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We analyze a conceptual approach to single-spin measurement. The method uses techniques from the
theory of quantum cellular automata to correlate a large number of ancillary spins to the one to be
measured. It has the distinct advantage of being efficient: under ideal conditions, it requires the application
of only O�

����
N3
p
� steps (each requiring a constant number of rf pulses) to create a system of N correlated

spins. Numerical simulations suggest that it is also, to a certain extent, robust against pulse errors, and
imperfect initial polarization of the ancilla spin system.
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One of the most interesting challenges in physics today
is that of measuring the state of a single (nuclear) spin.
Being able to do this would bring us closer to spin based
quantum computers [1], and have a myriad of applications,
ranging from spintronics to protein analysis. Unfortu-
nately, performing such measurement is not an easy task.
Several methods have been proposed [2], and single-spin
detection has been done [3], and the measurement in some
specific cases has also been achieved [4] for electron spins.

Cappellaro et al. [5] propose using a system of N
independent spins as a measurement system. This system
is coupled to the spin being measured, and using entan-
gling operations, creates a large correlated state, one whose
signal can be measured with current NMR technology. The
methods presented there require O�N� pulse sequences in
order to achieve N quanta of polarization. We expand on
their ideas to create a scheme which uses O�

����
N3
p
� pulses,

and is fairly robust against noise and errors, and does not
rely on entanglement. The improved running time is the
most important advantage, since the whole procedure must
finish before decoherence destroys the information being
measured.

The method presented here is inspired by quantum
cellular automata [6,7] and pulse driven quantum com-
puters [8,9]. It uses a cubic lattice crystal [10] with two
nucleus types, which we call A and B. Each species A
nucleus is connected only to B nuclei, and vice versa in a
checkerboard fashion (see Fig. 1).

We will refer to upward and downward z polarizations as
j�1i and j�1i. We assume, for the time being, that the
crystal is initialized to a completely polarized state with all
nuclear spins in a downwards z polarization state, j�1i.
The method then consists of bringing one corner of the
crystal into close proximity to the spin we wish to measure,
so as to couple the two spins. Once coupled we can use
NMR rf pulses to correlate them, or swap the states.
Suppose the spin we wish to measure is initially in the
state j i, being either the eigenstate j�1i or j�1i. After
the swap the top-left vertex nuclear spin will be in the state
j i.

What we present now is an efficient method to create a
very large correlated state within the crystal. Under ideal
conditions, that is complete polarization, perfect pulses,
and no decoherence, the method creates the state j i�N

using only O�
����
N3
p
� steps (each requiring a constant number

of rf pulses). When N � 106 the resulting state gives a
strong enough magnetic signal to be measured. Achieving
this polarization, in the ideal case, requires applying about
200 steps of our algorithm.

In order to more easily illustrate our algorithm it is best
to visualize the cube lattice in the following way. We
envision slicing the cube into layers, such that the first
layer is the corner nuclear spin that contains the state to be
measured. Layer two contains all nuclei coupled to layer
one. Layer three contains all nuclei coupled to layer two
which are not in layer one, and so on. This is illustrated in
Fig. 2.

Each layer includes spins of only one species, layer one
being all A, layer two all B, layer three all A again and so
on. We envision taking only half the cube lattice, so that

FIG. 1. Cube lattice: a crystal with two types of nuclei A and
B, one represented as light gray spheres, the other dark gray.
Each species A is neighbored by only B type nuclei and vice
versa. The lines connecting the spheres represent the nearest-
neighbor couplings. The white sphere represents the spin we
wish to measure. This spin is coupled to the dark gray nucleus in
the top-left vertex.
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each layer is larger than the previous one. Layer i has i
more spins than layer i� 1.

For sake of analysis, suppose the crystal’s Hamiltonian
has nearest-neighbor (Manhattan distance one) couplings
only. In such a Hamiltonian, each A spin is coupled only to
B spins, and vice versa. The resonant frequency of each A
(conversely B) spin is affected by the states of its B (con-
versely A) spin neighbors. Since the neighbors are all
indistinguishable spins, only the total field value is impor-
tant, i.e., the number of neighbors pointing up, minus the
number of neighbors pointing down.

Using well-known methods, first applied in a scheme
similar to the one proposed here by Lloyd [8] [and later
used in [9] and others], it is possible to create gates that
address species A spins that have a particular neighbor field
value. For instance, it is possible to apply a NOT gate (using
the language of quantum computation) to all A spins that
have neighbor field value 0, and only these spins. Later, we
will show one way to actually achieve these gates, by using
a (constant size) sequence of strongly modulating pulses
[11].

Now we show how to use the lattice structure, and the
above gates, to ‘‘amplify’’ the spin we wish to measure to a
detectable signal strength. (We call the set of all species X
spins with neighbor field k, Xk.)

The algorithm is the following. Repeatedly apply a NOT

gate to the following sets of spins: B�2, B�1, B0, A�2,
A�2, A0.

Suppose that j i � j�1i. Then absolutely nothing hap-
pens to the lattice (ignoring errors), and so it remains in the
all j�1i state. To see this, note that all lattice points have at
least three neighbors, all in the j�1i state. Hence the field k
of every cell is at most�3. Since we are only doing flips on
k � 0, �1, �2 this does not affect the lattice at all.

Suppose now that the top cell of the pyramid is initial-
ized to the state j�1i. Then, all B neighbors of this vertex
(those in layer 2) will have field value �2: �3 from three
downward neighbors each in state j�1i and a�1 from the
upward neighbor in state j�1i. Therefore, they will be
flipped by the first � pulse. No other spin will be affected.

In the next stage, all A spins in layer 3 will be flipped, and
so on. In n stages all spins in the first n layers will be
flipped to j�1i, for a total of N � 1

6 �n� 1�n�n� 1� nu-
clear spins pointing up. Hence, only O�

����
N3
p
� stages are

required to obtain a total field of N spins.
At the end of such procedure, one can measure the

magnetic field of the cube lattice crystal, obtaining the
desired measurement result.

Khitrin et al. used a similar approach [12] in their
scheme for polarizing spin chains. Although their method
could potentially be used for spin measurement, the
method presented here is cubically more efficient.

In order for the scheme to work it is tantamount for the
frequencies of the target spins to be different from the ones
we do not wish to affect. In the ideal setting, where the
Hamiltonian has only first-neighbor (strictly speaking
Manhattan distance 1) couplings, this is the case. In
Fig. 3 we see what an ideal spectrum for a second layer
spin looks like. It has 5 distinct peaks, one for each of its
possible neighbor fields.

We have so far assumed a nearest-neighbor coupling
Hamiltonian. A solid crystal, however, is governed by a
direct dipole coupling Hamiltonian,

 H �
X

i<j

di;j��iz�
j
z � ki;j��i��

j
� � �i��

j
��	;

where ki;j equals one if i, j are of the same species and zero
otherwise;

 di;j �
gi;j
r3
i;j

1

2
�3cos2�i;j � 1� � !d

r3
i;i�1

r3
i;j

;

where ri;j is the distance between the two nuclei, �i;j is the
angle between the vector connecting the two nuclei and the
z axis (determined by the magnetic field), and gi;j is a
simple constant that depends only on the nuclear types of i
and j.

In order to maximize symmetry, and avoid problems
with the ‘‘magic angle’’, we choose a rhombohedral crystal
structure, and we orient it so that the top of the pyramid
points up in the z direction. The actual Bravais angles of
the crystal are unimportant, as long as they are sufficiently
far from 90
. We chose 60
 for our simulations. With this
configuration the angles between every spin and its nearest

FIG. 3. Ideal NMR spectrum: this is the ideal spectrum for a
spin on the second layer. There are 5 distinct peaks, one for each
of the five neighbor field values.

FIG. 2. Pyramid lattice: a different view on the same structure
as Fig. 1. The top gray sphere is layer 1 and corresponds to the
top-left vertex spin in Fig. 1. The three light gray spheres directly
below it are layer two, and so on. The lines connecting the
spheres represent the nearest-neighbor couplings, and are exactly
the same as in Fig. 1.
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neighbors is the same, making all these couplings strengths
equal.

It has been shown [13] that it is possible to suppress all
homonuclear dipolar coupling via the 48 pulse sequence.
More recent experiments [14] are using a modified se-
quence to refocus the homonuclear couplings while just
rescaling the heteronuclear dipolar coupling. It is thus
within the current NMR practice to create the interaction:
/ �z�z limited to heteronuclear spins in a solid.

By suppressing all but the heteronuclear couplings, the
Hamiltonian resembles the nearest-neighbor interaction
only, albeit with extra ‘‘error’’ terms, that are generally
no stronger than roughly 1=30 the strength of first-neighbor
couplings. In Fig. 4 we show the absorption spectrum of a
second layer spin (in a hypothetical crystal, where the
couplings are set up so that the nearest-neighbor couplings
are roughly 1000 Hz). Notice how similar it is to the ideal
(nearest-neighbor only coupling) case.

Using these techniques it is possible to tailor a pulse
sequence to achieve the gates we require. Consider, for
example, a spin of the B species in the interior of the
crystal, that is, with six neighbors. Three of these will be
in the layer above the spin under consideration and three in
the one below. Therefore, the spin should be flipped if, and
only if, the spins in the upper layer are in the j�1i state. To
perform this transformation, we rotate the heteronuclear
Hamiltonian H �

P
k!

k
d�

B
z �

Ak
z to the transverse plane by

a �=2 pulse about y: H 0 �
P
k!

k
d�

B
x�

Ak
z . This Hamil-

tonian will rotate the spin B at a rate dictated by the num-
ber of A spins up and down to which it is interacting
with, until we apply another �=2 pulse about y. If the A
spins are all up, then the B spin oscillates between the
states (the A spins remain invariant under this evolution):
�i sin�6!dt�j � 1i � cos�6!dt�j � 1i.

If they are down (and the spin B is down as well, since
the algorithm has already rotated these layers) we get the
evolution: �i sin�6!dt�j�1i � cos�6!dt�j�1i, while if
three neighbors are up and three down, the spin remains
unchanged. Hence, if we apply the second�=2 pulse about
y after t � �=�12!d�, we can obtain the wanted evolution.

We can use a similar scheme to make the H 0 interaction
rotate only the B (A) spins with neighbors in the upper
layer in the up state and neighbors in the lower layer still in

the down state. This simple two-pulse sequence is a zero
order example of pulse sequences, where the time during
which the spins are let rotate at the spin-state dependent
frequencies is further and further subdivided to obtain the
desired selectivity in the effective rotation applied (see
Fig. 5).

As we mentioned, the Hamiltonian we obtain after
suppressing the heteronuclear couplings is not exactly
nearest-neighbor coupling only, but has some small error
terms. These error terms, as well as imperfect control, will
cause imperfect gates. Also, the crystal lattice may not be
perfectly polarized initially. It is important to deal with
these issues.

One important fact to notice is that our scheme is
impervious to phase-flip errors in the lattice. Effectively,
all pulses, and the final output, depend only on the diagonal
terms of the density operator � of the lattice.

The diagonal elements of � must be protected. A single
bit-flip error in the cube lattice by itself does not drastically
change the overall field. If this bit, however, flips during the
running of the algorithm it has the potential to influence all
lattice points in a radius around it during the next step of
the algorithm, by changing their neighbor fields during the
pulse sequence, potentially creating a cascade of errors.

The first fact to notice is that errors inside the pyramid
are less critical than errors on the faces, or worse, edges, of
the pyramid. The reason is that inside the pyramid all
lattice points have exactly 6 neighbors. If one flips erro-
neously, there are still 5 neighbors in the correct state.

Take an interior lattice point that is in the state j�1i and
should be flipped to j�1i in the next stage. Since it is
supposed to flip, it should have three positive neighbors
and three negative ones. Suppose that an upward neighbor
has an error, then it will have two positive and four nega-
tive. This is, however, not a problem. The lattice point in
question will have a field value k � �2, instead of k � 0,
but will still be flipped correctly.

FIG. 4. Suppressing homonuclear coupling: this is the spec-
trum for a spin on the second layer of a rhombohedral lattice
with angles � � � � � � �=3, with the homonuclear cou-
plings suppressed. Note the similarity to the ideal case.

FIG. 5. Pulse Sequence: rf power as a function of time. By
choosing � � 1=�10!d� and T � 1=�2:1!d� the frequency pro-
file of this pulse sequence (obtained by a Fourier transform) is an
excitation of the frequencies !�6 ! !�4. By choosing the total
rotation angle of these pulses to be �, we can rotate just spins B
which have frequencies !�3 ! !0 as required by the algorithm.
This pulse sequence is presented only as an example, as more
complex pulse sequence can be designed to improve further
these results.
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Contrast this to the case where a bit flip occurs along the
edge of the pyramid. In this case the field of the lower
neighbors to a lattice point with error will go from having a
field of �2 to a field of �4 and the spin will no longer be
flipped. The error will then propagate downwards.

One way to reduce errors is to extend the flipping
operation to spins with neighbor fields of �1. This will
correct some edge-related errors. Another way to drasti-
cally reduce error propagation is to force errors into the
inside of the pyramid.

Previously we concluded that we need to suppress the
homonuclear coupling during our pulse sequences. In this
Hamiltonian, the term�i��

j
� � �

i
��

j
�, often referred to as

the ‘‘flip-flop’’ term, has the effect of swapping two anti-
aligned neighboring spins. Take a horizontal slice of the
pyramid and suppose there is a single error among these
lattice points. The effect of the flip-flop term on neighbor-
ing spins is well known and is called spin diffusion [15]. A
simple approximation to this dynamics is a quantum walk
on the lattice. In this model, an erroneous bit not only
becomes diffused over several spins, it also has a much
lower probability (averaged over time) of being in non-
interior points. This leads us to believe that letting the
system evolve under the homonuclear interaction for
some time before running the algorithm will have the effect
of reducing errors in the edges, and increase overall robust-
ness to errors.

In order to test the reliability of our algorithm in the
large scale it would be infeasible to have a full quantum-
mechanical simulation. However, since the diagonal part of
the density matrix captures most of the interesting dynam-
ics and we neglect the coherences created by pulse errors
and unwanted evolution we can use a semiclassical
Monte Carlo style simulation. We set up a three-
dimensional byte array, each byte representing a nuclear
spin. Each byte is set to an initial value of �1. In order to
simulate an initial polarization of 1� �0 we then flip the
sign of each byte with probability �0. Each pulse is simu-
lated in a similar fashion. A gate error �1 is simulated by
failing to flip bytes with probability �1 [16]. This technique
allows to simulate very large systems, of size up to 108

nuclear spins.
Our purpose in numerically simulating the system is to

inform future engineering studies of single-spin detection.
At this time we will explore the scalability and error
propagation. There remain serious technical challenges
before any realistic experimental study can be attempted.

We calculated the signal strength at the end of our
algorithm for different lattice sizes N as well as error rates
�0 and �1. Although, the contrast C [as defined in [5] ] does
decrease as either N, �0, and �1 increase, we found that an
error threshold, a bound on the size of �0 and �1, exists
such that C decreases slowly enough so that the total
magnetization gap G � C � N increases with lattice size
(for lattice sizes tested, N  108). The threshold found is
roughly �0 � 0:1 and �1 � 0:01. As an example, a lattice

of size 108, with these error rates, will have roughly C �
0:01, or G � 106. This gap should produce a difference in
magnetic signal strong enough to be detected by current
NMR technology.

In conclusion, moving to a three-dimensional measure-
ment system, as opposed to a 1D chain as in [5], gives
distinct advantages. The clearest benefit is a cubic speedup
in the procedure. Also the algorithm gains substantial
robustness to errors. This is an even greater benefit, given
the current fidelity of NMR operations. Our numerical
simulations suggest that the scheme is highly efficient
and moderately robust. However, the nature of our simu-
lations do not allow us to take into account large coherent
superpositions or errors throughout the pyramid lattice.
Large scale coherent simulations are infeasible.
Ultimately we will need an actual physical implementation
in order to best understand the capabilities, and limits, of
our proposed scheme.
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