Nuclear-induced CSV

• SOLID spectrometer can deliver the physics
Figure of Merit vs Scattering Angle

![Graph showing the relationship between Figure of Merit and Scattering Angle](image)

June 23, 2009 PVDIS at 12 GeV
Lots of Pions at Low Energies

Need gas Cerenkov plus shower counter with preradiator
Pion Rejection: Shashlik Detector

Total Pion Signal

$E_{\text{preshower}}/E_{\text{total}}$

June 23, 2009

PVDIS at 12 GeV