A Viewpoint on:
Optical Polarization of Nuclear Spins in Silicon Carbide
Abram L. Falk, Paul V. Klimov, Viktor Ivády, Krisztián Szász, David J. Christle, William F. Koehl, Ádám Gali, and David D. Awschalom

Quantum computers and other quantum information processing (QIP) devices—such as simulators, sensors, and communication channels—hold the promise to deliver performances not attainable by classical systems. Unfortunately, the qubits used to store information are usually fragile and difficult to manipulate and engineer, thus forestalling advances in the field. Many qubit candidates suffer from short coherence times due to interactions with the environment. In this regard, spin-1/2 nuclei are an attractive qubit system, as they are quite insensitive to external degrees of freedom that cause decoherence. However, this insensitivity also makes it challenging to initialize and manipulate nuclear spins. An international team of researchers led by David Awschalom of the University of Chicago, Illinois, has managed to polarize nuclear spins in silicon carbide (SiC) using optical light [1]. This is not the first time this sort of spin control has been demonstrated, but compared to previous materials, SiC has many practical advantages, such as being inexpensive to grow and fabricate into tiny structures. The results are therefore an important step in making nuclear spins a viable contender for scalable quantum computation.

Nuclear spins were one of the first systems used to demonstrate that quantum computation could be achieved in practice [2], taking advantage of the good control techniques developed in nuclear magnetic resonance (NMR). However, nuclear spins have several drawbacks. For one, individual nuclear spins cannot be spatially addressed and detected with conventional inductive techniques used in NMR, so spins are addressed by their frequencies, which only offers a limited number of distinct qubits. In addition, nuclear spins are typically found in a thermal mixture state, whereas a well-defined pure state is desirable as the initial state for many QIP applications. Because of these reasons, NMR-based QIP—despite many early achievements—is considered less promising for scalable quantum computation than other quantum systems.

The experiment of Awschalom and co-workers could help to ease some doubts about the viability of nuclear spins in QIP applications [1]. The team managed to polarize silicon nuclear spins in SiC to a level of about 99%, which corresponds to an effective spin temperature of 5 microkelvin (the sample as a whole remains at room temperature). To achieve this result, the researchers exploited the strong hyperfine interaction of these nuclear spins to defects in the crystal lattice called “color centers.” Color centers are point defects in the crystal structure (see Fig. 1) that can trap electrons or holes. The electronic ground state can absorb and reemit visible light, thus giving a color to the otherwise transparent material. These color centers also possess an electronic spin that interacts with external magnetic fields via the Zeeman effect and with the nearby nuclear spins through the hyperfine interaction.

The researchers started with SiC wafers intentionally grown with color centers. They placed their samples in a magnetic field and illuminated them with infrared light, which polarized the color center electronic spins. This polarization corresponds to cooling the spins to their ground state. Normally, the polarization of electronic spins would have little effect on the nuclear spins because of their different Zeeman energy. A change (or flip) in the electron spin couldn’t energetically be compensated for by a nuclear spin flip. However, the authors were able to allow these spin flip-flops by tuning the external magnetic field. For field values of around 400 gauss, the Zeeman energy of the electronic spins is counterbalanced by their intrinsic zero-field energy, so that spin flips for electrons and nuclei have nearly the same energy. This allows a flow of polarization from the cold electronic spins to the
with coherence times greater than can thus be exploited as long-lived quantum memory, out individual nuclear spins. The nuclear spin qubits systems offer the ability to initialize, control, and read spin defects in silicon, antimony, and diamond [5]. These study, these works have taken advantage of electronic microwave driving, but optical polarization of nuclear en-
saturation of ensemble NMR experiments [3]. The well-established technique, which is referred to as dynamic nu-
clear polarization, usually requires low temperatures and microwave driving, but optical polarization of nuclear en-
sembles has also been achieved in the past [4]. Only recently, however, have researchers managed to achieve high local polarization of nuclear spins. Like the current study, these works have taken advantage of electronic spin defects in silicon, antimony, and diamond [5]. These systems offer the ability to initialize, control, and read out individual nuclear spins. The nuclear spin qubits can thus be exploited as long-lived quantum memory, with coherence times greater than 1 second for single carbon nuclei in diamond, 30 seconds for single phospho-
rous nuclei in silicon, and 39 minutes for an ensemble of phosphorous nuclei in silicon [6]. These record-breaking coherence times, together with the ability to implement precise and efficient control on individual nuclear spins, open a new realm of possibilities for quantum technolo-
gies. Quantum registers based on nuclear spins have already been used to perform small algorithms that can test fundamental questions in quantum mechanics, im-
plement quantum error correction, or improve the performance of quantum sensors [7].

Awschalom and co-workers have built on these results to bring quantum devices one step closer to a practi-
cal and convenient realization by using a host material, silicon carbide, that is device-friendly. SiC can be grown into high-quality single crystals by large-scale pro-
duction and is popular in electronics applications where high temperature or high power is required [8]. Com-
pared to diamond, a material that has recently been pro-
posed as a host for electronic-nuclear spin qubits, SiC is more amenable to nanofabrication. Indeed, it has been used in micro- and nanoelectromechanical systems, while SiC nanostructures (quantum dots, photonic crystals, nanopillars, etc.) have elicited much interest for their potential use in photonic applications and optoelectronics [9]. Fast progress has also been made to characterize the numerous optically active paramagnetic defects that can occur in SiC [10].

SiC is thus fast positioning itself as one of the most promising materials for quantum devices, combining the ability to engineer nanostructures with the presence of paramagnetic quantum spin defects. Importantly, the work by Awschalom and colleagues demonstrates another key ingredient, the presence of an intrinsic memory asso-
ciated with the nuclear spin. While there are still many challenges to quantum technologies, silicon carbide and its nuclear spins are poised to play an important role in overcoming them and bringing practical devices to reality.

This research is published in Physical Review Letters

References

don, D. Budker, D. Gershoni, and L. Frydman, “Bulk Nu-

[6] P. C. Maurer et al., “Room-Temperature Quantum Bit Mem-
don, D. Budker, D. Gershoni, and L. Frydman, “Bulk Nu-

DOI: 10.1103/Physics.8.56
URL: http://link.aps.org/doi/10.1103/Physics.8.56

© 2015 American Physical Society

[10] S. Castelletto, B. C. Johnson, and A. Boretti, “Quantum Ef-

About the Author

Paola Cappellaro

Paola Cappellaro is the Esther and Harold Edgerton Associate Professor of Nuclear Science and Engineering at the Massachusetts Institute of Technology, where she leads the Quantum Engineering Group. She received her Ph.D. in 2006 from MIT and held a postdoctoral fellowship at Harvard University in the Institute for Theoretical Atomic, Molecular and Optical Physics. Her research focuses on understanding and exploiting quantum systems, in particular isolated spin defects, for applications in quantum information processing, sensing and imaging.