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Abstract: The nuclear strong force induces the widely studied neutron scattering states and MeV-energy
nuclear bound states. Whether this same interaction could lead to low-energy bound states for a neutron
in the nuclear force field of a cluster of nuclei is an open question. Here, we computationally demonstrate
the existence of -ueV-level neutronic bound states originating from nuclear interaction in nanocrystals with
a spatial extent of tens of nanometers. These negative-energy neutron wavefunctions depend on the size,
dimension, and nuclear spin polarization of the nanoparticles, providing engineering degrees of freedom
for the artificial neutronic “molecule”.

Introduction

Neutron scattering is a widely studied technique to characterize materials’ structure and dynamics [1]. In
neutron scattering, interference of neutron’s positive-energy scattering states in a cluster of atoms is utilized
to probe the atomic configuration [2], magnetic structures [3], and ionic motion [4]. Besides scattering
states, the strong nuclear interaction between neutron and nuclei can also trap a neutron in femtometer-scale
bound states, known as the radiative neutron capture [5]. Such bound states have MeV-scale binding energy,
where the neutron and nucleus combine into a new isotope and emit one y-ray photon [6]. The energy
spectra of the neutron, therefore, include the continuum spectra from scattering states covering the positive
energy range and the discrete lines from bound states with ~MeV deep negative energy. The energy gap
between the deep negative and positive energy spectra contains no bound states [7] if the neutron just
interacts with a single nucleus, due to the short-range nature of the strong nuclear interaction [8,9]. However,
it remains unknown whether a neutron interacting with a cluster of nuclei can have low-energy bound states.
Intuitively, the neutron eigenstates with each nucleus interact with each other and form new eigenstates, in
analogy to how the linear combination of atomic orbitals (LCAO) forms molecular orbitals [10]. It is,
therefore, intriguing to probe whether there are long-lived discrete weakly bound states of neutrons,
localized around a collection of atoms and ions, e.g. nanoparticles and nanowires. We define the negative-
energy neutronic states with a 10nm-scale broadening the “molecular neutronic” states. Such weakly bound

neutron states, if they exist, would provide a platform for designing neutron eigenfunction by controlling
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atomic configuration and for probing the strong nuclear interaction by low-energy neutrons. For example,
the molecular neutronic states open new possibilities in probing nuclei’s neutron scattering and absorption
cross sections [11], neutron electric dipole moment [12,13], as well as neutron bound-state 8~ -decay [14]

under the low-energy limit, which contains critical information about the nuclear force.

In this work, we demonstrate the existence of the molecular neutronic state in hydrogen-containing
nanocrystals by analytical derivation and computational simulations. Essentially, the multi-center
superposition of positive-energy scattering states can form a negative-energy weakly bound state. Different
from the MeV neutron bound states whose properties are set by the fixed isotope properties [6], the energy
levels and wave functions of molecular neutronic states can be engineered by the host nanocrystal’s size
and shape. As the molecular neutronic state is similar to the electronic state in quantum dots [15], we call

the system hosting such states “neutronic quantum dot” (NQD).

Theory

We use direct numerical calculations and the Green function formalism to demonstrate the existence of
low-energy bound states and calculate the binding energy and eigenfunction of molecular neutronic states.
The neutron moves in a nuclear force potential V(¥) = },; v;(#), where v; () is the potential of the ith
nucleus located at ﬁi (i =1,2,---, N with N nuclei in the system). Solving for neutron states in the NQD
encounters a multiscale challenge [16]: the nuclear force v; is localized to femtometer length scale, while
the interatomic distance ﬁi - ﬁj is in the length scale of A, exhibiting a separation of 5 orders of magnitude.
That makes it prohibitively difficult to directly discretize the quantum mechanics equation on a spatial grid.
In order to bypass this problem, we use the Green function formalism to show that the concept of Fermi
pseudo potential [17] used in neutron scattering can also be applied to the molecular neutronic states, which

encodes the fm-scale features into the scattering length [11].

The bound-state wavefunction ¥(r) with an eigenenergy E < 0 can be obtained from an integral equation

[18]
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over the single neutron Green function G(¥,7"; E) = P satisfying [k* — V*]G(7,7'; E) = §(© — 1),

with k = \/—2m,E/h?, m, the neutron mass and h the reduced Planck constant. As the support of V(%)
is localized to the nuclei positions, the integral can be rewritten as a sum of local integrals around each

nucleus. Depending on whether 7 is close to a nucleus, the integral equation (1) can be rewritten as
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Here Q; is a spherical volume around the ith nucleus with a radius of the nuclear force range. In the first

case, the position 7 is far from all nuclei; in the second case, the position 7 is ~fm close to R;. For all nuclei
i subject to |7 — §l| >fm, we applied the Green function approximation G (7,7, E)|zrcq, = G (7, R;E ).
The detailed behavior of the wavefunction around the nuclei (including fim-scale oscillations) is

uninfluential to the A-scale spatial distribution of low-energy neutron states [17]. Therefore, we coarse-

grain the wavefunction over an intermediate length scale fm << D << A and we introduce the average

<D Y(7')dr’3. The nuclei’s influence on the average wave function can

R P 3
wavefunction, Y (7)) = yp— fl?—?

be described by the Fermi pseudo potential, vfF () = ﬂ Re[b;]6° (7 — R;) (with 62 (%) = 471303

D and 0 elsewhere) [17], whose strength is characterized by the real part of the scattering length b; [11].
We prove (see supplementary information (SI) section I for details) that the following equation of the

average wavefunction can be derived by integrating Eq. (2):
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where the second term in the second case of Eq. (2) is proved negligible after integration. The scattering
length is more frequently used to describe low-energy (compared to MeV) neutron scattering, where the

neutron state has a near-zero, positive energy. In our neutron bound state case, the neutron has a near-zero

negative energy. The two situations share the same scattering length (see SI section I for details). The

average wavefunction at nucleus pos1t10ns oY=y (ﬁi) can then be obtained by solving an eigenvalue

problem
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simultaneously determining the wavevector k and the binding energy E;, = % The molecular neutronic
n

state exists if and only if Eq. (4) has non-zero solution with ¥ > 0. Provided that a nucleus has a negative

scattering length [11], the condition can be satisfied when the size and density of the nuclear cluster exceed
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a threshold, thus indicating the existence of a bound state. Because |eR— Re[b;]| is far smaller than 1, the
ij

equation can be satisfied only when the summation is over a large number of nuclei, so that the second term

can cancel the first term. Detailed derivation and numerical analysis are elaborated in the SI section I.



Energy Level and Eigenfunction

The existence of neutronic bound states thus requires negative scattering lengths, representing attractive
forces to neutrons. Protons have a negative neutron scattering length with the largest magnitude among all
isotopes when their nuclear spin is polarized opposite to the neutron [11]. Polarization of the nuclear spin
of hydrogen nuclei can be achieved by various experimental techniques, including dynamic nuclear
polarization (DNP) [19,20] and optical pumping [21]. In the following simulation, we assume all hydrogen
nuclear spins in the nuclear cluster are polarized in the same direction. We use LiH nanocrystal (Fig. 1a), a
widely studied hydrogen storage material [22-24], as an exemplary system to demonstrate the existence of
weakly bound neutronic states by solving Eq. (4) numerically. The nanocrystalline quantum dot
(nanocrystal) is assumed to have a spherical shape with a radius R of tens of nanometers [25,26]. Both Li
and H have an attractive nuclear force with neutrons [26], creating the negative nuclear strong-force
potential shown in Fig. 1b. The binding energy levels of bound states are then calculated as a function of
the nanocrystal radius, as shown in Fig. 1c. The existence of bound states requires the nanocrystal radius R
to be larger than a critical value, 13 nm in the LiH case. Intuitively, that is because confining neutrons in a
smaller-R NQD requires higher wavenumbers and thus kinetic energy, which makes the overall energy
positive, so the bound states can no longer exist. Larger R gives rise to multiple bound states with different
symmetries (see Fig. 1d), whose binding energies all increase monotonically with R. The neutronic d
orbitals of LiH NQD split into t,4 (the 1d (*3, meaning 3-fold degeneracy) curve) and e4 orbitals (the 1d
(*2) curve) because the cubic lattice breaks the SO(3) symmetry of the spherically shaped nanocrystal [27].
The eigenfunctions corresponding to the first two energy levels, 1s and 1p, are plotted in Fig. 1d. These
neutronic eigenfunctions cover the whole nanocrystal and extend tens of nanometers into the vacuum.
Moreover, the bound states and their transition frequencies can be engineered by the size and shape of the

nanocrystal, providing additional tunability in quantum applications.

The binding energies of the molecular neutronic states depend on the size and dimensionality of the
nanocrystal. The I'-point neutron bound-state energy levels in the zero-dimensional LiH nanoparticle, one-
dimensional LiH nanowire, and two-dimensional LiH thin film are shown in Fig. 2(a,b,c), respectively.
Multiple peV-level bound states exist and exhibit stronger binding for larger system sizes (diameter for
nanoparticle and nanowire, thickness for thin film) in all three systems. Systems with higher dimensions
have a smaller minimal size to host a bound state and approach stronger binding at the same system size.
Different from the nanoparticle, the thin film with arbitrarily small thickness hosts bound states. That means
the neutron bound state can exist in two-dimensional systems with atomic-scale thickness. The neutron

bound states around the I' point in three-dimensional LiH perfect crystal have a parabolic band dispersion,
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as shown in Fig. 2d. The band structure is calculated by both Eq. (4) and plane wave basis expansion,
showing consistent results. The I'-point energy level is -0.33 peV, which is the lower bound of the neutron
energy levels in LiH. In the nanowire and thin film (Fig. 2(e,f)), the bound state energy band splits into a
series of sub-bands due to the quantum confinement effect, showing the same behavior with electron band

structures in low-dimensional structures.

Being spin-1/2 Fermions like electrons, the many-neutron wavefunction W(x3, x2,....xY) of N identical
neutrons, with x} labeling both the position and spin of a neutron, must satisfy
v, xk ..., x{l, )= =Y(., x{l . XL,..). The independent particle picture, an approximation of
P(xi, x2,...x0), suggests that neutrons can fill up the NQD states, in a “neutronic shell model” akin to the
electronic shell in molecules, with the single-particle energy and degeneracy illustrated in Fig. 1c and Fig.
2. The ground-state wavefunction is thus approximated by a Slater determinant of the N lowest-energy
NQD spin-orbital states. With the QD size increasing to infinity, turning the nanostructure into a bulk
material, we have computed that if all the bound states are occupied by neutrons all the way to £=0", there
will be a maximal mass gain of the LiH by 6.8 x 107 % (68 ppb) that should be measurable
experimentally. Also, unlike electrons, the neutron-neutron interaction between these delocalized NQD
spin-orbitals is rather weak, thus the many-neutron quantum state may be a good approximation of the non-
interacting limit of a many-Fermion system and have some unique characteristics as a quantum information

platform.

Neutron Absorption Lifetime

The neutron bound states trapped in materials are intrinsically unstable because of materials’ neutron
absorption [28]. Besides binding energy, the lifetime is also an important feature to characterize the neutron
bound state. Although neutrons interact weakly with the environment, their lifetimes are limited by the
neutron absorption of H and Li nuclei, that is, the probability that the weakly bound neutron is finally
absorbed by H or Li to form D or "Li. For a given material (infinite crystal), we define the ground-state
binding energy as E}, and the ground-state neutron absorption lifetime as T*. They can be calculated as
materials properties:
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where Q is the unit cell volume, n;, b;, and 6}(E}) are the number of i-type atoms in a unit cell, their
scattering length, and neutron absorption cross section for neutron with a kinetic energy of Ej. Finite-size
nanocrystal gives smaller binding energy E}, and longer neutron absorption lifetime T, but their product is

bounded by an inequality (see SI part II for derivations):
hlm[Y;n;b;]

ET<ET =——————
b b 2 Re[Y;n;b;]

(6)

showing that increasing the neutron absorption lifetime inevitably leads to a decrease in binding energy

within the same material.

The Ey, and T* of different crystals are shown in Fig. 2, where the gray dots list all non-radioactive stable
crystal structures from the Materials Project database that contain hydrogen and can host bound states [29].
The binding energies are at the level of peV, corresponding to a required milli-kelvin-level temperature,
that is already realizable in the present ultracold neutron technology [30]. The lifetime is at the level of
0.1~1 ms. In general, there is a trade-off between binding energy and lifetime. Materials satisfying Pareto
optimality [31] (that means no material simultaneously has larger binding energy and longer lifetime than
each selected material) are labeled by the blue points in Fig. 2, forming a frontier curve of possible (Ej, T™)
combinations. A series of common hydrogen storage nanomaterials [32], including MgH> (0.27 peV, 0.19

ms) and LiBH4 (0.27 peV, 0.19 ms) also exhibit reasonably high Ej, and T™.

Quantum Control

Besides the ground-state properties of the molecular neutronic states, it is also interesting to explore
methods to control the transition between the ground and excited states. The neutronic states have a weak
coupling to external electromagnetic fields due to the charge neutrality of neutrons. Although such a weak
coupling makes it difficult to apply direct microwave control protocols to transition between different
neutronic states, we propose methods to manipulate the states through indirect coupling. As the neutron
bound states are sensitive to the nuclide positions, which in turn are sensitive to electromagnetic waves if
the QD is charged, they can be indirectly controlled by microwave driving through nuclear force
interactions. We take the LiH nanocrystal 1s and 1p neutronic states in Fig. 1d as an example to illustrate
allowed dipole transition, as they can be used as the two states of a qubit controlled by microwave. The
direct Zeeman interaction of a neutron spin with the microwave’s magnetic field is as weak as 10 kHz under
a typical experimental condition with B ~ 10 Gauss (for example, a 10 Gauss magnetic field shown in Ref.

[33]). The corresponding Rabi oscillation time period is as long as the lifetime of neutron bound states,

making microwave control through the magnetic field difficult. To achieve a strong driving, we instead

propose to use an electric field, as shown in Fig. 3a. The nanocrystal is electrostatically charged by the
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standard charging methods [34,35], i.e. tuning the redox voltage so the net number of electrons does not
balance the net nuclear charge, to a voltage of the order of magnitude of 1 V. The electric field of the
microwave would then drive an oscillatory translation of the nanocrystal with net monopolar charge g # 0
and mass M, as in a driven oscillator model (off-resonance) [36]. Since the neutronic state is aware of the
translation of the center-of-mass of the nanoparticle, this controls the time-dependent Hamiltonian for the

neutron parametrically and thus can drive the Rabi oscillation of a neutron between two bound states.

The Rabi frequency of a neutron between bound state i and j is (see SI part III for derivation):

AMn ©if = [ o
i = yn jE 'f‘l’i Pry;(F)dV (7)
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where w and w;; are the microwave frequency and resonance frequency of the transition, E is the electric
amplitude vector of the microwave. Initializing a neutron in the 1s state, the Rabi oscillation of the average
neutron numbers in 1s and 1p states is shown in Fig. 3b. The Rabi oscillation is 2~3 orders of magnitude
faster than its decay (here we only consider the decay from neutron absorption), allowing a pulse sequence
of microwave control applied to the neutron qubit. Each pair of bound states following the selection rule of
electric dipole transition has a transition matrix element, and the Rabi frequencies are generally on the order
of magnitude of MHz with typical electric field intensity in experiments of kV/cm (for example, Ref. [37]
applies an electric field of 3 kV/cm, and Ref. [38] applies a stronger electric field up to 500 kV/cm), as
shown in Fig. 3c. The Rabi frequency has a negative relation with the nanocrystal radius, providing strong

coupling between s and 1p states up to 5 MHz (Fig. 3d).

The above-studied neutron bound-state to bound-state transitions are mediated by microwave coupling to
the mass of a charged quantum dot (the neutron does not couple directly to an electric field, but is coupled
to the nuclide mass distribution of the quantum dot). It is also possible to excite a neutron bound-state to
an unbound continuum scattering state by microwave, using the same principle. The ability to “launch”
bound neutrons to a specific momentum state controlled by the microwave frequency, polarization, and the

detailed morphology of the quantum dot may open new avenues for precision control of individual neutrons.

Conclusion and Outlook

In this work, we demonstrated with analytical models and numerical calculations that hydride nanoparticles
can host neutron bound states with ~ueV binding energy, tens of nanometers extent, and ~ms lifetime. The
weakly bound neutron state can be controlled by the electric field of a microwave with a Rabi frequency of
~MHz, to explore existing excited states. To trap neutrons into peV bound states in experiments, the incident

neutrons need to be cooled to milli-Kelvin temperature, which can be realized in the ultracold neutron (UCN)



source [30]. The nuclear spins of hydrogens in the nanoparticle need to be polarized, which can be realized
by the DNP technique. The NQD in a UCN bottle can be initialized to its ground state using a microwave
with a frequency higher than the 1p state binding energy but lower than the 1s state binding energy. The
microwave can deplete the neutron in excited states, and the ground states NQDs will accumulate. The
population of NQDs in different molecular neutronic states can be read out by the same microwave pulse
and counting the outgoing neutrons. That gives the population of neutrons in the excited states. The tens of
nanometers spatial extent of the neutron bound states provides possibilities to have multi-qubit interaction.
In comparison to the long-range electromagnetic interactions in Rydberg atom platforms generated by
electrical dipole-dipole interactions [39], the effective interactions between two quantum particles in NQDs
are generated by the wavefunction overlap. The system we propose with feasible state preparation and
control opens up the possibility of exploring fundamental physics such as characterizing the strong nuclear
interaction with high precision and exploring the quantum statistics of different particles, as well as

developing certain quantum information processing applications [40].

Acknowledgments

We thank Boning Li and Haowei Xu for their insightful discussion. This work was supported by the Office
of Naval Research Multidisciplinary University Research Initiative Award No. ONR N00014-18-1-2497
and DTRA (Award No. HDTRA1-20-2-0002) Interaction of lonizing Radiation with Matter (IIRM)
University Research Alliance (URA).

References

[1] B. T. M. Willis and C. J. Carlile, Experimental neutron scattering (Oxford University Press, 2017).
[2] G. Shirane, Reviews of Modern Physics 46, 437 (1974).

[3] S. Miihlbauer et al., Reviews of Modern Physics 91, 015004 (2019).

[4] F. Gabel, D. Bicout, U. Lehnert, M. Tehei, M. Weik, and G. Zaccai, Quarterly reviews of biophysics
35,327 (2002).

[5] E. Schooneveld, A. Pietropaolo, C. Andreani, E. P. Cippo, N. Rhodes, R. Senesi, M. Tardocchi,
and G. Gorini, Reports on Progress in Physics 79, 094301 (2016).

[6] M. Garcon and J. Van Orden, in Advances in nuclear physics (Springer, 2001), pp. 293.

[7] S. Geltman, Journal of Atomic and Molecular Physics 2011 (2011).

[8] E. Epelbaum, H.-W. Hammer, and U.-G. Meiliner, Reviews of Modern Physics 81, 1773 (2009).
[9] K. S. Krane, Introductory nuclear physics (John Wiley & Sons, 1991).

[10]  W. . Hehre, Accounts of Chemical Research 9, 399 (1976).

[11]  V.F. Sears, Neutron news 3, 26 (1992).

[12]  J. Martin, in Journal of Physics: Conference Series (IOP Publishing, 2020), p. 012002.

[13] C. Abel et al., Physical Review Letters 124, 081803 (2020).

[14] M. Faber, A. Ivanov, V. Ivanova, J. Marton, M. Pitschmann, A. Serebrov, N. Troitskaya, and M.
Wellenzohn, Physical Review C 80, 035503 (2009).

[15] R. Ashoori, Nature 379, 413 (1996).

[16] T.Y.Hou, Frontiers in Numerical Analysis: Durham 2002, 241 (2003).

[17]  C.R.Gould and E. I. Sharapov, The European Physical Journal H 47, 10 (2022).



[18] E.N.Economou, Green's functions in quantum physics (Springer Science & Business Media, 2006),
Vol. 7.

[19] B. Corzilius, Annual review of physical chemistry 71, 143 (2020).

[20] Y. Roinel and V. Bouffard, Journal de Physique 38, 817 (1977).

[21]  A.Imamoglu, E. Knill, L. Tian, and P. Zoller, Physical review letters 91, 017402 (2003).

[22]  S. Banger, V. Nayak, and U. Verma, Journal of Physics and Chemistry of Solids 115, 6 (2018).
[23] X.Kang, Z. Fang, L. Kong, H. Cheng, X. Yao, G. Lu, and P. Wang, Advanced Materials 20, 2756
(2008).

[24] R.Napan and E. P. y Blanca, International journal of hydrogen energy 37, 5784 (2012).

[25] L. Wang, M. Z. Quadir, and K.-F. Aguey-Zinsou, International Journal of Hydrogen Energy 41,
6376 (2016).

[26]  P. L. Bramwell, P. Ngene, and P. E. de Jongh, international journal of hydrogen energy 42, 5188
(2017).

[27] J. Griffith and L. Orgel, Quarterly Reviews, Chemical Society 11, 381 (1957).

[28] R. K. Adair, Reviews of Modern Physics 22, 249 (1950).

[29] A.Jain et al., APL materials 1 (2013).

[30] G. Bison et al., Physical Review C 95, 045503 (2017).

[31] P. M. Pardalos, A. Migdalas, and L. Pitsoulis, Pareto optimality, game theory and equilibria
(Springer Science & Business Media, 2008), Vol. 17.

[32] M. U. Niemann, S. S. Srinivasan, A. R. Phani, A. Kumar, D. Y. Goswami, and E. K. Stefanakos,
Journal of Nanomaterials 2008 (2008).

[33] G. Wang, Y.-X. Liu, Y. Zhu, and P. Cappellaro, Nano Letters 21, 5143 (2021).

[34] Z. Abbas, C. Labbez, S. Nordholm, and E. Ahlberg, The Journal of Physical Chemistry C 112,
5715 (2008).

[35] M. Frimmer, K. Luszcz, S. Ferreiro, V. Jain, E. Hebestreit, and L. Novotny, Physical Review A 95,
061801 (2017).

[36] D. Hempston, J. Vovrosh, M. Toros, G. Winstone, M. Rashid, and H. Ulbricht, Applied Physics
Letters 111 (2017).

[37] F.Dolde et al., Nature Physics 7, 459 (2011).

[38] A.J. Bennett, M. A. Pooley, Y. Cao, N. Skéld, I. Farrer, D. A. Ritchie, and A. J. Shields, Nature
communications 4, 1522 (2013).

[39] M. Saffman, T. G. Walker, and K. Mglmer, Reviews of modern physics 82, 2313 (2010).

[40]  R.Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Reviews of modern physics 81, 865
(2009).



() Lill nanoparticle ~ (b)

-4
Neutron
beam

(Aot €A

-0.14

E (nev)

-0.2

1 20 30 Q0
R (nm)

Figure 1: (a) Illustration of cold neutron bound states in 30 nm-radius LiH spherical nanocrystal. (b) Atomic
structure (top) and nuclear force potential (bottom) of neutrons in LiH at zero temperature, where the
hydrogen nuclear spins are fully polarized in an opposite direction with the neutrons. The nuclear force
potential is smeared by the zero-point vibrations of nuclides to become a sum of picometer-lengthscale
Gaussians and visualized on the (100) canyon plane. (c) Binding energies of molecular neutronic states as
a function of nanocrystal radius. The energy levels are denoted as 1s, 1p (3-fold degeneracy), 1d (*2, 2-fold
degeneracy), 1d (*3, 3-fold degeneracy), and 2s from low to high. (d) Real part of the average eigenfunction
Y (#) of 1s and 1p states when R = 30 nm plotted on a plane across the center of the sphere.
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Figure 2: Neutron bound states in nanostructures with different dimensionality. Bound energy
levels in LiH (a) zero-dimensional spherical nanoparticles, (b) one-dimensional cylindrical
nanowire, and (c¢) two-dimensional thin film at I" point as a function of the diameter of the
nanoparticle, nanowire, and thickness of the thin film. (d) Neutron bound states band structure in
perfect LiH crystal using Eq. (3) and a plane wave basis expansion method. (¢) Neutron band
structure in the 80 nm-diameter spherical nanowire and (f) 100 nm-thickness thin film. Throughout

this figure, we assume hydrogen nuclear spins are fully polarized.
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Figure 3: Binding energy Ey, and lifetime 7™ of molecular neutronic states in different perfect hydride
crystals at zero temperature. The crystals are selected from 10,409 hydride systems from the materials
project database, and crystals satisfying Pareto optimality with respect to exhibiting large binding energy

and lifetime are denoted as blue squares.
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Figure 4: (a) Microwave control of neutron bound states in nanocrystals. The electric field of the microwave
in resonance with 1s to 1p transition drives oscillations of charged nanocrystals and neutron states. (b) Rabi
oscillation of neutronic 1s and 1p states (R =40 nm, £ =1 kV/cm, Viiz = 1 V). The average population of
neutrons in the 1s state (ns) and 1p state (n,) is plotted as a function of time. (c) Rabi frequency of different
transitions as a function of microwave electric field (R = 40 nm, £ = 1 kV/cm, Vi = 1 V). (d) Rabi
frequency of 1s to 1p transition as a function of nanocrystal radius and electric field (Vrin =1 V).
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I. NEUTRON BOUND STATES

Here we describe the formalism of neutrons’ low en-
ergy bound states in a nuclear force potential created by
multiple nuclei. The Hamiltonian of the system is

LR 7)
“om, +ZW(M

where v;(r) is the nuclear force potential energy of the
ith nucleus to a neutron. Here, we employ the Green
function formalism. The time-independent Schrodinger
equation for an energy eigenfunction () can be written
as:

(1

$(5) = By(r) =

—hhz V2 V() (2)

hz
-5 — (),
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where we define V(7) = >, v;(7) the wave vector x

—2
/Z2maE fo1 hound states. The above equation is equiv-

alent to:

2my, V (1)

(K2 =VH () = - (). (3)
The Green function of this equation satisfies:
{(52 V) G(7, 75 B) = 6(7 — ) @
limyz_ 5|00 G(7, 7 E) = 0,
which gives
—k|F—7|
felte ;E)fm, (5)

The energy eigenfunctions can then be formally expressed
as:

)27 7
P(r) = /(‘(r 7 m (T )1,')\7" Ydr'”,

which is Eq. (1) in the main text. The integral can be
rewritten as a sum of local integrals around each nucleus:

Z/ G 2IHD()L(I ),

3

—m () dr’,
where €); is a spherical volume around the ith nucleus
with a radius of the nuclear force range. We consider two

(6)

(7
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cases: the first is 77 is not fm-scale close to any nuclei. As
G is a slowly varying function of 7/ that is approximately
a constant at each nucleus’ fm-scale neighborhood, it can
be taken out of the integral, replacing 7’ by R; (case 1 of
main text Eq. (2)):

o],
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»(r) i )(/,( V.

Z(M

The second case is that 7’is ~fm close to the jth nucleus,
so extracting G' out of the integral around €; in Eq. (8)
is invalid. Then we need to add a contribution from the
7th nucleus’ neighborhood (case 2 of main text Eq.(2)):
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i
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As we consider the low-energy case, this integral can
then be simplified following the typical assumptions of
the Fermi pseudopotential. We can introduce the scat-
tering length, b;, for low-energy neutron! whose real part
; — i 1 2 v (7)) oy 13 o

is Re[b;] = limg_.q D fle %W(Fﬁh . where

(7) is the average eigenfunction®:

_ 3 ,
) = s (10)
Here D is a length that is far smaller than the inter-
atomic distance but far larger than the force range of
nuclear potential. This approximation can be taken be-
cause the interatomic distance is five orders of magnitude
large than the force range of nuclear force. Eq. (8) and
Eq. (9) can be simplified using the average eigenfunction
and scattering length. The first case (Eq. (8)) gives:

() = () = —4WZG@ Ry E)Relbi|(R))

ﬁRc[b OB,

~ (11)
where ¢(7) approximately equals ¢ (7) as the later is
slowly varying at the length-scale D when 7 is far from

Vi(|7 — R;| > fm),



nuclei. The second case (Eq. (9)) gives:

e BT R’,r\ o
i) = - " Relbi](R;
= =3 gy bR
ol .
_/ €|r77~| mﬁ:];fz) p(r")dr'®, (|77 = Ry| ~ fm)
(12)

The average eigenfunction around the nuclei can be de-
rived by substituting this equation into Eq. (10). Using
the slow varying condition again for the first term, we
obtain

- e R — Rl _, 3
»(F) = —ZWRe[b 3o (B — Ym0
173 . | (13)
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In the second term, we can first do the integral

. erlFi—7al | g "
j‘F17F<D ) dry, and as kD < 1, the exponen-

tial term in the Green function approximates 1. As both

7 and 7, are fm-close to RJ, their distance is also in fm
scale, far smaller than D. The integral gives 27 D2, then
the second term equals —535Re[b;] (R'j). As D > fm,
this term is negligible compared to ¢ itself, so only the
first term remains. Summarizing the two cases gives the
general expression of the average eigenfunction:

>
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which is Eq. (3 )

equations, we

the main text. To get a closed set of
R, and denote (13%) as U;:

set

—an — R
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which is Eq. (4) in the main text.

In order to prove the existence of molecular neutronic
states, we then need to show that the equations have
non-zero solutions v; with positive . In general cases,
this can only be solved numerically. Here, we provide a
simplified model that shows the existence of molecular
neutronic states analytically.

Assuming there are nuclei on an infinite cubic lattice
with a lattice constant of a, and each nucleus has a scat-
tering length of b. We assume Re[b] < a. Because of the
periodicity of the lattice, the neutron eigenfunction fol-
lows the Bloch theorem. We consider the Bloch function
at I" point, which means ; on lattice points is a constant
in the whole space. Then Eq. (15) gives:

efr\'a\/z$+’n§+w§
Z Ty o2 2
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We can easily see that the equation has a solution only
when Re[b] < 0. As ‘sz‘ < 1 and each term in the
summation is less than 1, there must be a large number
of lattice points contributing to the summation so that
the second term can equal -1. That means the lattice
is dense and the summation can be approximated as an

integral:
Relb *KG‘L‘
14 e[ | / (17)
The integral can be done analytically, giving hzag The
solution of the binding energy is then
- fizfez _ _QWRQRi[b]' (18)
Zm'n, Mpa

Similarly, if a unit cell contains multiple nuclei in an in-
finite crystal, the condition that allows this equation to
have a solution is Y- _n,Re[b,] < 0, where n, and b,
are the number and scattering length of the ath type of
nucleus in a unit cell. The solution of the binding energy
is then

leIﬁ;Z

21y,
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which is Eq. (5) in the main text (V. is the unit
cell volume). The order of magnitude of Fjy, considering
hydrogen-storage materials, is 0.1~ 1 peV. The disper-
sion relation can also be obtained as

+ k7> .

72 <47T >, aRelby]

2my, Vvu,.c.
Using this equation, we can evaluate the mass gain
of the LiH crystal when trapping neutrons.  The
Brillioun zone volume with E(k) < 0 is Vgz =

3/2

4 Rel[b, .

47” (—77r ZO'V”“ <lbe] . Assuming the neutron-neutron
e

interaction in the molecular neutronic states is negligible,
. . . . LT
the neutron mass density in the material is p,, = a2z
n (2m)8
Then, the percentage mass gain discussed in the main

text is:

Using the data of LiHl crystal (prig = 780kg/m3, ny; =
ny = 4, Re[br;] = —2.22 fm ("Li, unpolarized), Re[by] =
—18.33 fm (LH, fully polarized), Vi = 68.09 A3, m,, =
1.675 x 10727 kg), we get a mass gain of 6.78 x 107%%.

As an infinite crystal can host molecular neutronic
states, we can conclude that a finite NQD can also
host such states as long as its size is sufficiently large.
Then, we aim to numerically solve the molecular neu-
tronic states for finite-size NQD. In order to obtain a
manageable numerical problem, we do a coarse-graining
by turning Eq. (15) into an integral equation using again
the continuum approximation:

_ "I S naRelby)] -
p(r) + 2 b
s f

= B =

B(k) = (20)
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where €2, .. is the nanocrystal region. The equation is
then discretized by a coarse grid lattice r; = (4, vi, 2:)ao
with integer numbers of x;,y;,2;. Then, the equation
turns into:

— 3 Relb 7’““ .
oy o DZatelelal 52 E Ty o )
‘/U.CV
FEd
where 7;; = |r; — r;|, and grid separation ao is set as

/10, one tenth of the nanocrystal radius. All grid points
within the nanocrystal sphere are included in Eq. (23)
and are solved as an eigenvalue problem with eigenvalue
% and eigenvector (1(r1), 1 (r2), -+ ). Our numerical test
shows that this ay gives good numerical convergence of
binding energy to three effective digits accuracy.

Finally, we reexamine the applicability of Fermi pseu-
dopotential in molecular neutronic states. Here, we prove
that limg_o #&ﬁ)jﬂ Mqﬁ(ﬁ)dr’?’ converges to
the same number regardless of whether E approaches
zero from a positive or negative direction. That vali-
dates our usage of the scattering length from neutron
scattering data to molecular neutronic states. As the
force range of v;(r) is far smaller than 1/x, the eigen-
function near a nucleus is accurately approximated as
an s-wave. We denote the wave function around R; as
¥(r) and u(r) = ry(r), where r is the distance from the
nucleus. The eigenvalue equation is:

B d%u
2m,, dr?

+ v (r)u(r) = Fu(r). (24)
At r larger than the force range Ry, the potential v;(r) =
0, then we have v”(r) = 0 given £ — 0. That means the
w(r)|lr>r, = k(r + o) is a linear function. The average
eigenfunction v; = TSDS jCD u(r)dmrdr ~ k (as co, Ry <
D). We can then integrate Eq. (24) multiplied by r from
r=0tor= Ry

Ro
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That gives:
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As u(0) = O,Rg%\no —u(Rp) = —kco, we obtain

W? 1
——coti + _/ o (P (F)dr® = (27)
2my, ar Jq,
That proves the expression ﬁl(ﬁ) Jo. om%z(“ (7 )dr’3

approaches a constant of —co, which is defined as Re[b;],
when F approaches zero. Here, neglecting the E-term
applies as long as v/2my, |[E|/l < fm ™' regardless of the
sign of F, so the low-energy scattering state and bound
state have the same scattering length.
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II. NEUTRON ABSORPTION LIFETIME AND

MATERIALS SCREENING

In addition to the binding energy, it is also impor-
tant to evaluate other effects that might limit the life-
time of molecular neutronic states. In the Hamiltonian
in Eq. (1), we did not consider electromagnetic radi-
ation, which leads to the radiative neutron absorption
process where a neutron drops into a MeV deep bound
state and emits a «-ray photon. This neutron absorp-
tion process makes the neutron bound state unstable.
The low-energy neutron absorption rate is proportional
to the Fermi contact, with a constant of low-energy ab-
sorption cross-section o,(FEy) multiplied by neutron ve-
locity +/2Ey/m,?. Summing over all nucleus, the ab-
sorption rate of a molecular neutronic state in a uniform
perfect crystal is:

dr 1 [2F
T Z | hm ot Ek)\ b
E (28)
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which is Eq. (5) in the main text. In the second line, we
use the condition that ¢ is normalized and constant in
space.

If the nanocrystal has a finite size, the argument based
on the uniform wave function is no longer valid. Interest-
ingly, the product of binding energy and absorption rate
are upper bounded. The binding energy can be rewritten
as the opposite of the summation of potential energy and
kinetic energy:

2mh? 27 h?

Ep=— <——

‘Wz 5

(29)
where (Ek> is the average kinetic energy, sum over 4 goes
through all unit cells m and all the atom types « in each
unit cell. As ¢ is slowly varying in the scale of a unit
cell, the inequality approximates:

ZRe[b]W —(Ey) ZRe

21 h?

Ey, <
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where 1, is the average eigenfunction in the mth unit
cell. The absorption rate, by this notation, can be writ-
ten as:

L — wrm o [2E% .
T ; [¥m] Eliriloza:naaa (Ek()\/ e (31)
‘We therefore have
BT < _27ri12 >, roRelba] B
™ im0 Y, na0g (Er) 20
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which is Eq. (6) in the main text. It is worth noticing that
the inequality can be transformed into an inspiring form,
which is similar to the time-energy uncertainty principle.
The low energy absorption cross section is related to the
imaginary part of the scattering length?:

o(my) = el _ g,y (33)
a Yg) = ————— — a7 O . D9
a ok k V 2m, Ey,

Substituting this back into Eq. (32), we derive

B3, na Relba]
23, naImlb,]’

We see that compared to the time-energy uncertainty

principle, the upper bound has an amplification of i;iﬂ s

BT < (34)

which is 10° for polarized hydrogen atoms.

In the materials screening, we select crystal structures
from all available structures in the Materials project con-
taining hydrogen. We first exclude structures not sta-
ble and structures containing elements heavier than La
(because they generally have excessively high absorption
cross sections and cannot give a reasonable lifetime), and
then calculate E; and T* by Eq. (5) in the main text.
The values of b; are extracted from ref.?, where we assume
that H nuclei are fully polarized, and all other nuclei are
non-polarized. For most elements, we assume a natural
abundance of isotopes, except for a few elements: we as-
sume Li, B, Cl, and Se are purified as "Li, 'B, ®7Cl,
80Se, because these isotopes are naturally abundant and
the purification significantly improves lifetime in some
compound.

III. MICROWAVE CONTROL

The microwave applies an electric field on a charged
nanocrystal with a mass of M = 4T”RS,() and an electric
charge of ¢. If the electric field is

E(t) = Eysinwt. (35)
Then the coordinates F of the center of the charged
nanocrystal is

)
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The time-dependent Schrodinger equation I?ﬁ(,,)w =

Y ivea
iy gives:
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(";n(//)""z("n(//)R/(")'@/)m.R(t)‘le"/}n,R(tﬂ —h(fm(//)Em,

(37)
where ¢, (¢) is the wave function in the en-
ergy  representation and  Schrodinger  picture:

V() = X em)|¥m rr)), where IYR(t)|wm,R(f)> =
Eo|tm, r(t)). Transforming to the interaction picture,
we derive

@a’”w + Z c"(t)anen(Em Bt coswt = 0, (38)
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where the Rabi frequency equals:

_ q77lnﬁ0 Em — En

Qo = Mh hw

A, r(y) [P, () (39)

As the matrix element does not depend on ¢, so we write
it as (¢, [FlYn) in Eq. (7) in the main text. In the deriva-
tion, we used the fact that ¢, p() is a function of Ffﬁ(t).
80 VRrtn rt) = —Vr¥n r@y- Then,

<7/)771,R|VR
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(Em - E,,,) <¢m,R|Fwn,R>-

This completes the derivation from Eq. (37) to the Rabi
frequency expression Eq. (39).

Numerically, we calculate the matrix element by dis-
cretizing the integral on the same lattice as described in
section 1. The integral is done on a cubic region whose
center is the sphere center of the nanocrystal and the
length of a side is 3 times of the sphere radius. The
numerical test shows that the box size of the integral
gives good numerical convergence of the matrix element
to three effective digits accuracy.
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