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Distributed quantum computing is a promising computational paradigm for performing compu-
tations that are beyond the reach of individual quantum devices. Privacy in distributed quantum
computing is critical for maintaining confidentiality and protecting the data in the presence of
untrusted computing nodes. In this work, we introduce novel blind quantum machine learning
protocols based on the quantum bipartite correlator algorithm. Our protocols have reduced com-
munication overhead while preserving the privacy of data from untrusted parties. We introduce
robust algorithm-specific privacy-preserving mechanisms with low computational overhead that do
not require complex cryptographic techniques. We then validate the effectiveness of the proposed
protocols through complexity and privacy analysis. Our findings pave the way for advancements in
distributed quantum computing, opening up new possibilities for privacy-aware machine learning
applications in the era of quantum technologies.

I. INTRODUCTION

Quantum computation that leverages the principles of
quantum mechanics has the potential to tackle prob-
lems that are beyond the reach of classical computers,
revolutionizing fields ranging from cryptography [1] to
finance [2] and drug discovery [3]. Distributed quan-
tum computing has attracted a lot of attention in recent
years [4–10] due to the rapid progress in quantum com-
munication technologies. In distributed quantum com-
puting, multiple quantum processors are connected over
a network, enabling collaborative computation and re-
source sharing. This approach is crucial for scaling up
quantum computing power and overcoming the limita-
tions of individual quantum systems. Exploiting dis-
tributed quantum resources enables tackling larger and
more computationally complex problems in domains such
as optimization, simulation and quantum machine learn-
ing (QML). QML is especially suitable for distributed
computation due to the need to process large datasets.

Privacy in distributed computing plays a vital role
in ensuring the confidentiality and security of sensitive
information processed by multiple parties. Distributed
quantum computation involves sharing and transmit-
ting of quantum states across multiple nodes, making
it paramount to protect the privacy of data and prevent
unauthorized access. Furthermore, in practice, address-
ing privacy concerns in distributed quantum computing
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is essential for facilitating applications in fields such as
finance and healthcare, where preserving the privacy of
sensitive data is of utmost importance.

A number of protocols have been proposed in recent
years that aim to implement private distributed quantum
computing. For example, blind quantum computing [11–
13] enables the client to execute a quantum computation
using one or more remote quantum servers while keeping
the structure of the computation hidden. Meanwhile, re-
ducing the overhead in communication over blind quan-
tum computation protocols has been an active research
area since the first proposal of universal blind quan-
tum computation (UBQC) [11]. However, for distributed
quantum computing problems such as QML, ensuring the
privacy of data from a certain party while reducing the
overhead in both quantum communication and compu-
tation remains a challenge.

In this work, we introduce novel protocols for blind
distributed quantum machine learning based on quan-
tum bipartite correlator algorithm that can perform
inner product estimation tasks. Our protocols are
communication-efficient compared with state-of-the-art
classical and quantum blind distributed machine learning
algorithms. Particularly, for the task of distributed inner
product estimation, a core subroutine in machine learn-
ing applications, the protocols involve a communication
complexity O(logN/ϵ) with N and ϵ being the size of
the vectors and standard estimation error, respectively.
We demonstrate how our protocols allow the client to
conceal its data from the server, and vice versa. We pro-
vide a detailed resource analysis for both communication
and computation costs of our methods. Our work paves
the way for performing quantum machine learning with
an untrusted device, while maintaining the privacy and
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keeping the resource overhead low.

II. FORMALISM

We start by presenting the problem statement in dis-
tributed quantum computation. The basic setting in-
cludes two parties, Alice and Bob. We assume that Alice
has more quantum computational resources than Bob,
such as a larger number of qubits. In many distributed
quantum computation applications such as a delegated
computation setting, Alice can be considered as a quan-
tum server with Bob being a client. Furthermore, there
is a quantum channel where qubits can be transmitted
between the two parties. For the distributed QML tasks
studied in this work, we assume that Alice holds the data
X and Bob holds y. For example, in supervised learn-
ing, X and y could be feature data and labels, respec-
tively [14], while in unsupervised learning, both X and
y can be feature data with the objective to cluster them
based on distance estimation [15].

We consider the task of blind quantum machine learn-
ing, such as linear regression or classification [16–19]. In
machine learning, evaluating the inner product between
two vectors is an important algorithmic building block.
The server holds the data vector X of size N and the
number of features for each data point is M , and the
client holds a one-dimensional bitstring y with the same
size N . Note that transmitting the data classically to
the server would introduce O(N) complexity in commu-
nication. Meanwhile, as we consider distributed quantum
computation, the data X and y are only held locally by
the server and client, respectively.

In classical settings, the goal of achieving distributed
machine learning with privacy can be approached us-
ing various techniques, such as homomorphic encryp-
tion [20, 21], which allows computation over encrypted
data. Specifically, for distributed bipartite correla-
tion estimation, many methods could be employed, in-
cluding linearly homomorphic encryption [22, 23], non-
interactive inner product protocols [24] and oblivious-
transfer-based secure computation [25]. However, it is
important to note that these classical methods often in-
troduce considerable overhead in terms of computation
and communication complexity. Particularly, a commu-
nication cost of Õ(N) would be a minimum requisite [24].
As a result, their practical applications become limited,
especially when dealing with large data sizes.

III. QUANTUM BIPARTITE CORRELATOR
ALGORITHM AND ITS PRIVACY

In this section, we briefly introduce the quantum bi-
partite correlator (QBC) algorithm that can estimate the
correlation between two bitstrings held by remote par-
ties [8]. The algorithm can be easily generalized to per-
form other computation tasks, such as the Hamming dis-

tance estimation. We remark that estimating bipartite
correlation or Hamming distance serves as the building
block of a general class of machine learning problems, in-
cluding least-square fitting and classification of discrete
labels [26, 27].
Without loss of generality, we consider binary floating

point numbers. We take the feature dimension M to be
one for simplicity hereafter unless specified. For two vec-
tors X,y ≡ [x1, · · ·xN ]T , [y1, · · · yN ]T ∈ {0, 1}N , we are

interested in evaluating xy = 1
N

∑N
i=1 xiyi within a stan-

dard deviation error ϵ. To begin with, we assume that the
two parties Alice and Bob hold a local oracle that can en-
code their own data using a unitary transformation. That
is, for Alice, one has Ûx⃗ : |i⟩n|0⟩ 7→ |i⟩n|xi⟩ that encodes
the data xi, where |i⟩n is an n ≡ ⌈log2(N)⌉-qubit (called
index qubit hereafter) state |i1i2 · · · in⟩, representing the
index of the queried component with ik ∈ {0, 1}, k ∈ [N ],
and |xi⟩ is a single-qubit state. Similarly, Bob has an or-

acle Ûy⃗ of the same type that encodes his local data yi.
These oracle operators, as well as the ones introduced
later, could be implemented with various techniques such
as quantum random access memory [28].
QBC is based on the quantum counting algorithm,

where Alice and Bob send qubits via quantum channels
and communicate with each other to realize the phase
oracle [8, 29], as shown in the top of Fig. 1. The quan-
tum counting algorithm consists of a Grover operator
Ĝx⃗,y⃗ ≡ Ĥ⊗n(2|0⟩n⟨0|n − Î)Ĥ⊗nÛxy, where Ûxy is a uni-
tary operator that encodes information of both parties
as we will introduce below, and inverse Quantum Fourier
transform (QFT†) on register qubits |·⟩t. When mea-
suring the t-register, one can project it into a state |j⟩t
with phase 2πj · 2−t which encodes either θ̂ or 2π − θ̂,
where θ = 2arcsin

√
xy, with equivalent standard devia-

tion: ∆θ̂ = 2−t+1 [8].

During the phase oracle Ĝx⃗,y⃗, the following unitary
circuit is applied to achieve encoding of xi and yi

Ûxy |i⟩n |00⟩o1o2 = (−1)xiyi |i⟩n |00⟩o1o2 , (1)

where o1, o2 are two qubits locally held by Alice and
Bob, respectively. The above unitary operator can be
implemented with the local oracles that Alice and Bob
hold, i.e., Ûx⃗ and Ûy⃗.
Specifically, Alice encodes her local information X

into qubit o1 via Ûx⃗ operator and sends the (n + 1)-

qubit state 1√
N

∑N
i |i⟩n |xi⟩o1 to Bob via a quantum

channel. After Bob applies his oracle and generates

the state 1√
N

∑N
i |i⟩n |xi⟩o1 |yi⟩o2 , a controlled-Z (CZ)

gate between qubit o1 and o2 is applied to encode
the correlation information into the phase of the quan-
tum state. That is, the bipartite quantum state is

described by 1√
N

∑N
i (−1)xiyi |i⟩n |xi⟩o1 |yi⟩o2 . The fol-

lowing local oracles would then yield the desired state
1√
N

∑N
i (−1)xiyi |i⟩n on which Alice will apply the quan-

tum counting algorithm to estimate xy = 1
N

∑N
i=1 xiyi

with bounded error ϵ. We note that the CZ gate might
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be replaced with a different set of gates to estimate other
types of correlations between X and y. For example,
to calculate their Hamming distance, one can implement
the XOR gate xi ⊕ yi by replacing the CZ gate with a Z
gate on o2 sandwiched by two CNOT gates between o1
and o2 [8].

In the QBC algorithm, the communication complexity,
i.e., the qubits transmitted during the overall process, is
given by the Grover operation’s 2(n+ 1) qubits commu-
nication repeated for 2t − 1 iterations:

Ccomm = 2(n+ 1)(2t − 1) = O

(
log2(N)

ϵ

)
, (2)

where the number of register qubits t is chosen to satisfy
the desired error bound. We remark that the above com-
munication complexity is advantageous compared with
the SWAP-test-based algorithm that has a scaling of
O
(
log2(N)/ϵ2

)
[30] or LOCC-based algorithms with a

scaling of O
(
log2(N)max{1/ϵ2,

√
N/ϵ}

)
[31]. This ad-

vantage is achieved by utilizing the distributed Grover
operations.

The computational complexity, on the other hand, is
the total number of oracle calls by Alice and Bob:

Ccomp = 4(2t − 1) = O

(
1

ϵ

)
. (3)

We next consider the privacy of data in the QBC algo-
rithm discussed above. From now on, we consider Alice
as a server and Bob as a client. We first focus on the
privacy of the client’s information y to a semi-honest ad-
versary. In this type of adversary, the honest-but-curious
server follows the protocol and does not do any mali-
cious behavior, but it tries to violate the privacy of the
client’s input by scrutinizing the messages transmitted in
the protocol. That is, the server tries to infer y from the

estimated 1
N

∑N
i xiyi.

In the trivial case when xi = 0,∀i ≤ N , we have xy = 0
no matter what y is and the protocol has the best privacy.
While in the worst case where the xi = 1,∀i ≤ N and
xy = 1, the server could infer that yi = 1,∀i ≤ N . In
general, for X with Hamming weight dx, the probability
that the server gets the exact y (that is, the Hamming
distance between extracted and exact bitstring is d0 = 0)
is given by

Pr(dx) =
1

2N−dx

∏dx

i=1 i∏Nxy
i=1 i

∏dx−Nxy
i=1 i

, (4)

where the factor 1
2N−dx

comes from server having ran-
dom guess on the indices j that satisfies xj = 0. For
a honest server in the original QBC protocol, however,
the y information is always hidden from the server and
is private.

In addition to the semi-honest adversary scenario dis-
cussed above, we note that in the original QBC algo-
rithm, the preservation of privacy is not assured when
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FIG. 1. Diagram for blind QBC with untrusted server. The
upper diagram shows the quantum counting algorithm con-
sisting Grover phase oracles Ĝx⃗,y⃗ and inverse QFT, while the
lower box panel shows the realization details of each phase
oracle. Compared to the original QBC algorithm, we intro-
duce an ancillary qubit o3 on client’s side to add a phase
gi during the computation process. The phase can be intro-
duced via applying a phase gate on qubit o3, which encodes
a bitstring that is random and unknown to the server. The
detailed phase encoding rule is explained in the text. The
quantum state at the star point is shown in the inset of the
figure. After the server finishes the quantum circuit, it sends
the extracted modified bipartite correlation 1

N

∑N
i (xiyi + gi)

to the client via a classical communication channel. We omit
the 1/

√
N normalization factor for index qubit states

∑N
i |i⟩

in the figures hereafter for simplicity.

we consider a malicious server Alice. The server has the
capability to acquire, to a certain extent, Bob’s strings y
by deviating from the expected quantum operations. We
next discuss the designed blind QBC protocol with such
an untrusted server.

IV. BLIND QBC WITH UNTRUSTED SERVER

A malicious server can get the client’s information by
deviating from the established QBC protocol. One ex-
ample is that the server could perform quantum gate
operations and measurements to extract the phase in-
formation instead of following the expected Grover steps

after receiving 1√
N

∑N
i (−1)xiyi |i⟩n|xi⟩o1 from the client

Bob. Alternatively, a malicious server could potentially
manipulate the state of qubit o1 sent to the client, rather
than genuinely encoding the information of X. In prin-
ciple, for each communication round, the server can ac-
quire one bit of information of client’s data y. Then with
the 2t − 1 = O( 1ϵ ) Grover iterations, the server could get

O( 1ϵ ) bits of information in y. Such an attack strategy
might be implemented by preparing the o1 qubit in |+⟩
state and sending 1√

N

∑N
i |i⟩n |+⟩o1 to the client (Ap-

pendix A). Subsequent to the reception of the quantum
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state from the client, the server undertakes an X basis
measurement on qubit o1. The server could perform the
sampling procedure encompassing the bitstrings of the
index qubits during the O( 1ϵ ) communication rounds.

We note that the server could not manipulate the in-

dex qubit states 1√
N

∑N
i |i⟩ to amplify the amplitude of

a specific bistring of interest, as the client is capable of
verifying the received quantum state of index qubits by
performing X basis measurements to check whether they
have the same amplitude. On the other hand, it is possi-
ble to employ a redundant encoding strategy to further
decrease the probability that the server attains a specific
yi corresponding to an intended index. However, this
comes at the expense of increased communication com-
plexity, as detailed in Appendix. B.

To counteract the aforementioned attack strategy, we
need to devise a protocol enabling the server to execute
machine learning tasks while remaining unaware of the
exact label information y, even when the malicious server
does not follow the designed protocol. In this case, we
consider an honest client, who is not interested in learn-
ing X. This assumption might be removed if we consider
further encoding privacy in X when sending informa-
tion to the client. To implement remote blind bipartite
correlation estimation, a desired protocol should have 1)
less overhead in quantum communication, 2) less require-
ments in the computational power of client, 3) a certified
estimation result with error ϵ.

We thus consider the revised QBC algorithm below
(Fig. 1). Inspired by quantum one-time pad [11], the
protocol utilizes phase padding to preserve privacy. The
client Bob now has one or more qubits at hand, where
he can encode a bit string |gi⟩ that is blind to the server.

That is, the client has an oracle Ûg⃗ for the extra qubit
(denoted as o3 hereafter), and the modified phase oracle
of Eq. 1 reads as

Ûxyg |i⟩n |000⟩o1o2o3 = (−1)xiyi+gi |i⟩n |000⟩o1o2o3 . (5)

To implement the above unitary Ûxyg, similar to

the Ûxy, the client performs Ûy⃗ and Ûg⃗ oracle af-
ter receiving state from server to create the state
1√
N

∑N
i |i⟩n |xi⟩o1 |yi⟩o2 |gi⟩o3 , followed by a controlled-

Z gate between o1 and o2. Then a local Z gate can be
applied on qubit o3 to add the phase (−1)gi that is ran-
dom to server.

Since the phase term (−1)xiyi+gi is binary here with
modular addition between xiyi and gi, we design the fol-
lowing rule for the application of random phase gi. For a
given index i, when yi = 0, the client chooses a random
number from {0, 1}; while when yi = 1, the client sets
gi = 0. Under this setting, the server cannot get yi in
general from direct measurement of the parity at each
Grover step, even if the server knows exactly the circuit
that the client performs.

The above phase encoding rule on gi guarantees that
xiyi + gi ∈ {0, 1}. The quantum counting algorithm

can then estimate 1
N

∑N
i (xiyi + gi) = 1

N

∑N
i (xiyi + gi

mod 2) with error bound ϵ. Finally, after the mea-
surement, the server sends the estimated result back to
the client via a classical channel, from which the client

can extract 1
N

∑N
i xiyi using his local information of

1
N

∑N
i gi. Alternatively, depending on the specific use

cases, the client could directly share 1
N

∑N
i gi with the

server and let it extract the bipartite correlation between
X and y.

We emphasize that in principle, the aforementioned
protocol could still inadvertently leak a portion of the
information in y to the server. As can be seen from the
scheme, in the case where xj = 1 and the final phase
term is xjyj + gj = 0, if the server knows the above ap-
plication rule of gi and extracts the phase corresponding
to the index qubit |i⟩i=j , it could infer that yj = 0. We
consider the worst scenario where the malicious server
picks xi = 1,∀i ≤ N and has client’s local phase encod-
ing rule. The server’s attack strategy is to measure the
phase of a randomly picked index |i⟩ to extract xiyi+gi at
each Grover iteration. Then, for y with Hamming weight
dy, the probability that the server extracts a bitstring y′

that is d0-close (d0 ≤ dy) to y using the information of
the measured phases and without doing random guess is
simply given by

Pr(d(y,y′) = d0) =

C(dy, d0)C(N − dy,min(2t − 1, dy)− d0)

C(N,min(2t − 1, dy))

(6)

where C(·, ·) denotes the binomial coefficient. As can be
seen from the analysis above, even in the worst case, the
probability that the server can successfully extract part
of y information becomes considerably low when the data
size becomes large, particularly when N ≥ 2t−1, while in
the original QBC a malicious server could get 2t − 1 bits
of information from the client during the communication
round. Note that the iteration number 2t − 1 yields the
standard deviation of the estimated correlation, that is,
2t − 1 = O( 1ϵ ). A less tight error bound ϵ will reduce
the number of communication rounds between server and
client thus increasing the privacy of client’s data.

We remark that the quantum communication complex-
ity of the aforementioned algorithm for blind server is

Cbs
comm = O( log2(N)

ϵ ), which is the same as the original
QBC as depicted in Eq. 2. Moreover, akin to the QBC
algorithm, a classical communication channel is needed
at the end of QBC to deliver estimation results to the
client. In terms of computational overhead experienced
by the client, introducing the ancilla qubit o3 only adds
O( 1ϵ ) number of two-qubit phase gates and as a result,
does not alter the inherent computational complexity. To
this end, the blind QBC protocol proposed here could en-
able communication-efficient blind distributed machine
learning tasks between a server and a client without pre-
supposing substantial quantum resources on the client.
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V. BLIND QBC WITH UNTRUSTED CLIENT

We now discuss the scenario where the server would
like to estimate 1

N

∑N
i xiyi while keeping X hidden from

the client at all times during the process. In practical ap-
plications such as model-as-a-service platforms [32, 33],
the server’s information, including the model’s param-
eters or training data, should remain hidden from the
clients. By hiding the server-side information, they can
prevent the client from reverse-engineering or extracting
valuable information about the underlying model archi-
tecture or training data. Under this setting, the protocol
should be secure against not only a honest-but-curious
client, but also a malicious client who tries to get X by
deviating from the original quantum algorithm.

Here we assume an honest server that follows the pro-
tocol exactly without trying to get the label informa-
tion y. The goal is then to encode X when the server
sends qubits to the client while running the QBC algo-
rithm. That is, we are interested in designing a privacy-
preserving operator Ôf such that

Ôf
1√
N

N∑
i

|i⟩n |00⟩o1o2 =
1√
N

N∑
i

(−1)xiyi |i⟩n |00⟩o1o2 .

(7)
Inspired by quantum key distribution protocols [34] such
as BB84 [35], we consider a modified local oracle oper-

ator ÛX1
held by the server, where the data informa-

tion X is encoded in different basis (Fig. 2). Specifically,
at each iteration of quantum counting algorithm, for a
given index i, the server chooses a random number Ri

from {0, 1}. When Ri = 0, the server encodes xi us-
ing the Z basis, i.e., |i⟩n |0⟩o1 or |i⟩n |1⟩o1 , depending on
whether xi being 0 or 1; if Ri = 1, xi is encoded in the
X basis and now the state reads |i⟩n |+⟩o1 or |i⟩n |−⟩o1 .
Here |+(−)⟩ = 1

2 (|0⟩ ± |1⟩) are the eigenstates of Pauli

X operator. This oracle ÛX1
can be implemented with

the original oracle Ûx⃗ with Hadamard gates on o1 condi-
tioned on index |i⟩n.

Then, the state received by the client at each time

reads as 1√
N

∑N
i |i⟩n |Xi⟩o1 with Xi being 1(0) or +(−).

As the client does not know which basis the server
chooses for given i, at each Grover iteration, measure-
ment of qubit o1 on index |i⟩ will have the probability
of yielding both 0 or 1, hence the client cannot infer
the xi information from the single copy of the received
1√
N

∑N
i |i⟩n |Xi⟩o1 state. Note that the server could pick

different random numbers Ri at different communication
rounds when executing the QBC algorithm.

As in the original QBC algorithm, the client per-
forms CZ gate between the received qubit o1 and lo-
cal qubit o2 sandwiched by Ûy⃗ operators. Then, the
state received by the server from the quantum channel

is 1√
N

∑N
i |i⟩n (ai |0⟩+ bi(−1)yi |1⟩)o1 where ai(bi) is de-

cided by xi and the encoding basis Ri thus is known to
the server. We next discuss how the server could perform

operations to reach the target state 1√
N

∑N
i (−1)xiyi |i⟩

for running the follow-up QBC algorithm. We consider
a second oracle operator held by the server ÛX2 :

ÛX2

1√
N

N∑
i

|i⟩n (ai |0⟩+ bi(−1)yi |1⟩)o1 =

1√
N

N∑
i

(−1)xiyi |i⟩n (ai |0⟩+ bi(−1)yi |1⟩)o1 .

(8)

This can be achieved via the help of an additional qubit
oa held by the server that encodes the X information in
the normal Z basis (see Appendix C for details of circuit
implementation).
Note that the server cannot decouple the o1 qubit with

an unknown state, as the honest server only has the infor-
mation of ai and bi but doesn’t have the information of
y. In order to reset the state of qubit o1, the server could
return the state back to client to have the client remove
the phase (−1)yi . Before doing so, the server would like
to first hide its information by adding a random phase
padding by applying ÛX3

which is defined as

ÛX3

1√
N

N∑
i

(−1)xiyi |i⟩n (ai |0⟩+ bi(−1)yi |1⟩)o1 =

1√
N

N∑
i

(−1)xiyi+hi |i⟩n (ai |0⟩+ bi(−1)yi |1⟩)o1 .

(9)

Here hi ∈ {0, 1} is blind to the client and could change
in different communication rounds, therefore the client
would not be able to extract xi information. The client
performs a controlled-Z gate again between its local qubit
o2 and the received qubit o1, after which the phase term
(−1)yi becomes (−1)yi+yi = 1. Then, the server receives

the state 1√
N

∑N
i (−1)xiyi+hi |i⟩n (ai |0⟩ + bi |1⟩)o1 from

client and performs oracle ÛX4
:

ÛX4

1√
N

N∑
i

(−1)xiyi+hi |i⟩n (ai |0⟩+ bi |1⟩)o1 =

1√
N

N∑
i

(−1)xiyi |i⟩n |0⟩o1 .

(10)

It can be easily seen that to implement ÛX4
, the server

could simply perform ÛX3
again to remove the added

random phase term (−1)hi and then reset the qubit o1
to |0⟩o1 as the server knows the all coefficients ai and bi.
We remark that the random numbers Ri and hi can

change in different Grover iterations. That is, the client
will not get useful information by performing measure-
ments on each iteration and using the joint results from
a sequence of measurements to infer X. The privacy of
X is guaranteed by the fact that measuring a single copy
in a given basis cannot reveal both the basis information
Ri and the data information xi. The probability that
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FIG. 2. Grover operator Ĥ⊗n(2|0⟩n⟨0|n − Î)Ĥ⊗nÔf for blind quantum bipartite correlator protocol to hide server data X

from client. The operator starts with an oracle held by server (Alice) that encodes X with random basis (oracle ÛX1). After

receiving the state returned by client (Bob), the server extracts the desired phase term (−1)xiyi (ÛX2) and return an encoded

state back to client (ÛX3) to remove the phase in o1 qubit that the server does not know. Finally, the server reaches the target

state 1√
N

∑N
i (−1)xiyi |i⟩n by decoupling o1 qubit with index qubits (ÛX4).

the client gets X′ that is d0-close to the true X would
simply be the same as a random guess.

To this end, we have described a phase encod-
ing oracle Ôf that lets the server acquire the state
1√
N

∑N
i (−1)xiyi |i⟩n for subsequent operations without

leaking the information of data X to an untrusted client.
The scheme is based on a random encoding of X and is
information-theoretic secure against an untrusted client,
with the proof of security following directly from the cor-
responding proof for the BB84 protocol [35, 36]. The
total number of oracle calls by server and client only in-
creases by a constant at each iteration, thus leading to
the same computation complexity O( 1ϵ ) as Eq. 3. The
total communication cost of this blind client scheme is
given by

Cbc
comm = 4(n+ 1)(2t − 1) = O

(
log2(N)

ϵ

)
, (11)

which has the same complexity scaling as the original
QBC algorithm. We summarize the proposed algorithms
here and above in Table. I.

VI. GENERALIZATION INTO MULTI-PARTY
SETTINGS

The algorithms discussed above can be generalized into
multi-party settings and find applications in secure multi-
party computation and machine learning [37, 38], where
parties collaboratively perform computations on their
combined data sets without revealing the data they pos-
sess to untrusted parties. For example, to perform model

aggregation, an untrusted central server would like to
perform linear regression or classification using its local
data as well as labels that are distributed among multiple
clients. Then, the protocol in Sec. IV can be applied in
which the server can interact with each client to extract
model parameters individually.
Here we provide an example of multi-party proto-

cols. We consider a system consisting of a central
server and m clients, where the server is untrusted by
the clients. The task is to have the server evaluate
fm = 1

N

∑N
i (

∑m
j xiy

(j)
i mod 2) without leaking indi-

vidual information of clients. Similar to the phase pad
technique introduced in Sec. IV, one can protect each in-
dividual client’s information by adding additional terms
in the phase when running the QBC algorithm. Specifi-
cally, we consider a cascaded protocol where each client
encodes its information into the phase of index qubits
and passes the state into the next client. In each com-
munication round, the k-th client would receive the

state 1√
N

∑N
i (−1)xiy

(1)
i +xiy

(2)
i +...+xiy

(k−1)
i |i⟩n |xi⟩ from

the (k − 1)-th client. Then, by applying CZ gate be-
tween o1 and its local qubit, the j-th client sends the state
1√
N

∑N
i (−1)xiy

(1)
i +xiy

(2)
i +...+xiy

(k−1)
i +xiy

(k)
i |i⟩n |xi⟩ to the

next client. The final m-th client will pass the state
1√
N

∑N
i (−1)

∑m
j xiy

(j)
i |i⟩n |xi⟩ to the server which can

then perform the remaining part of the original QBC
algorithm to extract the desired fm.
We note that a malicious server could only get the∑m
j y

(m)
i and the individual y

(j)
i information is not

leaked, as the phase added by each client servers as a
random pad of other clients. For the same reason, the
j-th (j ≥ 3) client cannot get previous clients’ informa-
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TABLE I. Privacy and communication complexity of proposed distributed inner product estimation algorithms.

Adversaries Protocol Privacy mechanism Privacy
Communication
complexity

Honest-but-
curious server original QBC algorithm [8] - worst scenario in Eq. 4 O((log2 N)/ϵ)

Malicious server
blind QBC for untrusted
server (Sec. IV) random phase padding worst scenario in Eq. 6 O((log2 N)/ϵ)

Malicious client
blind QBC for untrusted
client (Sec. V)

random basis encoding,
random phase padding information-theoretic secure O((log2 N)/ϵ)

tion as it can only extract
∑j−1

k=1 y
(k)
i . The first client

(j = 1) can further add a random pad g
(1)
i to protect its

information against the second client (j = 2). The proto-
col here is similar to incremental learning [39], where the
model aggregation is performed while preserving privacy.
We remark that the total communication cost scales as

O
(

m log2(N)
ϵ

)
and the privacy mechanism does not in-

troduce additional communication cost. To this end, our
work paves the way for communication-efficient private
machine learning for multi-party system, such as quan-
tum federated learning [40–42].

VII. DISCUSSION AND CONCLUSION

As mentioned above, the proposed blind distributed
inner product estimation protocols can be applied in
distributed machine learning where a central task is to
evaluate correlations between remote matrices or vec-
tors. Here we give an example of such applications. In
linear regression problems, one is interested in finding
the coefficient vector λ with standard error ϵ that sat-
isfies XN×MλM×1 = yN×1, where the N -by-M ma-
trix X and N -by-1 vector y are separately held by
two remote parties, a server and a client, respectively.
We consider the case where the server would like to
estimate λ without letting the client extract its local
information XN×M . The l-th component of λ reads

λl =
∑N

i=1 X
†
liyi, where l and i labels the index of

the element in the matrix or vector. The problem can
be reduced to estimate product of distributed numbers

ali = X†
li and bi = yi. They can be expanded as bi-

nary floating point numbers using, for example, ali =∑∞
k=0 2

u−kx
(k)
li and bi =

∑∞
k=0 2

v−ky
(k)
i , for which u and

v denote the highest digits of a and b, respectively [8, 43].
Then, the target coefficient λl can be written as λl =∑N

i=1 alibi =
∑∞

r=0 2
u+v−r

∑r
k=0

∑N
i=1 x

(k)
li y

(r−k)
i , where

the blind QBC algorithm introduced in Sec. V can be
directly applied. In this case, the untrusted client can
neither directly extract the information of XN×M dur-
ing the blind QBC communication, nor indirectly have an
estimation on XN×M from the knowledge of coefficient
λM×1. To this end, our proposed algorithms exhibit di-
rect applicability within the domain of distributed blind
machine learning tasks, particularly in scenarios involv-

ing matrix or vector multiplication operations.
We further remark that the proposed quantum al-

gorithms offer many benefits for practical applications
with large data sizes. Notably, the quantum communi-
cation cost in estimating the bipartite correlation scales
as O( logN

ϵ ) and additionally, the discussed data privacy
mechanism does not impose any additional overhead in
terms of communication cost. Furthermore, the protocols
eliminate the need for a trusted third party and necessi-
tate only a minimal quantum resource allocation from the
participating clients, encompassing the number of qubits
and gate operations.
In summary, this study introduces novel blind quan-

tum machine learning protocols that utilize a quantum
bipartite correlator estimation algorithm for distributed
parties. By addressing the potential threat of malicious
parties attempting to extract information from others, we
propose two distinct settings that ensure privacy preser-
vation for each party in the QBC algorithm. Leveraging
the advantageous properties of quantum phases and the
flexibility of encoding data in various bases, our proto-
cols can effectively safeguard information. The devel-
oped blind QML algorithm offers notable advantages, in-
cluding low communication and computational complex-
ity. This work contributes to the advancement of secure
and efficient QML protocols, thus presenting an efficient
pathway for distributed quantum computing.

ACKNOWLEDGMENTS

JL acknowledges support by DTRA (Award No.
HDTRA1-20-2-0002) Interaction of Ionizing Radia-
tion with Matter (IIRM) University Research Alliance
(URA).

DISCLAIMER

This paper was prepared for informational purposes
with contributions from the Global Technology Applied
Research center of JPMorgan Chase & Co. This paper is
not a product of the Research Department of JPMorgan
Chase & Co. or its affiliates. Neither JPMorgan Chase &
Co. nor any of its affiliates makes any explicit or implied
representation or warranty and none of them accept any



8

liability in connection with this position paper, including,
without limitation, with respect to the completeness, ac-
curacy, or reliability of the information contained herein
and the potential Legal, compliance, tax, or accounting
effects thereof. This document is not intended as invest-
ment research or investment advice, or as a recommenda-
tion, offer, or solicitation for the purchase or sale of any
security, financial instrument, financial product or ser-
vice, or to be used in any way for evaluating the merits
of participating in any transaction.



9

Appendix A: Extraction of yi information in QBC
by malicious server

We discuss a feasible attack protocol for a malicious
server to extract information of y with the received state∑N

i (−1)xiyi |i⟩n |xi⟩ in the original QBC algorithm. In
this protocol, the server prepares the o1 qubit simple in
the |+⟩ = 1√

2
(|0⟩+ |1⟩) state. The quantum state sent to

client would then be

1√
2
(

1√
N

N∑
i

|i⟩n |0⟩o1 +
1√
N

N∑
i

|i⟩n |1⟩o1) (A1)

The honest client then encodes yi information in the
phase with his own local oracle, leading to state

1√
2N

(

N∑
i

|i⟩n |0⟩o1 + |1⟩oh
N∑
i

(−1)yi |i⟩n |1⟩o1)

=
1√
2N

N∑
i

|i⟩n (|0⟩o1 + (−1)yi |1⟩o1)

(A2)

that is sent back to server.
Then, it’s clear to see that to extract client’s informa-

tion, the server could perform measurement on qubit o1
in the X basis and extract the yj information depending
on the measured index qubit bitstring j. In this case, by
performing sampling on the N index qubit states during
the 2t−1 = O(1/ϵ) communication rounds, the malicious
server could get O(1/ϵ) information of y. Indeed, given
the state Eq. A2 received by the server, the upper bound
of information that the server could get at each round by
performing measurement on index qubits and qubit o1 is
determined by the Holevo’s bound [44]:

H(C : S) ≤ S(ρ)− 1

N

N∑
i

S(ρ(i)) = log 2N, (A3)

where S(ρ) denotes the von Neumann entropy for den-
sity matrix ρ that corresponds to Eq. A2, and ρi =
|ai⟩ |i⟩ ⟨i| ⟨ai| (ai = +,−) forms the POVM set that
server performs.

One might argue that the server could amplify the
probability of sampling a particular index qubit bitstring
j by reducing the amplitude of other index qubit bit-
strings. That is, the quantum state sent to client could
be

1√
2
(

N∑
i

Ai |i⟩n |0⟩o1 +
N∑
i

Ai |i⟩n |1⟩o1) (A4)

where |Ai=j |2 ≫ |Ai̸=j |2 and
∑N

i |Ai|2 = 1. How-
ever, the client can add an additional verification on the
⌈log2(N)⌉ index qubits upon receiving them by perform-
ing measurements on X basis. This should yield +1 for

all index qubits, as the state 1√
N

∑N
i |i⟩ can be rewrit-

ten as 1√
2
(|0⟩+ |1⟩)⊗⌈log2(N)⌉. While for the manipulated

state outlined in Eq. A4, there exists a nonzero proba-
bility of producing a measurement outcome of −1 for at
least a portion of the measurements.

Appendix B: Redundant encoding against malicious
server

We describe a redundant encoding approach aimed at
reducing the probability that a malicious server acquiring
a specific yi information with i being the pertinent index
of interest using the attack strategy in Appendix. A.
Given that the server is restricted to preparing the in-

dex qubits in a manner where each index bitstring holds
identical probability, after receiving the state back from
client, the probability that server samples a specific index
bitstring |i⟩n is simply 1

N . That is, in each iteration of
communication during the execution of QBC algorithm,
the server is constrained to attain a specific yi corre-
sponding to the intended index with a probability of 1

N ;
and for 1/ϵ iterations needed for QBC algorithm, this will
cause a total amount of information being extracted to
be 1

Nϵ . Following this, we can consider a protocol where
both the client and server encode their single bit local in-

formation yi and xi into bitstrings
[
y′i,1, y

′
i,2, · · · , y′i,M

]′
and

[
x′
i,1, x

′
i,2, · · · , x′

i,M

]
with sizeM , whereM > 1. The

total amount of bits increases from N to MN . The en-
coding rule is shown as follows:

x′
i,j = xi; i = 1, 2, ..., N ; j = 1, 2, ...,M ; (B1)

which is a simply copy the bit xi for M times. As for y′,
the client can hide the information yi randomly in one of
the M digits and let the other M −1 digits to be all zero
or one. That is, client chooses either

y′
i,j = δj,Ji

· yi;
i = 1, 2, ..., N ;j = 1, 2, ...,M, Ji ∈ {1, 2, ...,M}.

(B2)

or

y′
i,j = (1− δj,Ji

) · yi;
i = 1, 2, ..., N ;j = 1, 2, ...,M, Ji ∈ {1, 2, ...,M}.

(B3)

where Ji is an random number and δj,Ji is the Kronecker

symbol. In these cases, the server would get 1
NM

∑N
i xiyi

or 1
NM

∑N
i xiyi +

M−1
NM

∑N
i xi by executing the QBC al-

gorithm, depending on whether the client chooses encod-
ing method Eq. B2 or Eq. B3. Afterwards, the client
can send an one-bit message via classical channel to the
server and let server knows which one was used.
We remark that at each communication round, the

probability that the server samples a specific bit reduces
from 1

N to 1
NM . Even though thatM -times more commu-

nication round will be needed to achieve the same error
bound ϵ as in the original QBC case, the server would
not know which digit encodes the correct yi information
as here Jis are random numbers. Therefore, using the
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FIG. 3. Circuit diagram for implementing UX⃗2
with the help

of an ancilla qubit oa. The first control line shows the classical
control decided by the random number Ri, i = 1, ...N .

attack strategy detailed in the Appendix. A, the prob-
ability that the server successfully gets a specific bit yi
would be 1

NM × M
ϵ × 1

M = 1
NMϵ , where the second term

M
ϵ is the total number of communication rounds and the

third term is 1
M is due to the randomness in Ji. It’s clear

to see that a larger value ofM corresponds to a decreased
probability for the server to successfully extract valuable
information from the client through the attack strategy.
The flexibility that the client can independently choose
encoding method also protects the majority information
of y, i.e., the client may choose Eq. B2 to encode data if
the majority of y is 1 to decrease the probability that
1s are being detected. Nevertheless, the trade-off for
employing this redundant encoding approach manifests
as an augmented quantum communication complexity,

which reads O( log(NM)
ϵ ).

Appendix C: Construction of oracle operator ÛX2 for
blind QBC with untrusted client

In this section, we give the details for the implemen-
tation of ÛX2 operator mentioned in Sec. V. Recall that

ÛX2
is applied to extract the phase term (−1)xiyi , as

shown in Eq. 8. The quantum state before applying ÛX2

is given by

1√
N

N∑
i

|i⟩n (ai |0⟩+ bi(−1)yi |1⟩)o1 , (C1)

where ai and bi depends on xi and the encoding basis Ri.
For the data j encoded in Z basis, i.e., Rj = 0, one has
ajbj = 0 and the phase (−1)xiyi naturally shows up as in
the original QBC algorithm. While for the data encoded
in X basis, i.e., Rj = 1, we target to extract the (−1)xiyi

term by transforming it back to Z basis.

For this purpose, we consider the following proto-
col. Firstly, Ûx⃗ oracle is called to generate the state
1√
N

∑N
i |i⟩n (ai |0⟩ + bi(−1)yi |1⟩)o1 |xi⟩oa where the ad-

ditional qubit oa encodes xi in Z basis. Secondly, a
Hadamard gate is applied on qubit o1 conditioned on
index qubit state |i⟩n = |j⟩n that satisfies Rj = 1 (i.e.,
encoding in X basis). This will transform the X basis
encoding to Z basis. Then, a NOT gate on qubit o1
conditioned on those index qubit states followed by a
controlled-Z gate between o1 and oa is applied. With the
above steps, a phase (−1) is generated unless xi = yi = 1.
The state now reads:

1√
N

N∑
i

(−1)xiyi |i⟩n |mi⟩o1 |xi⟩oa . (C2)

Here mi = xi when Ri = 0 or when Ri = 1 and yi = 0.

Now that as the phase term (−1)xiyi has already been
extracted, we transform the o1 qubit state |mi⟩o1 back
to the initial (ai |0⟩+bi(−1)yi |1⟩)o1 by applying the con-
trolled Hardmard and NOT gate again, and then de-
couple the ancillary qubit by calling the Ûx⃗. The re-

sulting quantum state reads 1√
N

∑N
i (−1)xiyi |i⟩n (ai |0⟩+

bi(−1)yi |1⟩)o1 .
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