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Quantum algorithm for the linear Vlasov equation with collisions
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The Vlasov equation is a nonlinear partial differential equation that provides a first-principles description of
the dynamics of plasmas. Its linear limit is routinely used in plasma physics to investigate plasma oscillations and
stability. In this paper, we present a quantum algorithm that simulates the linearized Vlasov equation with and
without collisions, in the one-dimensional electrostatic limit. Rather than solving this equation in its native spatial
and velocity phase space, we adopt an efficient representation in the dual space yielded by a Fourier-Hermite
expansion. For a given simulation time, the Fourier-Hermite representation is exponentially more compact, thus
yielding a classical algorithm that can match the performance of a previously proposed quantum algorithm for
this problem. This representation results in a system of linear ordinary differential equations (ODEs) which
can be solved with well-developed quantum algorithms: a Hamiltonian simulation in the collisionless case, and
quantum ODE solvers in the collisional case. In particular, we demonstrate that a quadratic speedup in system

size is attainable.
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I. INTRODUCTION

Plasma dynamics is difficult to simulate with present-day
computers due to the broad range of timescales and length
scales that are typically exhibited by nonlinear plasma phe-
nomena. Indeed, direct numerical simulations covering scale
ranges approaching those found in most real systems are
beyond the capabilities of both current supercomputers and
those predicted to exist in the near future. It is therefore
natural to seek alternative computational platforms that can
provide significant speedups. Quantum computers are a pos-
sible candidate since there exist quantum algorithms capable
of outperforming their classical counterparts for a range of
problems such as search via quantum walks [1], simulation of
quantum mechanical systems (also called Hamiltonian simu-
lation) [2-8], cryptography [9], and simulation of high-energy
physics problems such as (1 4 1)-dimensional ¢* theory [10],
fermionic field theory [11], and conformal field theory [12].
Furthermore, industrial and research efforts to commercialize
quantum computers have significantly advanced the technol-
ogy, bringing us closer to implementing quantum algorithms
with real-world applications.
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Although quantum algorithms exist to simulate Hamiltoni-
ans and solve ordinary differential equations (ODEs), it is a
priori not clear if they can be used to solve specific plasma
physics problems, which are usually formulated in terms of
coupled sets of nonlinear partial differential equations. In-
deed, the field of designing quantum algorithms for nonlinear
differential equations and, specifically, plasma physics, is still
at an embryonic stage. So far, there has been a thorough explo-
ration of quantum linear system algorithms (QLSAs) [13,14],
linear ODEs [15-18], nonlinear ODEs [19-22], and certain
linear partial differential equations [23,24]. These algorithms
use a Hamiltonian simulation as a main subroutine [25]. The
application of such algorithms to real-world problems, such
as plasma dynamics, is nontrivial and, in some cases, their
promised speedup is lost. Nonetheless, there has been some
progress in this field over the past few years. Dodin and
Startsev [26] performed a survey of various approaches that
could be used to solve plasma dynamics on quantum com-
puters. Among those, they discussed the possibility of using
the Madelung transform to map the governing equations of a
cold electron fluid to the Schrodinger equation. The Madelung
transform was used by Zylberman er al. [27] to develop a
quantum algorithm as well as a hybrid algorithm simulating
fluids. Linear embedding approaches have also been investi-
gated, yielding a potential speedup if nonlinearities are weak
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[21,28] or if the resulting system is sparse [29,30]. Other
works have focused on developing quantum algorithms for
wave problems in plasmas, namely the three-wave interac-
tion [31] and extraordinary waves (an electromagnetic wave
in a plasma where the wave’s electric field is perpendicular
to the background magnetic field) in cold plasmas [32]. As
one might expect, both these wave problems can be mapped
to a Schrodinger-type equation, which can be solved using
Hamiltonian simulation algorithms. A more general quantum
lattice representation for one-dimensional wave propagation
in plasmas has also been developed [33] (but such an algo-
rithm requires four qubits per node).

Ideally, one would like to have a quantum algorithm to
solve a first-principles description of plasma physics as of-
fered by the Vlasov equation. A first step in this direction is
to understand if the linear limit of the Vlasov equation can
be simulated efficiently on a quantum computer. This prob-
lem was explored by Engel, Smith, and Parker (henceforth
referred to as ESP), where a quantum algorithm was devel-
oped that simulates the Landau damping of Langmuir waves
[34], a quintessential plasma physics phenomenon whereby
electrostatic waves in the plasma resonantly transfer energy
to electrons and are thus damped [35]. By linearizing the
collisionless Vlasov equation coupled to Ampere’s law, ESP
mapped the problem to a Hamiltonian simulation which can
then be solved using recent algorithms [34]. Using a spatial
grid of N, points, ESP gave a quantum algorithm to simu-
late the linearized Vlasov evolution with gate complexity of
Ol[polylog N, log(1/€)], with € being the error in the norm
of the solution state. To extract the Landau damping rate, the
electric field at different times must be obtained by sampling
the final state (so as to obtain a time history from which the
Landau damping rate can be computed in postprocessing).
The number of times one needs to repeat the algorithm is
independent of N, and depends only on the absolute precision
& with which one needs to calculate the electric field, leading
to an overall run time of O[(1/§)polylog N, ], where 6 ~ €.

In this paper, we revisit this problem with a different math-
ematical approach. We find that, using the linearized Vlasov
equation coupled to Poisson’s equation and expanding the
distribution function in velocity space using M + 1 Hermite
polynomials (with N = M + 1 corresponding to the system
size), we can obtain a system matrix which is exponentially
smaller than that of ESP for the same precision €. Thus, a clas-
sical algorithm solving this system can be as efficient as the
quantum algorithm of ESP. Furthermore, the Fourier-Hermite
representation allows for the inclusion of collisions without
changing the system matrix structure. We also find that a
quantum algorithm using this framework yields a quadratic
speedup compared to classical ODE solvers, which are the
fastest classical algorithms for solving this problem [36].

This paper is structured as follows. Section II provides a
brief background on the Vlasov equation, Landau damping,
and the Hermite representation, and rigorously defines the
problem we aim to solve in addition to its key parameters.
Section III discusses the performance of a quantum algorithm
based on the Hermite formalism for both collisionless and
collisional cases, and demonstrates that a quadratic speedup
is possible. Section IV reviews the ESP formulation and per-
forms a comparative error analysis of that system and ours.

Finally, Sec. V summarizes our results and discusses their
implications.

II. BACKGROUND
A. The Vlasov equation

The collisional Vlasov-Poisson system is given by

afs
ot

+V-VS+ %E Vo fs = CIf], (1)

E()V -E = O, (2)

where ¢ is the permittivity of free space, s denotes a species
(ions or electrons) of charge g, and mass m;, and p denotes
the charge density. The collision operator is represented by
C[-] and E is the electric field. We are going to restrict our-
selves to the electrostatic limit, so E = —V ¢, where ¢ is the
electrostatic potential.

The Vlasov-Poisson system describes the time evolution
of the species’ distribution function fi(x,v,?) in three-
dimensional physical space and three-dimensional velocity
space. The distribution function is defined such that the num-
ber of particles per unit volume in the vicinity of position x
and velocity v is fi(x, v, 1)d?xd?v. It is normalized such that

/ (X, v, )d>v = ng(x, 1), (3)

where ny is the species’ number density. Therefore, the charge
density is obtained from the distribution functions as

o= a [ rav @

s=i,e

For simplicity, in this work we will limit ourselves to one spa-
tial and one velocity dimensions—z and v, respectively—as
in the textbook formulation of the Landau damping problem
[37]. In this case, Egs. (1) and (2) become

of | Of, 450k
ot Jdz  my dv

oE
o= 2 a. [ fdv. ©

s=i,e

= CLfs], ®)

We can linearize Eqgs. (5) and (6) about a Maxwellian back-
ground, and consider the case where the ions are stationary,
meaning that their distribution function is not perturbed, so
we need only consider the evolution of the electron distri-
bution function. Then, f ~ Fy + g, where we have dropped
the species subscript for simplicity, g < Fy is the perturbation
to the distribution function, and F is the (one-dimensional)
Maxwellian distribution function

1 no 27,2
Fov) = —=—e /%, (7
\/E Uth
where n is the background density and
2kgT
v = ——, (8)
m

is the electron thermal velocity, with 7 and kg denoting
the temperature and Boltzmann constant, respectively. We
carry out the linearization by noting that C[Fp] = 0, ignoring
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quadratic perturbative terms, and using the normalizations
b4
V2ip

1 < wpyt,

7 <

v
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Uth

Uth
f <~ _f’
n
e
e e — b
% kBT(p

where e is the fundamental charge and

2 €oksT
w, = [T, = /%’ (10)
€om npe

are, respectively, the plasma frequency and the Debye length.
Thus, the linearized Vlasov-Poisson system becomes

d
% + ikvgy + ikvFypr = Clgil, (1)
400
Ok = Olf gkdv9 (12)
—00

where we have also Fourier-transformed both equations, with
k representing the Fourier wave number, and o = 2/k* is
the physics parameter. By choosing a different value of o
satisfying o > —1, different target problems can be described,
where Eqs. (11) and (12) consider the evolution of only one
species, and o prescribes the behavior of the other species
(Boltzmann, isothermal, or no response) [38,39].

While the Vlasov equation is typically coupled to Poisson’s
equation in the electrostatic case, it can also be coupled to
Ampere’s law,

0Ey

ot
where J; is the kth Fourier mode of the current. For the case
of Langmuir waves, the linearized Ampere’s law, coupled to

the Vlasov equation in Fourier space, yields the following set
of equations:

= —Ji, 13)

0

% + ikvg — vRoEy = Clgl. (14)
0E,
8—;‘ :/vgkdv. (15)

While Egs. (11) and (12) and Egs. (14) and (15) are two
different formulations, they describe the same physics.

B. Landau damping

Landau damping is a textbook plasma phenomenon
whereby wave energy is resonantly transferred to plasma par-
ticles. Despite what its name might suggest, Landau damping
is a reversible process: In the absence of collisions, the total
energy in a plasma is conserved throughout this process. Dur-
ing Landau damping, the plasma distribution function attains
continuously finer structures in velocity space. In a collision-
less plasma, these structures continue to develop until the end
of the linear regime. In a collisional plasma, such structures
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FIG. 1. The norm of the electric potential |¢| as a function
of time 7. The blue solid line is obtained by numerically solving
Eqs. (11) and (12) with k = 0.4+/2, and @ = 2/k*. The red dashed
line is an e~ envelope, where y = 0.066237. The parameters used
here match those used in Ref. [34].

are eventually smoothed out by collisions. This will become
important when we perform the error analysis in Sec. IV.

To calculate the Landau damping rate of a plasma wave,
one typically tracks the time evolution of the amplitude of
the electric potential (or, equivalently, the electric field) in
the plasma. The amplitude can be fitted by an e~?" envelope,
where y > 0 is the Landau damping rate. The density pertur-
bation in a plasma can also be used to calculate the Landau
damping rate, since the electric potential and density pertur-
bation are proportional to each other, as per Eq. (12). This
procedure is illustrated in Fig. 1, where the time evolution of
the norm of the electric potential |¢| is tracked. The peaks
are fitted with an e’ envelope, and the Landau damping rate
is recovered from the fit. The Landau damping rate can also
be analytically calculated by solving the following dispersion
relation,

ﬁ ) ve—vz/2 J
k2 —oo U — 2w/k

where the imaginary component of the frequency w
contains y.

1+ v=0, (16)

C. The Hermite representation

Working with the linear Vlasov-Poisson system, it is of-
ten convenient, and numerically advantageous, to express
the distribution function as a series of Hermite polynomials
[38,40-45],

& Hy(0)Fy(v)
&W)—%—W

where H,,(v) denotes the Hermite polynomial of order m and
gm.k(t) is its coefficient given by

(t)—/+oodv Hn®) o 0. 0)
Em,k(l) = . «/ng ,1).

gmk (1), a7

(18)
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Adopting a Lenard-Bernstein-type collision operator for sim-
plicity [46],

Clg = v (19 4 (19)
g"_”av 2 dv v )8k

where v > 0 is the collision frequency, and introducing new
variables defined as

80,k = 80k (20)

m> 1, 1)

the Hermite-transformed equations become a coupled set of
linear advection equations for the Hermite-Fourier coeffi-
cients, as follows,

dgox ., |1+«
: k =0, 22
o +i o 8Lk (22)

dgix . 1+«
. k =0, 23
i +1i (gZ,k + 2 go.k> (23)
dgme . [m+1 fm
- k A &m A Sm—
ar +1 ( 5 8 Tkt > 8m=1k
= —Vvmgmi, m=2, (24)

where the tildes have been dropped for notational simplicity
[47]. Provided that an infinite number of Hermite moments are
kept, these equations are formally equivalent to Egs. (11) and
(12). For practical purposes, however, only a finite number
of moments, M + 1, must be retained. Since the equation for
the Hermite moment of order m couples to the successive
moment, m + 1, a truncation is needed to integrate these
equations on a computer. We adopt the customary closure
gm+1 = 0, yielding the following system,

—= = Agy, 25
ar 2k (25)

with the solution

gi(t) = Mgt = 0), (26)

where g, = [gox - ~gM,k]T, g, (t = 0) is the initial condition,
and A is a 3-sparse matrix containing the relevant coefficients,

A = —iH — v diag([0,0,2,..., M — 1, M]), 27

with
_ — _
0 S
1+a
y= 01
1 0 3
H=k 2
M—1 M
2 0 2
/M

(28)

The initial condition for the canonical Landau damping
problem is go(z, v, t = 0) = go cos(koz), where gy is a con-
stant (an arbitrary amplitude). In Fourier-Hermite space, this

Prepare|¢(0)> =10)
using log, N qubits
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for time ¢ fortimet

1 |

Amplitude estimation

Repeat N, times
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v

FIG. 2. Workflow diagram of the quantum algorithm in both the
collisionless and collisional cases. Here, N is the system size, T is
the simulation time, and N; refers to the number of samples required
at different times to calculate the Landau damping rate.

initial condition is
Gkt = 0) = 81n.0(Sk.ky + S~k ) (29)

where we have chosen gy = +/2/7.

While M is in principle a free parameter, typically one
wishes to have M 2 w/v in order to capture the physics,
where w is a characteristic frequency of the system, to ensure
that the higher Hermite moments are properly dissipated by
collisions. If v = 0, M will be a function of simulation time
T. This will be relevant to the discussion in Sec. IV.

III. THE QUANTUM ALGORITHM

In this section we will show that a quantum algorithm
solving Eq. (25) yields a quadratic speedup with respect to
system size compared to the most efficient classical algo-
rithms. Figure 2 shows a workflow diagram of the proposed
quantum algorithm.

A. Collisionless case and Hamiltonian simulation

When v =0 we have a collisionless system where A=—iH
with H a Hermitian matrix. Such a system conserves total en-
ergy and thus is governed by unitary time evolution generated
by H:

— = —iHg. 30
0 g (30)
Since this is equivalent to a Schrodinger equation, it can
be simulated on a quantum computer using Hamiltonian
simulation techniques. An efficient quantum algorithm for
simulating an s-sparse Hamiltonian has a query complexity
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FIG. 3. Numerically obtained norm of the system matrix |H||
[Eqg. (28)] as a function of the system size N = M + 1, where M is
the number of Hermite moments. The orange dashed line is a JN
scaling.

OGs|H||T + %) [7], where s is the sparsity, |[H|| is
the norm, T is the final simulation time, and € is the error
in the norm of the solution state. In the Hermite system, the
system matrix has sparsity s = 2. Furthermore, the norm of

the system scales with the system size N = M + 1 as
IH| ~ OWN). (31)

This is also shown in Fig. 3, where we plot the norm of the
system matrix ||H || as a function of system size N and observe
the O(V/N) scaling.

B. Collisional case and quantum ODE solvers

For the more realistic scenario where v # 0, unitary
time evolution is lost due to the presence of the col-
lision terms. In this case, we need to solve an ODE
rather than simulate a Hamiltonian. We use the results
from Ref. [18], which state the following. Suppose A is
an s-sparse matrix with oracle access to its entries. Then
Eq. (25) can be solved to produce a quantum state propor-
tional to the solution in time O[G T ||A|| C(A)], where G =
max;efo, 7118 @)|l/118(T )|l measures the solution decay and
C(A) = sup,¢o.7;llexp(At)]|. For our system, the matrix A has
negative log norm and so C(A) < 1. Furthermore, since M ~
w/v, the addition of collisions does not change the 0(\/N )
scaling of ||A|| as long as v < k. To see this, we can approx-
imate w by choosing M =2 and solving for the dispersion
relation, giving us

1+«
k.
2

Typically, « = O(1), so @ ~ k. To maintain the O(v/N) scal-
ing of ||A||, we demand that the off-diagonal terms of Eq. (27)
dominate the diagonal terms, yielding the following con-
straint:

(32)

w =

WM < k. (33)

Knowing that M ~ w/v ~ k/v, we obtain v < k. This is
satisfied in most plasmas of interest because v, which is nor-
malized by the plasma frequency w,, is very small compared
to k, which is normalized by Debye length Ap. Thus, even
in the presence of collisions, we can still obtain a quadratic
speedup in system size. However, the time dependence of the
algorithm suffers. This is because collisions cause the norm of
the solution to decay exponentially, meaning that for large 7',
llgx(0)]1/llgx(T)| scales as e®™7T . To obtain g, (T') efficiently,
we can restrict the simulation time, which we will discuss in
Sec. III C.

C. Oracle representation, state preparation, and output

The Hamiltonian simulation and quantum ODE solvers
require access to the system matrix A through an oracle Oy.
The oracle has the following action,

Oali, j, 0) = [i, j, Aij), (34)

where A;; denotes the element in the ith row and jth column
of A. The representation of Oy is as follows:

O = (112121 + 12, 1)(2, 1) ® | —ik 1*2”"><0|
—ik\@(m

b
M+1

+Z|l,l)(l,l|®|(l—1)v)(0|. (35)

=3

M
YLD+ ®
=2

M+1
Y LI ®
=3

This oracle can be block-encoded using the methods in
Ref. [48].

The initial condition for the Hermite system is given by
Eq. (29). This is trivial to construct, and does not add to the
complexity of the algorithm.

In general, one has access to all Hermite moments in
the solution state. If one is interested only in computing the
Landau damping rate, then it suffices to measure the zeroth
Hermite moment go 4, from which the electric potential can
be calculated,

$r = 080 k- (36)

To obtain the Landau damping rate, go x needs to be sampled
at various times. To obtain gg ; at a particular time, amplitude
estimation can be used [49]. This requires O(1/5) repetitions
of the algorithm to calculate g ; to absolute precision §. Once
the amplitude is obtained, the algorithm must be repeated for
the other sample times. Doing amplitude estimation efficiently
at all times is contingent upon the electric potential decaying
slowly. Furthermore, in the collisional case, the simulation
time must be limited due to the solution norm decaying as
e 00X n general, one is interested in kinetic effects, which
are captured when v < y. This means that the collisions are
occurring on a timescale which is longer than the timescales
of interest (Landau damping, in this case). Thus, by choosing
T ~ 1/y, we can ensure that we recover the Landau damping
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ABTIN AMERI et al.

PHYSICAL REVIEW A 107, 062412 (2023)

rate accurately without the decay of both the solution norm
and the electric potential hindering the performance.

These repetitions required for extracting the Landau damp-
ing rate increase the complexity of the quantum algorithm
with respect to error. Efficient Hamiltonian simulation algo-
rithms to prepare the solution state scale as O[log(1/€)], but
extracting a classical parameter (such as the Landau damping
rate) by using amplitude estimation—assuming that § ~ e—
turns this scaling into O(1/¢).

IV. ERROR ANALYSIS

A. Statement of the problem

Given a precision €, we would like to determine the system
size N required to obtain go; from Eq. (25), as well as the
system size N, required to obtain Ej from Eqgs. (14) and (15).
In the former case, the input parameters are the simulation
time 7 [50], the Fourier coefficient kq for the initial condition,
the collision frequency v, and physics parameter «. For the
ESP system, in addition to 7" and ky, the velocity grid trun-
cation value v,y is required (their algorithm only solves the
collisionless case, v = 0).

B. The Hermite system

The error analysis for the Hermite system is nontrivial
and depends on the function that is being Hermite-expanded.
Typically, for the types of functions involved in this problem
(decaying as e™v"), the convergence of the Hermite series is
superexponential [51,52]. That is,

€= O(eiﬁM), 37

where 8 = B(k, T).

Since an exact analytical solution to Eqgs. (11) and (12) is
not known, for the purpose of the error analysis we analyze
the case @ = 0 (as done in other works, e.g., Ref. [42]), which
corresponds to the free-streaming equation

3
98k | ikvg, =0, (38)
at

with initial condition
&, 0)=e", (39)

whose exact solution is
ge(v, 1) = 7=, (40)

The Hermite coefficients of this solution which solve Eq. (25)
are given by

efk212/4(_ikt)m

The factorial in the denominator scales as O(e™'°¢™) and
results in a superexponential convergence as m increases.
Figure 4 plots the convergence of the Hermite series for the
zeroth moment g . An ODE solver is used to solve Eq. (25)
and the solution is compared with Eq. (41) to obtain the
relative error. The figure shows the predicted convergence.
This exponential convergence can also be demonstrated in
the collisional case. Indeed, as shown in Ref. [45], seeking

gmk(t) = (41)

N T T T

N —— Numerical Result
0 N - —e2M
10% - ‘

w
-
o
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FIG. 4. The relative error € as a function of the number of Her-
mite moments M. The blue solid line is the error obtained from
solving Eq. (25) using an ODE solver with « = v =0, k =2, and
T = 2.5, and the dashed orange line is an e~ scaling.

a steady-state solution to Eq. (24) with m > 1 results in a
Hermite spectrum given by

1 1/ m\*?
lgml = O ija OXP —z(m—c> ) (42)

where m, corresponds to the collisional cutoff (a function
of the collision frequency and other physical inputs of the
problem). While the convergence is polynomial with 1/m for
small values of m, it becomes exponential asymptotically for
larger values of m.

The fast convergence means that the system size N =M+ 1
scales logarithmically with the error

N = O[log(1/€)]. (43)

C. The ESP system

Here, we will briefly overview the approach of ESP [34]
and perform an error analysis. The reader is referred to their
paper for further details.

Instead of using the Poisson equation, as we do in our
formulation, ESP couple the linear (collisionless) Vlasov
equation to Ampere’s law, as in Egs. (14) and (15) with
Clgi] = 0. They then restrict velocity space to the domain
[—Vmax> Umax]s Where vp.x is an input parameter, and ap-
proximate the integral in Eq. (15) using a Riemann sum
on a velocity grid of N, points. This, along with vari-
able transformations, allows them to write the system as a
Schrodinger-type equation,

dvi

i —iHYy, (44)

where ¥, stores the (Fourier-transformed) distribution func-
tion in velocity space, as well as the amplitude of the electric
field.

062412-6



QUANTUM ALGORITHM FOR THE LINEAR VLASOV ...

PHYSICAL REVIEW A 107, 062412 (2023)

1072} Total error E
—-—-:Riemann sum error
N
)
—
—4
© 107 ¢ E
—
)
)
2
=
o]
o) -6 e
m 10 E \~\~ 4
\~\~
\,\~
\,\~
\~\~\
10°8 . . .
10° 10! 10? 10° 10*

Number of velocity space grid points N,

FIG. 5. The relative error in integrating | fcoo ¢~ dv as a function
of the number of velocity space grid points N, with vy« = 3. The
blue solid line is the total error, as shown in Eq. (45), the dashed-
dotted orange line is the Riemann sum error, as shown by the second
term on the right-hand side of Eq. (45), and the dashed yellow line is
an N, ! scaling.

The error in the amplitude of the electric field originating
from Eq. (15) is given by

2 2L1U2
= O e Vmax 4 — X ) 45
€ (e N, ) (45)

where L) = maXye[—y,,..on] |48k/dV|. The first term corre-
sponds to the domain truncation error [52], and the second
corresponds to the Riemann sum error [53]. Because L, is
dependent on the amount of structure present in the perturbed
distribution function, we can conclude that L; = Li(k, T)
(as per the discussion in Sec. IIB). As an example, Fig. 5
is a convergence plot for approximating ffooo eV dv as a
domain-truncated Riemann sum, showing convergence of the
error with respect to N,. The Gaussian function is specifically
chosen for the error analysis because g; decays as a Gaussian
as |v| — oo. We can see the total error [54] and the Riemann
sum error, and we observe that the latter converges as N, 1 as
predicted. The saturation of the total error as N, increases is
due to the domain truncation error (the difference between the
blue and orange lines).

For simplicity, let us take the domain truncation error and
the Riemann sum error to be of the same order:

2112,

eivﬁlax ~ ﬂ ~ €. (46)
Ny
Then, to achieve a precision €, we have the following expres-
sion for N,:
log(1/e

N, = 0<M). @7)

€

Thus, the ESP system size N, scales polynomially with 1/e.

D. Comparison

Comparing Eqgs. (43) and (47), we see that the Hermite
system can achieve the same precision € with an exponentially

TABLE I. Gate complexities of the algorithms to estimate Lan-
dau damping discussed in this paper. Here, N is the Hermite system
size, N, is the ESP system size, € is the absolute error in amplitude
estimation, and 6 < 1 is the order of the classical ODE solver,
with smaller values corresponding to higher-order solvers. Note that
N = Ollog(N,)], so the classical Hermite algorithm matches the
performance of the ESP quantum algorithm. The simulation time T’
is a constant and is omitted from the complexity analysis.

Gate complexity

Representation Classical Quantum
ESP [34] O(N, /€") Olpolylog (N,)/€]
Hermite O(N/e") O[v/N log(N)/e€]

smaller system size N compared to the ESP system. This
means that a classical ODE solver—whose complexity scales
as O(N)—implementing the Hermite system has the same
performance as the quantum algorithm of ESP.

While we have excluded the dependence of the system
size on the simulation time 7 in the error analysis, we note
that this dependence is different for the Hermite and ESP
representations. Inspecting Eq. (40), we find that structures
develop from the exp(—ikTv) term, meaning that the ESP
representation would need N, ~ kT grid points to resolve
such structures. On the other hand, from Eq. (41) we find
that the peak of |gu «(T)| occurs when M = (kT)2/2; this
sets the minimum resolution required to capture the physics.
Thus, in the long simulation time limit, the ESP system size
has better dependence on 7. However, this does not affect
the results of this paper as long as € is not held fixed. This
is because the ESP system size’s dependence on T and €
goes as N, ~ T log(1/€)/e, whereas for the Hermite system
size the dependence is N ~ T?log(1/¢). Thus, we still have
N = O(logN,), so the Hermite system size remains expo-
nentially smaller than the ESP system size. It is important
to note that the system size’s dependence on T exists only
in the collisionless case. Upon adding collisions, the number
of Hermite moments required to capture the fine structures is
dictated by M 2 w/v, which is independent of T.

V. DISCUSSION AND CONCLUSION

In this paper we have demonstrated two main results. First,
using a Hermite representation of velocity space, we can
obtain a system that is exponentially smaller than the one
obtained via finite-difference discretization, as proposed in the
work of ESP [34], for the same error €. This implies that a
classical implementation of the Hermite approach will have
a similar performance to that of ESP’s quantum algorithm.
Second, a quantum algorithm for the Hermite formulation can
yield a quadratic speedup compared to classical algorithms
that solve the same system of equations. An exponential
speedup, however, does not seem possible with currently
known methods due to the large norm of the matrices in-
volved. Table I summarizes the complexities of the algorithms
discussed in this paper.
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The problem analyzed in this paper is somewhat nuanced
in that system size is conflated with the computation er-
ror. This is because the resolution required in velocity (or
Hermite) space is strictly a function only of the error one
wishes to achieve in the computation of the Landau damping
rate (physically, running the computation for longer times
so that a longer-in-time decay stage is obtained leads to
more phase mixing and thus a finer-scale structure in veloc-
ity space—or, correspondingly, a structure at higher Hermite
moments). However, this only applies when the minimum
resolution required to capture the relevant physics is achieved
(e.g., for the collisional case, M 2 w/v). Similarly, in more
general problems in plasma physics, there are minimal re-
quirements imposed on velocity- and position-space grid
sizes, set by the need to resolve specific physics processes
(for example, one typically wishes to simulate a system
of a given size L, but is forced to resolve kinetic-scale
physics happening at scales below, say, the ion Larmor ra-
dius p;. Frequently, L/p; > 1, implying, therefore, a very
large number of grid points in position space before one can
even consider the error convergence with respect to system
size. A comparable situation in velocity space is one where
there is a superthermal particle population, in addition to a
Maxwellian bulk). Therefore, the scaling with system size
of quantum algorithms for plasma problems is of intrinsic
interest.

Our results also highlight the challenge of applying cur-
rently existing quantum algorithms to real-world problems. In
applying quantum algorithms for a Hamiltonian simulation
or differential equation solvers to the Vlasov equation, we
encounter matrix norms that scale as the square root of the
system size. In addition, extracting classical information such

as the Landau damping parameter increases the complexity
from O[log(1/€)] to O(1/¢).

We also note that it is possible to formulate the linear
Vlasov equation as an eigenvalue problem and use a quan-
tum phase estimation [55,56] and quantum eigenvalue solvers
[57-61] to determine the smallest eigenvalue for the collision-
less and collisional systems, respectively. However, in both
cases, finding the smallest eigenvalue requires knowledge of
the corresponding eigenvector. Since we do not know the
eigenvector a priori, this approach is ineffective. Furthermore,
Landau damping cannot be captured with an eigenvalue for-
mulation, as it inherently requires an initial-value problem
approach.

Possible extensions of this work include generalizing the
system to higher dimensions, as well as extending the quan-
tum algorithm to the fully nonlinear Vlasov equation. For the
latter, in the regime of weak nonlinearity, it is possible that
quantum approaches such as those proposed by Liu et al. [21]
could lead to a speedup. Whether a quantum speedup can be
obtained in a strongly nonlinear regime remains an open and
important problem.
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