
Hyperfine-enhanced gyroscope based on solid-state spins

Guoqing Wang (王国庆),1, 2, 3, ∗ Minh-Thi Nguyen,2, 3, † and Paola Cappellaro1, 2, 3, ‡

1Department of Nuclear Science and Engineering,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

2Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Solid-state platforms based on electro-nuclear spin systems are attractive candidates for rotation
sensing due to their excellent sensitivity, stability, and compact size, compatible with industrial
applications. Conventional spin-based gyroscopes measure the accumulated phase of a nuclear spin
superposition state to extract the rotation rate and thus suffer from spin dephasing. Here, we propose
a gyroscope protocol based on a two-spin system that includes a spin intrinsically tied to the host
material, while the other spin is isolated. The rotation rate is then extracted by measuring the
relative rotation angle between the two spins starting from their population states, robust against
spin dephasing. In particular, the relative rotation rate between the two spins can be enhanced
by their hyperfine coupling by more than an order of magnitude, further boosting the achievable
sensitivity. The ultimate sensitivity of the gyroscope is limited by the lifetime of the spin system
and compatible with a broad dynamic range, even in the presence of magnetic noises or control
errors due to initialization and qubit manipulations. Our result enables precise measurement of
slow rotations and exploration of fundamental physics.

Introduction.— Inertial sensing finds broad applica-
tions, from tests of fundamental physics such as ge-
ometric phases and general relativity [1–6], to indus-
trial applications such as navigation in the absence of
global positioning system [7–10]. In recent years, sens-
ing technologies based on quantum systems have shown
promising performances in sensitivity, resolution, stabil-
ity, etc. compared with their classical counterparts [11].
Among these systems, nuclear spins in solid-state plat-
forms, in particular nitrogen-vacancy (NV) centers in di-
amonds [12], have become an attractive candidate due to
their long coherence times, ambient operation conditions,
small size, and fabrication capabilities [13–18].

An inertial measurement requires the system to evolve
(e.g. rotate) relative to an inertial reference frame. Ex-
isting NV gyroscopes are mostly based on the nuclear
spin of the 14N (I = 1) atom [13–16] whose nuclear
quadrupole term quantizes the nuclear spin along the NV
orientation ẑNV and constrains the nuclear spin to de-
tect longitudinal rotations about ẑNV, that is, the crys-
tal [111] direction. The rotation rate can be extracted
from the accumulated dynamic phase using a Ramsey se-
quence. In contrast, the nuclear spin of the 15N atom is
a spin-12 without a quadrupole term and thus is released
from such a constraint. Although the hyperfine interac-
tion with the NV electronic spin still effectively applies
a large field that constrains the quantization along ẑNV,
such a field vanishes for the NV spin statemS = 0. Thus,
the nuclear spin can be isolated from the crystal orien-
tation and makes the system an ideal platform for iner-
tial sensing. Moreover, 15N nuclear spin has only two
energy levels, making it easier to polarize, control, and
read out. Despite these benefits, the use of 15N in NV
gyroscopes remains less explored and the current sensing
protocols, limited to the conventional Ramsey methods,

are still limited by the nuclear spin dephasing time T ∗
2n

[19], which is degraded by the presence of transverse field
inhomogeneities [20].

In this work, we develop a gyroscope protocol based
on the 15N nuclear spin in diamond NV centers. Instead
of using a superposition state to measure longitudinal ro-
tations about ẑNV, we now use the population state to
measure rotations along a transverse direction, thus be-
ing robust against spin dephasing. While the NV spin
quantization axis co-rotates with the diamond, the nu-
clear spin either adiabatically follows its eigenstate un-
der a slow rotation (Fig 1(b)), or remains in its initial
state under a fast rotation (Fig 1(c)), both yielding rel-
ative rotations between the two spins that can be used
to extract the rotation rate, covering a broad dynamic
range. In particular, the NV-nuclear hyperfine interac-
tion enhances the transverse Zeeman coupling of the nu-
clear spin by a (magnetic field dependent) factor of 15 to
a few thousand, which can be used to boost the nuclear
spin rotation rate and thus the gyroscope sensitivity by
a same factor. Numerical simulations demonstrate that
our gyroscope protocol is robust against magnetic noise
and only limited by the NV lifetime T1e. Besides rotation
sensing, our gyroscope can provide insights into experi-
mental tests of fundamental physics such as Lorentz in-
variance, relativistic geometric phases, and the Einstein
de Haas effect [1, 21, 22].

System.— The physical system of our gyroscope is
based on an electro-nuclear spin system hosted by point
defects in solid-state platforms. Specifically, we use NV
centers in diamond with enriched 15N isotope to illus-
trate the protocol. The NV center consists of an elec-
tronic spin-1 and a nitrogen nuclear spin-12 . Due to its
isolation from the environment, the nuclear spin is used
as the inertial sensor, while the electronic spin is used for
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FIG. 1. Gyroscope principle. (a) Gyroscope based on an electro-nuclear spin system composed of NV electronic and nuclear
spins in diamond. (b) Hyperfine-enhanced rotation regime (Ω ≪ γnB). The relative rotation between the NV and the nuclear
spin is enhanced due to the hyperfine interaction. For a diamond rotation rate Ω = (2π)0.1kHz and magnetic field B = 50G,
the measured overlap of the final electronic and nuclear spin states (referenced with the diamond rotation) is simulated, with
an accompanying schematic showing the NV ẑNV axis rotation, nuclear spin evolution, and nuclear spin eigenstate. (c) Inertial
regime (Ω ≫ γnB). The nuclear spin remains in its initial state and the relative rotation corresponds directly to the rotation
of the diamond. The simulated signal and system evolution is shown for a fast rotation Ω = (2π)1 MHz. (d) Signal deviation
from the ideal regimes presented in (b) and (c) and the corresponding eigenstate deviation of the nuclear spin Hamiltonian. In
the intermediate regime, it is hard to attribute the population signal to either hyperfine-enhanced or inertial regimes.

initializing and reading out the nuclear spin state [12].
The ground state Hamiltonian of the NV center can be
written as

H = S⃗ ·D · S⃗ + S⃗ ·A · I⃗ + γeB⃗ · S⃗ + γnB⃗ · I⃗ (1)

where D, A are zero-field splitting (ZFS) and hy-
perfine tensors and γe = (2π)2.802 MHz/G, γn =
(2π)0.432 kHz/G are the gyromagnetic ratios of the elec-
tronic and nuclear spin. When the ẑ axis is chosen
to be along the N-to-V orientation intrinsic to the di-
amond crystal (henceforth referred to as ẑNV in the NV
frame), both tensors are diagonal: the ZFS tensor has
a longitudinal term D = (2π)2.87 GHz; the longitudinal
and transverse components of the hyperfine tensor are
Azz = (2π)3.03 MHz and A⊥ = (2π)3.65 MHz [23, 24].

Under an external magnetic field B⃗ satisfying γeB ≪
D, the electronic spin is quantized along the NV orien-
tation by the large ZFS and is thus tied to the diamond
crystal. In contrast, the nuclear spin energy is only de-
fined by the external magnetic field and hyperfine interac-
tion with the electron spin, with an effective Hamiltonian
in the NV frame [25–27]

HI = γn [BzIz + αmsBxIx] +AzzmsIz, (2)

where ms is the electronic spin Zeeman state and αms is
an enhancement factor of the transverse Zeeman coupling
induced by mixing with the electronic spin states due to
the transverse hyperfine interaction [25, 26]. When the
external magnetic field is small (γeB ≪ D), such a factor
can be approximated to a constant αms = (1−2κ+3κm2

s)
with κ ≈ γeA⊥/(γnD) ≈ 8.26 [27, 28].
Ideally, when there is no external magnetic field and

mS = 0, the nuclear spin is effectively decoupled from

the NV electronic spin and a physical rotation of the
diamond along a transverse direction ŷ rotates the elec-
tronic spin eigenstates while leaving the nuclear spin un-
changed. When the rotation rate satisfies Ω ≪ D− γeB,
the NV electronic spin state adiabatically follows the NV
orientation axis ẑNV. In the NV frame, the nuclear spin
initialized to |mI = +1/2⟩ rotates in the z−x plane with
a rate −Ω due to its inertia. The nuclear spin population
projected onto the NV axis can be measured by mapping
it to the electronic spin state with a CNOT gate (achieved
by an electron spin π-pulse conditionally applied on a nu-
clear spin state [28]) and then reading out through the
fluorescence of the NV center. The readout signal is then
S(t) = (1+ cos(Ωt))/2, from which the rotation rate can
be extracted.

While this protocol is attractive as it does not require
gimbals, working at a zero magnetic field is challenging
because of the need for magnetic shielding. In addition,
we expect that working at zero field will make the nu-
clear spin even more susceptible to magnetic noise, which
is usually larger at lower frequencies and can lead to de-
phasing and depolarization, harmful to the sensitivity. It
is thus more practical to develop a general protocol for
nonzero magnetic field conditions.

Hyperfine-enhanced regime.— Here we show how
adding a magnetic field improves the rotation sensing
performance by amplifying the nuclear spin rotation. We
assume to apply an external magnetic field B in a static
frame, and first consider sensing slow rotations of the
diamond, in the regime where Ω ≪ γnB. With the
diamond initially aligned with ẑNV along the magnetic
field, both electronic and nuclear spins are initialized in
the z-eigenstates, |mS = 0,mI = 1/2⟩. When the dia-
mond starts to rotate along ŷ by an angle θ = Ωt,
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the ZFS and hyperfine tensors start to rotate. Con-
versely, in the NV frame, the magnetic field starts to
have a transverse component. While the electronic spin
is still mainly quantized along ẑNV , the nuclear spin adi-
abatically follows the effective magnetic field direction
B⃗eff = −α0B sin θx̂NV +B cos θẑNV (Eq. (2)) (Fig. 1(b)).
The effective magnetic field for the nuclear spin rotates
with respect to the NV axis by an angle φ′ satisfying
tanφ′ = −α0 tan θ. For θ ≪ 1, the nuclear spin rotation
in the NV frame is amplified by a factor of |φ′/θ| ≈ |α0|,
giving an effective rate in the lab frame of Ω(1 + |α0|).
The rotation enhancement factor is magnetic-field depen-
dent [28], increasing dramatically to its maximum value
α0 ≈ γe√

2γn
≈ 4.6× 103 near the GSLAC condition when

γeB ≈ D [25, 26].

To extract the rotation rate Ω, we can measure the
nuclear spin population along the ẑNV axis by mapping
the nuclear spin state onto the NV, yielding a signal

S(t) =
1 + cosφ′(t)

2
=

1

2
(1 +

cosΩt√
cos2 Ωt+ α2

0 sin
2 Ωt

)

(3)
In Fig. 1(b), we numerically simulate the evolution of the
gyroscope system under a rotation rate Ω = (2π)100 Hz
with an external magnetic field B = 50 G. The evolu-
tion of the NV electronic and nuclear spins is separated
out by tracing out the other spin. The simulated nu-
clear spin population along zNV is shown by the pink
curve in Fig. 1(b), which matches the theoretical predic-
tion from Eq. (3) shown by the black dashed curve. We
note that the fast oscillations around the predicted evo-
lution observed in simulations are a result of the nuclear
spin precession about the effective magnetic field. As a
reference, the diamond rotation is shown by the purple
curve.

In Fig. 2(a), we simulate the rotation enhancement fac-
tor by explicitly calculating the rotation rate of the nu-
clear spin. The maximum enhancement is achieved when
the magnetic field is aligned with the NV axis, where
however the signal in Eq (3) doesn’t depend on α0. We
thus instead calculate the rate of change in the nuclear
spin population along x̂ which is proportional to the ro-
tation angle when it is small (see inset of Fig. 2(a)). The
simulation results match the theoretically predicted en-
hancement factor to first order |α0| ≈ γe

γn
A⊥/(D− γeB).

When the nuclear Larmor precession frequency is com-
parable to the rotation rate, Ω ∼ γnB, the adiabaticity of
the nuclear spin evolution begins to break down (as seen
on the Bloch sphere in Fig. 1(d) for Ω = (2π)0.5kHz), and
it no longer follows the effective magnetic field. To fur-
ther study such effects, we compare simulations over dif-
ferent rotation rates for a fixed magnetic field in Fig. 1(d).
For each rotation rate Ω ≤ γnB, we compute the average
deviation from the predicted signal in Eq. (3) on the left
y-axis and compute the non-adiabaticity from the eigen-
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FIG. 2. Simulation of the gyroscope protocol. (a)
Simulated rotation enhancement factor for small θ ≪ 1. The
insets show the time evolution of the nuclear spin population
along x̂NV used to extract the rotation rate under two ex-
emplary conditions with small and large magnetic fields. (b)
Sensitivity comparison of different gyroscope protocols. For
a fair comparison, here we use the same readout efficiency
C = 2% across protocols. For all three nuclear spin-based
protocols, we set the signal decay times to 1.5T1e = 7.5 ms
and dead time to td = 0.5 ms. The “e spin” protocol utilizes
the NV electronic spin resonance frequency shifts measured
by a Ramsey sequence to sense the rotation rate (see supple-
ment [28] for details), where we set a typical spin dephasing
time T ∗

2e = 0.7 µs and td = 0.05 ms [20].

state deviation |⟨+ 1
2 |
dHI(t)
dt | − 1

2 ⟩|
2 (where |mI = ±1/2⟩

are the nuclear spin eigenstates) on the right y-axis [28].
As the rotation rate increases, the eigenstate deviation
increases and after a threshold value, it becomes difficult
to directly extract the rotation rate from the measured
signal. To maintain the adiabaticity and sense faster
rotations in the hyperfine-enhanced regime, one can in-
crease the bias magnetic field to increase the nuclear spin
energy gap. Thus, quantifying the nuclear eigenstate de-
viation allows us to define a bespoke maximum rotation
rate that one can detect for a given magnetic field, de-
pendent on the desired precision of the signal.
Inertial regime.— While the enhanced rotation factor

is limited to sensing a rotation rate that is much less than
the nuclear spin energy gap, the proposed gyroscope pro-
tocol can still sense rotation rates in the regime where
Ω ≫ γnB. Here, the electron spin is still quantized in
the crystal’s ẑNV direction, thus following the diamond
rotation adiabatically. The effective external magnetic
field on the nuclear spin rapidly oscillates and averages
to zero similar to the B = 0 case, so the nuclear spin
remains in its initial state, effectively decoupled from the
electron spin. In this scenario, the relative rotation ob-
served between the two spins corresponds directly to the
diamond’s rotation, and thus in the gyroscope protocol
the nuclear spin population signal is given by

S(t) =
1

2
(1 + cos θ) =

1

2
(1 + cos(Ωt)) . (4)

We simulate the evolution of our system under a fast
rotation Ω = (2π)1 MHz in Fig. 1(c) yielding a signal
consistent with that predicted by Eq. (4). Similar to the
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hyperfine-enhanced regime, calculating the eigenstate de-
viation (in Fig. 1(d)) identifies the minimum rotation rate
required for high-fidelity measurements in this regime.

Thus, combining both regimes, our gyroscope mea-
sures a broad dynamic range Ω ≲ D − γeB, except for a
small window near the nuclear spin energy gap Ω ∼ γnB.
To maximize the enhanced rotation rate in the hyperfine-
enhanced regime, one can choose to set the bias magnetic
field strength as close as possible to GSLAC. Neverthe-
less, at high fields, misalignment of the electron spin from
the magnetic field, as well as its small energy gap, can
make initialization and readout of the protocol difficult
[28]. In the following, we discuss and analyze such limits
to the sensitivity of the gyroscope, including the system’s
ultimate lifetime and optimal performance.

Gyroscope Performance.— Quantum sensors’ perfor-
mance is bound by their coherence or relaxation times,
which limits the sensing time t. In the enhanced ro-
tation regime, the nuclear spin adiabatically follows its
eigenstate and thus its decay induced by an external
bath follows a spin relaxation process, which typically
yields a relaxation time T1n much longer than the de-
phasing time T ∗

2n. However, the NV electronic spin re-
laxation T1e has been shown to be a source of deco-
herence, typically limiting the nuclear spin dephasing,
T ∗
2n = 1.5T1e [29]). Under the gyroscope rotation, an NV

spin flip due to relaxation changes the nuclear spin quan-
tization axis (Eq. (2)), leading to fast decay of what was
previously an eigenstate. We numerically simulate this
process using the Lindblad equation with Lindblad op-
erators Lk =

√
Γ |ms⟩ ⟨m′

s|, where ms,m
′
s ∈ {−1, 0,+1}

and the jump rate is Γ = 1/(3T1e). Fig. 3(a)i shows that
in the slow rotation regime the gyroscope signal decay
time is T1n ≈ 1.5T1e. In the inertial regime under fast
rotations shown in Fig. 3(b)ii, the simulation yields a de-
cay time T1n > 1.5T1e. This increased decay time might
originate from effective dynamical decoupling effects due
to the electron spin’s rapid rotation [28, 29].
The decay due to the electronic spin relaxation process

sets the upper limit of the system coherence, but other
noise sources such as magnetic noise induced by the spin
bath could dominate, especially in dense spin ensembles.
We further explore these effects by simulating the gy-
roscope signal under magnetic field inhomogeneities in
Fig. 3(b). In the frame of the nuclear spin, the longi-
tudinal magnetic noise causes a T ∗

2 dephasing process
that results in a decay in its transverse spin components.
Intuitively, this might lead to a decay of the system co-
herence as well; however, even though the fast oscillation
decays with time, the main gyroscope signal remains rel-
atively robust against the magnetic noise. Such an ef-
fect may even improve the performance of our gyroscope
by suppressing the undesired fast oscillation signal that
originates from the spin precession around the effective
magnetic field.

Thus, the gyroscope signal decay is ultimately limited
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FIG. 3. Performance analysis. (a) Gyroscope signal un-
der electronic spin T1 relaxation at B = 50 G in (i) hyperfine-
enhanced regime with Ω = (2π)0.1 kHz ≪ γnB and (ii) iner-
tial regime with Ω = (2π)10 MHz. The decay of the nuclear

spin signal envelope is fit to S(t) = c0 + c1e
−t/τ for regime

(i) and S(t) = c0 + c1e
−(t/τ)c2 cos(Ωt) for regime (ii) to ob-

tain the decay time T1n. (b) Gyroscope signal under static
magnetic noise at B = 50 G and Ω = (2π)0.1 kHz. The
variance of the magnetic noise is set to be 0.002 G. The in-
set shows the dephasing time T ∗

2n as a function of the noise
strength. (c) Sensitivity bound η(Ω, B) for a spin density
nNV /4 ≈ 2.5× 1014/mm3. Solid lines indicate the maximum
and minimum rotation rates such that the theoretical signal
predictions remain valid.

by the lifetime T1n, giving a lower bound of the achievable
sensitivity of the gyroscope [28],

η ≥
√
2γn
γe

et/T1n

C
√
N

√
t+ td
t

, (5)

for the hyperfine-enhanced regime, where t is the total
sensing time and td is the dead time for initialization
and readout. With typical ensemble parameters and
conditions (readout efficiency C ∼ 2% [30]), for a vol-
ume V = 1mm3 and N = nNVV/4 ≈ 2.5 × 1014 sen-
sor spins and T1n ∼ 7.5 ms, the sensitivity limit reaches
η ∼ 1× 10−3(mdeg/s)/

√
Hz near GSLAC. In the inertial

regime, the sensitivity follows Eq. (5) but without the
enhancement factor ∼ γn/(

√
2γe).

Nevertheless, implementation of the gyroscope requires
the consideration of many practical limitations; here, we
briefly discuss these factors and their influence on the sen-
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sitivity. To take advantage of the hyperfine-enhanced ro-
tation rate, the time for signal readout should be chosen
such that the two spins are nearly aligned upon measure-
ment. In particular, it is a compromise between choos-
ing a longer sensing time for optimizing sensitivity and
making the measurement as quickly as possible to main-
tain the enhancement which decreases with the initial ro-
tation angle. Furthermore, under large magnetic fields,
optical polarization of the NV spin is difficult with mis-
alignment from the magnetic field. Thus, to operate the
gyroscope continuously, both the dead time and sensing
time are limited to integer multiples of the rotation pe-
riod t+ td ≈ kπ/Ω, which also guarantees that the NV is
nearly aligned with the magnetic field during initializa-
tion and readout. For these calibrations, an estimate of
the rotation rate needs to be initially acquired (e.g., by
using the NV spin transition frequency shift during the
rotation). Different from typical Ramsey magnetometry,
the sensitivity of our gyroscope depends on the relative
angle between two spins in the final state, thus the ac-
tual sensitivity needs to be calculated taking these into
account (see supplement [28] for details).

Moreover, during the rotation, initialization and read-
out of the nuclear spin require selective control of the
electronic spin such as π-pulses only for a specific nu-
clear spin state. Thus, for large magnetic fields and fast
rotation rates, it is important to consider the resonance
frequency shift during the rotation, which affects the con-
trol fidelity. We conceptually characterize these effects by
adding a pulse fidelity factor in the readout efficiency as-
suming a pulse duration ∼ 0.5µs in Fig. 3(c), where we
compute the lower bounded sensitivity of the gyroscope
values of (Ω, B). Despite these restrictions, these effects
can be improved by optimal control techniques or adap-
tive methods. Thus, our gyroscope remains a versatile
platform capable of reaching extremely good sensitivity
for bespoke rotation measurements.

We note that with the assistance of an external mag-
netic field, the NV electronic spin transition frequency
can also be used to extract the rotation rate for a trans-
verse rotation, which can be estimated by Ramsey exper-
iments limited by a dephasing time T ∗

2e. In a spin ensem-
ble, the electron spin dephasing is short T ∗

2e ≪ T1e [20],
which leads to a worse sensitivity than the nuclear spin
gyroscopes as shown in Fig. 2(b).

Conclusion and Discussion.— We propose a novel gy-
roscope protocol based on 15NV centers in diamond.
In comparison to conventional Ramsey-type gyroscopes
limited to sensing a ẑ rotation and suffering from spin
dephasing, our protocol uses the more robust popula-
tion state to sense a transverse rotation. In particular,
when an external magnetic field is fixed in the lab frame,
the nuclear spin rotation rate can be significantly en-
hanced by its hyperfine interaction with the electronic
spin, achieving a sensitivity improvement of up to three
orders of magnitude. The protocol is robust against mag-

netic noises and is only limited by T1 relaxation times.

While our analysis shows that nuclear spin lifetime T1n
is still limited by the electron spin T1e relaxation time,
which is also the ultimate limit to the coherence limit
of the conventional Ramsey-type gyroscope, our protocol
is intrinsically more robust to other sources of dephas-
ing noise that dominate Ramsey gyroscopes and an ad-
ditional, significant sensitivity improvement derives from
the rotation enhancement. The sensitivity could be fur-
ther improved by designing dynamical decoupling tech-
niques to extend the nuclear spin lifetime beyond T1e by
canceling the deleterious effects of the electronic spin re-
laxation process [29].

In addition to building a highly sensitive and compact
gyroscope under ambient conditions competitive with
atomic gyroscopes, our gyroscope can also exploit the
electro-nuclear spin system to provide insights into test-
ing fundamental physics. Thus, our gyroscope proves to
be a robust and versatile device, with broad opportuni-
ties for integration and applications.
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Supplementary Materials

DERIVATION OF ENHANCEMENT FACTOR

Here, we derive the exact expression for the transverse Zeeman coupling enhancement factor of the nuclear spin for
the 15NV center system for mS = 0 [25, 26]. The ground state Hamiltonian is given by Eq. (1). Under an applied
magnetic field Bz, the Hamiltonian can be decomposed into secular H|| and non-secular terms H⊥:

H|| = DS2
z + γeBzSz + γnBzIz +AzzSzIz (S1)

H⊥ =
A⊥

2
(S+I− + S−I+). (S2)

where S± = Sx ± iSy and I± = Ix ± iIy. The total Hamiltonian can then be diagonalized by rotating the zero

quantum (ZQ) subspaces with UZQ = e−i(θ
−σ−

y +θ+σ+
y ) where σ+

y = i(| + 1,− 1
2 ⟩⟨0,+

1
2 | − |0,+ 1

2 ⟩⟨+1,− 1
2 |) and σ

−
y =

i(|0,− 1
2 ⟩⟨−1,+ 1

2 | − | − 1,+ 1
2 ⟩⟨0,−

1
2 |) and

tan
(
2θ+

)
=

2A⊥

D + γeBz − γNBz −Azz/2
(S3)

tan
(
2θ−

)
=

−2A⊥

D − γeBz + γNBz −Azz/2
(S4)

Applying an additional transverse magnetic field in the NV frame (for simplicity and in context with our paper,
consider only Bx, but a magnetic field component By would see an equivalent enhancement) introduces an interaction

Hamiltonian Hx = Bx(γeSx + γNIx). Under the unitary transformation, Ĥx = UZQHxU
†
ZQ and keeping only the

nuclear spin terms, we obtain the effective Hamiltonian for the nuclear spin (where αms
is the enhancement factor for

the electronic spin state ms)

Ĥx
I
= γN (α+1|+ 1⟩⟨+1|+ α0|0⟩⟨0|+ α−1| − 1⟩⟨−1|) (S5)

with

α0 = cos
(
θ+

)
cos

(
θ−

)
− γe
γn

sin
(
θ+ − θ−

)
Thus, for an applied magnetic field B⃗ = (Bx, 0, Bz) on the NV center, we obtain the effective nuclear spin Hamiltonian
as presented in Eq. (2). For small fields α0 ≈ 15.5 and reaches a finite maximum value near GSLAC with α0 ≈ γe√

2γn
shown in Fig. S1.

PROTOCOL DETAILS

Nuclear Polarization and Readout

There are several methods to polarize the nuclear spin intrinsic to the NV center: we can optically pump the
nuclear spin by setting the static magnetic field close to the ground or excited level crossing, or we can use a sequence
of selective microwave and rf pulses to transfer polarization from the NV (Fig. S2(a).) Under misalignment of the
NV spin, however, optical polarization of the nuclear spin is significantly suppressed [31]. Thus to achieve efficient
polarization of the nuclear spin for our gyroscope sensing protocol, especially in the case of initialization during a
rotation (which causes NV misalignment), it is preferable to polarize the nuclear spin to |mI = + 1

2 ⟩ using a polarization
sequence that coherently transfers the electron polarization to the nuclear spin.
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FIG. S1. Predicted enhancement factor |α0| as a function of Bz.

Working in the mS = 0,−1 states, we first transfer the population from the |mS = 0,mI = − 1
2 ⟩ spin state to

|mS = −1,mI = − 1
2 ⟩ using a selective microwave (mw) π-pulse with a Rabi frequency smaller than the hyperfine

splitting strength. We then apply a selective rf π-pulse that transfers the |mS = −1,mI = − 1
2 ⟩ population to

|mS = −1,mI = + 1
2 ⟩. Finally, a green laser pulse is applied to transfer the population back to the |mS = 0⟩ manifold

while preserving the nuclear spin state. The system is ultimately polarized to |mS = 0,mI = + 1
2 ⟩ as an initial state

of the rotation sensing protocol.

Optical readout of the nuclear spin state is accomplished with mw mapping pulses at the end of the pulse sequence,
as shown in Fig. S2(a).

To achieve efficient initialization and readout, we prefer the NV to be closely aligned with the magnetic field when
performing the initialization and readout operations. Indeed, the transition frequencies of the NV electronic and
nuclear spins change during the rotation due to their misalignment with the magnetic field in the NV frame. Thus,
when applying a pulse, these energy shifts can affect the pulse fidelity for the polarization and readout sequences.
Because this change is larger at higher magnetic fields (Fig. S2(b)), even though the enhancement factor is larger,
the sensitivity may be practically limited at large magnetic fields by errors in initialization and qubit manipulation.
We note that this challenge could be addressed by setting optimal pulse timing settings for the polarization/readout
sequence in an adaptive way, as control optimization requires an initial estimation of the rotation rate or an indepen-
dent measure of the resonance frequency by interleaving the gyroscope sequence with nuclear Ramsey or NV ODMR
experiments. For simplicity, here we discuss the worst-case scenario, where we assume to just use a single frequency
for the microwave and rf pulses. As relevant to quantum sensing, We consider the state fidelity for an initial state
|ψi⟩ and a target state ψtarget, F = |⟨ψtarget|U |ψi⟩|2. We can then evaluate the effect of the detuning induced by a
θ-misalignment of the field on a π-pulse Uπ(t). For |ψi⟩ = |0⟩ and |ψtarget⟩ = |1⟩, the π-pulse fidelity with detuning

δ and amplitude Ωd is given by F(Ωd, δ) =
Ω2

d

Ω2
R
sin2(ΩRt

2 ), with ΩR =
√
Ω2
d + δ2 the effective Rabi frequency and

t = π/Ωd the pulse duration. As shown in Fig. S2(b), when the magnetic field is not close to the GSLAC condition,
the nuclear spin transition frequencies are relatively stable against a small field misalignment, and the change of the
electron spin transition frequency is smaller than the typical Rabi frequency Ω ∼ 1 MHz. As a result, high-fidelity
control can be achieved even under the rotation as long as the Rabi frequency is larger than the transition frequency
change during the rotation and smaller than the difference ωmS=−1

n − ωmS=−0
n ≈ 3MHz, as shown in Fig. S2(c). In

the main text we accounted for these potential errors in qubit manipulation when estimating the sensitivity of the
protocol (Fig 3). In the sensitivity formula, we introduced a degraded contrast of the signal: C ≥ FC0, where F(B) is
the B-field dependent pulse fidelity and C0 ∼ 2% the contrast for a typical NV ensemble. We note that the imperfect
selectivity of the readout pulse can also lead to additional contrast degradation. These imperfections can be improved
with various optimal control strategies such as narrow-band and broad-band pulse designs.

Performance near the GSLAC

While the enhancement factor α0 reaches its maximum value ≈ γe√
2γn

∼ 4 × 103 near the GSLAC (B ≈ D/γe ≈
1024G), in that scenario the behavior of the gyroscope becomes more complex. Due to its small energy gap, the
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2( (
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ml = -1/2π

(a)

(b) (c)

evolution

initialization readout

FIG. S2. Example initialization and readout protocol (a) Basic sensing pulse sequence. The nuclear spin is dynamically
polarized using selective microwave and rf pulses. After a sensing time t, the nuclear spin is mapped onto the NV and overlap is
read out to extract the rotation rate. (b) NV electronic and nuclear spin transition frequency shifts (from alignment at θ = nπ) as
a function of magnetic field misalignment θ at different magnetic field strengths. The top three panels are transition frequencies
between the two nuclear spin levels under different magnetic fields. The bottom three panels are transition frequencies between
the two electronic spin states. (c) These frequency shifts are used to calculate the fidelity of the nuclear and electronic spin
(selective on the nuclear spin state mI = ±1/2) π pulses. The Rabi frequency for the nuclear spin used here 50 kHz and the
electronic spin is 1 MHz. This allows the assume pulse duration of tπ ∼ 0.5µs used to compute the pulse fidelity factor in
Fig.3(c) in the main text.

electron spin not only is strongly mixed with the nuclear spin but it also no longer follows a completely adiabatic
evolution. Nevertheless, simulation results indicate that even at large magnetic fields, the enhancement of the nuclear
spin rotation compared to the electron spin is maintained. The hyperfine interaction still yields a relative rotation
between the two spins, and the rotation rate can still be recovered (Fig. S3i). While the observed enhancement
factor near the GSLAC is lower than the analytical prediction by nearly a factor of 2, it could still provide gain a
three-order of magnitude sensitivity enhancement. As mentioned above, this enhancement might be reduced due to
control limitations, although adaptive methods will mitigate those issues.

Gyroscope Sensitivity

Hyperfine-Enhanced Gyroscope

The sensitivity of the gyroscope for an ensemble of N spins is given by

η =
σet/τ

√
t+ td

2C
√
N |∂ΩS(t)|

(S6)

where t is the total sensing time, td is the deadtime, τ is the coherence time, C is the readout efficiency parameter
that is typically set by the signal contrast and photon collection efficiency, N is the total number of spins, and S(t)
and σ its standard deviation from the spin projection noise.
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(a) B = 1000G

(b) B = 1024G

i. ii. 

i. ii. 

(c) 

FIG. S3. Hyperfine-enhanced gyroscope at large magnetic fields (a) i. Electro-nuclear spin system evolution during
a (2π)0.1kHz rotation at B = 1000 G. The left plot shows the measured nuclear spin population along the ẑNV axis and the
evolution of the electronic and nuclear spin states, compared to the reference diamond rotation and the predicted signal from
3. An accompanying schematic of the NV and nuclear spin evolution on the Bloch sphere is shown on the right. ii. Simulated
measurement signal of the nuclear spin population along x̂NV axis, used to extract the rotation rate. (b) System evolution
at GSLAC (B = 1024 G). (c) Simulated rotation angle enhancement factor for B ≥ 1000G, compared to analytically-derived
enhancement factor |α0|.

In practice, to optimize the sensitivity, we can maximize the signal slope by measuring the nuclear spin population
along the x̂NV (which can be accomplished by applying a π/2-pulse to the nuclear spin before readout) at the time of
near-alignment condition, yielding the signal:

Sx(t) =
1

2

1 +
α0 sin(Ωt)√

α2
0 sin

2(Ωt) + cos2(Ωt)

 . (S7)

To ensure continuous operation of the protocol as well as efficient polarization and readout, we require t+td ≈ ⌈Ωt
π ⌉( πΩ )

and assume the initialization and readout times (td ∼ 3µs under large laser power and fast control pulses) are small
in comparison to period of the oscillation 2π/Ω. The sensitivity then gives

η(Ω ≪ γnB,B, t) =
1

(α0

2 )
∣∣∣ cos(Ωt)

(α2
0 sin2(Ωt)+cos(Ωt)2)3/2

∣∣∣
et/τ

√
⌈Ωt
π ⌉( πΩ )

2C
√
Nt

 ≥ et/τ

C
√
Nα0

√
t

(S8)

Hence the optimal sensitivity is achieved when the sensing time t ≈ kπ/Ω and the sensitivity has an enhancement
of α0 in comparison to the conventional scheme based on nuclear Ramsey (where |∂ΩS(t)|max = t/2). The ultimate
bound on the sensitivity occurs near GSLAC, where α0 ≈ γe√

2γn
, and with sensing time t ≈ τ/2.

Assuming a typical NV ensemble diamond sample chip of volume V = 1 mm3 with N = 2.5 × 1014 spin sensors,
detection efficiency C ∼ 2% and coherence time τ = 1.5T1e ≈ 7.5ms, the sensitivity bound (Eq. (S8)) can achieve
η(Ω ≪ γnB,B ≈ 1024G, t ≈ τ/2) ≈ 1× 10−3 (mdeg/s)/

√
Hz, comparable with atomic gyroscopes [32].

Nevertheless, for slow rotations such that the signal decay time is on the same order as the rotation period when
τ ∼ π/Ω, there is a tradeoff: the measurement needs to be made as quickly as possible after initialization of the
electron spin to maintain the high sensitivity enhancement factor in the signal, which has a conflict with maximizing
the sensing time. In this case, the sensitivity enhancement is dictated by the factor ∂tS(t). We note that for even
lower rates where Ωτ ≪ 1, the sensing time is again limited by the coherence time and the deadtime, thus reaching
the sensitivity bounds of the case where τ ≫ π/Ω.
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Inertial Gyroscope

When sensing fast rotations Ω ≫ γnB, the electron spin and nuclear spin still need to be nearly aligned with the
magnetic field when reading out, so we still require t + td ≈ ⌈Ωt

π ⌉( πΩ ) and the sensitivity (measured along x̂NV) is
given by

η(Ω ≫ γnB,B, t) =
1

( 12 )|cos(Ωt)|

et/τ
√

⌈Ωt
π ⌉( πΩ )

2C
√
Nt

 ≥ et/τ

C
√
N
√
t

(S9)

The lower bound for the optimal sensitivity of the sensor can thus be approximated ηopt ≈
√
2e

C
√
Nτ

≈ 4.91

(mdeg/s)/
√
Hz for τ ≈ 7.5ms.

Comparison with other protocols

The most conventional method in sensing a rotation is using the nuclear Ramsey. The Ramsey protocol using the
nuclear spin has a signal of the form S(t) = 1

2 (1 + sin(Ωt)).Thus, the sensitivity is similar to that given in Eq. S9:

ηN-Ramsey(t) =
1

( 12 )|cos(Ωt)|

(
et/τ

√
t+ td

2C
√
Nt

)
(S10)

and yields a lower bound to the sensitivity ηopt ≈
√
2e

C
√
Nτ

. The coherence time for the Ramsey sequence is limited by the

spin dephasing time T ∗
2n ≤ 1.5T1e [29]. Thus, even in the fast rotation sensing regime (without hyperfine-enhancement)

of the gyroscope developed in this work, the sensitivity is slightly improved compared to the conventional nuclear spin
Ramsey scheme, as we found τ > 1.5T1e in numerical simulations.
Alternatively, with the assistance of the external magnetic field along ẑ (like in the setup discussed in our work),

the change in the electron spin transition frequency can also be used to extract the rotation rate (for a transverse
rotation along ŷ). In this case, similar to conventional magnetometry, this is tested with a Ramsey experiment with
the electron spin, ultimately limited by the spin dephasing time τ = T ∗

2e ≪ T1e [20]. The signal of the Ramsey is
given by S(t) = 1

2 (1 + sin(ωet)), where ωe = ωe(θ) is the rotation-angle dependent electron spin transition frequency.
Thus, the sensitivity is given by

ηNV-Ramsey(t) =
1

( 12 )
∣∣cos(ωet)∂ωe

∂θ

∣∣
(
et/τ

√
t+ td

2C
√
Nt2

)
. (S11)

In an electronic spin ensemble, the spin dephasing time is typically 2 to 3 order-of-magnitude shorter than in a nuclear
spin ensemble, while the derivative ∂ωe

∂θ increases with an increase in the magnetic field and can improve the sensitivity.
Thus it is not straightforward to analytically compare this scheme to other ones and here we discuss a few special
conditions. Near GSLAC at B ≈ 1000G,

∣∣∂ωe

∂θ

∣∣
max

≈ (2π)4 × 103 MHz/rad, and although T ∗
2e ≪ T1e, the sensitivity

is improved compared to the nuclear spin Ramsey, with ηopt ≈ 0.2 (mdeg/s)/
√
Hz for T ∗

2e = 0.7µs, still worse than
the hyperfine-enhanced gyroscope.

A sensitivity comparison of all conventional NV-based gyroscopes is shown in the main text Fig. 2e.

Adiabatic Range for Hyperfine-Enhanced Sensing

The hyperfine-enhanced gyroscope protocol requires that the nuclear spin quantization axis follow the effective
magnetic field axis adiabatically. Because we assume that the gyroscope operates in regimes where the rotation rate is
expected to be significantly less than the ZFS D = 2π×2.87 GHz, the electron spin is expected to follow the eigenstate
set by the crystalline axis of the diamond. Nevertheless, because the 15N does not have a large quadrupole term, the
energy splitting of the nuclear spin is dependent on the magnetic field strength, and the rotation has to be sufficiently
slow with respect to γnB such that the evolution of the nuclear spin remains adiabatic and the hyperfine-enhanced
signal can be measured. Thus, to provide a quantifiable range for the gyroscope, we derive the adiabatic criteria for
the nuclear spin under the rotation.
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The effective Hamiltonian for the nuclear spin under the rotation of rate Ω (in the NV-frame) is given by:

H(t) = γn(Bz(t)Iz + α0Bx(t)Ix)− ΩIy (S12)

where Bz(t) = B cos(Ωt) and Bx(t) = −B sin(Ωt). The time-dependent Hamiltonian has two orthogonal eigenstates
|ψ±(t)⟩ such that such that H(t)|ψ±(t)⟩ = E±|ψ±(t)⟩. The time evolution operator is given by:

U(t) = T exp

(
−i

∫ t

0

H(t′)δt′
)

= exp

−i
∑
ϕ=ψ±

∫ t

0

Eϕ(t
′)|ϕ⟩⟨ϕ|dt′

 =
∑
ϕ

exp

(
−i

∫ t

0

Eϕ(t
′)dt′

)
|ϕ⟩⟨ϕ|, (S13)

where T is the time-ordering operator. Thus, we can write the time-dependent wavefunction:

|ψ(t)⟩ =
∑
ϕ=ψ±

cϕ(t) exp

(
−i

∫ t

0

Eϕ(t
′)dt′

)
|ϕ⟩ (S14)

for coefficients cϕ. In our protocol, we initiate the nuclear spin in the |+ 1
2 ⟩ state, so let c+(0) = 1, c−(0) = 0. From

the time-dependent Schrodinger equation, we obtain:

i
∂|ψ(t)⟩
∂t

= H(t)|ψ(t)⟩ (S15)

i
∑
ϕ

exp

(
−i

∫ t

0

Eϕ(t
′)dt′

)[
dcϕ
dt

|ϕ⟩+ cϕ
∂|ϕ⟩
∂t

− iEϕcϕ|ϕ⟩
]
=

∑
ϕ

cϕEϕ exp

(
−i

∫ t

0

Eϕ(t
′)dt′

)
|ϕ⟩ (S16)

We multiply both sides with the state ⟨ϕ′ ̸= ϕ| and divide by i exp
(
−i

∫ t
0
Eϕ(t

′)dt′
)
:

cϕ⟨ϕ′|
∂ϕ

∂t
⟩+ exp

(
−i

∫ t

0

(Eϕ′ − Eϕ)(t
′)dt′

)[
dcϕ′

dt
+ cϕ′⟨ϕ′|∂ϕ

′

∂t
⟩
]
= 0 (S17)

thus giving an expression for the coefficient cϕ′ :

dcϕ′

dt
= −cϕ′⟨ϕ′|∂ϕ

′

∂t
⟩+ exp

(
i

∫ t

0

(Eϕ′ − Eϕ)(t
′)dt′

)
cϕ⟨ϕ′|

∂ϕ

∂t
⟩ (S18)

The adiabatic approximation requires that the state remains in its eigenstate and evolves independently of other

states and thus ⟨ϕ′|∂ϕ
′

∂t ⟩ ≫ ⟨ϕ′|∂ϕ∂t ⟩. For the adiabatic part, we have the evolution

dcϕ′

dt
= −cϕ′⟨ϕ′|∂ϕ

′

∂t
⟩ (S19)

∂ϕ′

∂t
= −iH(t)|ϕ′⟩ = −iEϕ′(t)|ϕ′⟩ (S20)

cϕ′(t) = cϕ′(0) exp

(
−
∫ t

0

⟨ϕ′(t′)|∂ϕ
′(t′)

∂t
⟩dt′

)
= cϕ′(0) exp

(
i

∫ t

0

Eϕ′(t′)dt′
)

(S21)

Thus, in the adiabatic approximation of the evolution, the population in the states remain the same, while they
acquire a (Berry) phase. The second term in Eq. (S18) describes the nonadiabatic effects of the evolution and the
nonadiabatic coupling ⟨ϕ′|∂ϕ∂t ⟩ determines the magnitude of effects of non-adiabaticity. We see that

⟨ϕ′|
[
∂

∂t
(H|ϕ⟩) = ∂

∂t
H|ϕ⟩+H|∂ϕ

∂t
⟩ = ∂Eϕ

∂t
|ϕ⟩+ Eϕ

∂|ϕ⟩
∂t

]
⇒ ⟨ϕ′|∂H

∂t
|ϕ⟩+ Eϕ′⟨ϕ′|∂ϕ

∂t
⟩ = Eϕ⟨ϕ′|

∂ϕ

∂t
⟩ (S22)

and establish an adiabatic criteria for eigenstates |ϕ⟩, |ϕ′⟩ = |ψ±⟩ :∣∣∣∣⟨ϕ′|∂ϕ∂t ⟩
∣∣∣∣2 =

∣∣⟨ϕ′|∂H∂t |ϕ⟩∣∣2
(Eϕ − Eϕ′)2

≪ E2
ϕ′ (S23)
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Explicitly,

H(t) =
1

2
Bγn

[
cos (Ωt) −α0 sin (Ωt) + iΩ

−α0 sin (Ωt)− iΩ − cos (Ωt)

]
(S24)

∂H(t)

dt
=

1

2
Bγn

[
−Ωsin (Ωt) −α0Ωcos (Ωt)

−α0Ωcos (Ωt) Ω sin (Ωt)

]
(S25)

Solving for the instantaneous eigenstates and eigenenergies of H(t), we obtain:

|ψ∓(t)⟩ = Bγn

[
− −α0 sin (Ωt)+iΩ

cos (Ωt)±
√
α2

0 sin2 (Ωt)+cos2 (Ωt)+( Ω
Bγn

)2

1

]
(S26)

E∓ = ∓Bγn
2

√
α2
0 sin

2 (Ωt) + cos2 (Ωt) + (
Ω

Bγn
)2 (S27)

From Eq. (S23), the nuclear spin remains adiabatic when

M(t) =

∣∣∣⟨ψ+|∂ψ−
∂t ⟩

∣∣∣2
E2

+

≪ 1 (S28)

Thus, to maintain the adiabaticity of the nuclear spin during the evolution, we require M(t) ≪ 1 during the
rotation. By numerically computing M(t) for different values of B over the course of θ = Ωt ∈ [0, π] for a chosen
Ω = 0.1kHz shown in Fig. S4, we see that M(t) reaches its minimum value at θ = π/2, where the effective magnetic
field is the largest. Calculating M(t) at a time t = t0 allows us to define a cutoff ϵ such that the system is sufficiently
adiabatic to achieve a measurable signal of the rotation. ϵ is defined as the maximal acceptable signal uncertainty
⟨∆S⟩ (as shown in main text Fig. 2c), which then sets a standard to quantify the projected range of frequencies
detectable by the hyperfine-enhanced gyroscope for a desired precision.

FIG. S4. Nuclear Spin Eigenstate Deviation The eigenstate deviation M(t) as a function of the rotation angle (at a fixed
rotation rate (2π)0.1kHz), for various values of magnetic field strength. As B increases, M(t) is suppressed and the system
becomes adiabatic and we can perform sensing in the hyperfine-enhanced regime. As B decreases, M(t) increases, and the
system is in the intermediate regime where a rotation signal is difficult to extract due to the non-adiabatic evolution of the
nuclear spin. Nevertheless, for a sufficiently small B, M(t) begins to decrease again and we can sense in the inertial regime
where the nuclear spin is fixed in its initial eigenstate during the rotation.

At θ = π/2, we can simplify

Mmin =
4( Ω
Bγn

)2

(α2
0 + ( Ω

Bγn
)2)2

(S29)

If we require that the adiabatic condition for the nuclear spin satisfy Mmin < ξ2 for some ξ, and assume that Ω
Bγn

≪ 1,
to first order, we can approximate:

Ω < ξα2
0Bγn (S30)
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Thus, the maximum detectable rotation rate by the hyperfine-enhanced gyroscope is given by Ωmax ∝ α2
0B. Thus,

the enhancement factor also suppresses the non-adiabatic contribution of the rotation on the nuclear spin, so for
large magnetic fields, the range for detectable rotation rates is significantly enhanced. In Fig. 2(c), we quantify the
adiabatic range by ξ2 ∼ 1× 10−5 from choosing the regime where ⟨∆S⟩ < 0.01, thus allowing us to obtain the Ωmax

in main text Fig. 3(a)i.
For fast rotations, we require the nuclear spin to remain in its initial eigenstate and decoupled from the electron

spin rotation. In this regime, as Ω ≫ γeB, the effective nuclear Hamiltonian becomes time-independent H(t) ≈ −ΩIy,
and M(t) ≪ 1, we can use similar analysis to characterize a minimum rotation rate for fast-rotation sensing Ωmin

shown in main text Fig. 3(a)ii. In the main text, we refer to M(t) as the eigenstate deviation.

SIMULATION DETAILS

To simulate the dynamics of the system we can either work in the lab frame where the diamond, and thus the
zero-field splitting and hyperfine interaction tensors, rotate; or work in the diamond frame, where the NV sees a
rotating external magnetic field, as well as an effective field along the rotation axis due to the non-intertial frame.

In the following, we discuss the basic principles of both methods and use them to simulate the system dynamics
and study the spin relaxation effect.

Lab Frame

The dynamics of a quantum system is described by the Hamiltonian of the system. The ground state Hamiltonian
of the 15NV center can be written as

H = S⃗ ·D · S⃗ + γeB⃗ · S⃗ + γnB⃗ · I⃗ + S⃗ ·A · I⃗ (S31)

where γe = 2π×2.8024 MHz/G and γn = 2π×0.4316 kHz/G are the gyromagnetic ratios of the electronic and nuclear
spin. When the frame is chosen such that the z axis is along the N-V orientation, the effective zero-field splitting (ZFS)
tensor D is diagonal with the only nonzero diagonal term D = 2π×2.87 GHz along the z direction, and the hyperfine
tensor A includes only diagonal terms as well with Azz = 2π × 3.03 MHz and Axx = Ayy = A⊥ = 2π × 3.65 MHz.
The rotation of the diamond crystal can be described by the Euler angle (α, β, γ), represented by a rotation matrix

R(α, β, γ) = Rz(γ)Ry(β)Rz(α) with

Rz(α) =

 cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 , Ry(β) =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

 (S32)

such that

R(α, β, γ) =

 cos(α) cos(β) cos(γ)− sin(α) sin(γ) − sin(α) cos(β) cos(γ)− cos(α) sin(γ) sin(β) cos(γ)
cos(α) cos(β) sin(γ) + sin(α) cos(γ) cos(α) cos(γ)− sin(α) cos(β) sin(γ) sin(β) sin(γ)

− cos(α) sin(β) sin(α) sin(β) cos(β)

 . (S33)

Both of the ZFS and hyperfine interaction in the NV Hamiltonian are represented by 3-by-3 tensors, and as we
introduced above both of them are diagonal in the reference frame choosing N-V as the z axis. To clarify the
difference between different frames, here we denote terms in the N-V frame with “′” such that

D′ =

 0 0 0
0 0 0
0 0 D

 , A′ =

 Axx 0 0
0 Ayy 0
0 0 Azz

 . (S34)

The ZFS and hyperfine terms of the Hamiltonian in the NV frame can be written as

(S′
x, S

′
y, S

′
z) ·D′ ·

 S′
x

S′
y

S′
z

′

, (S′
x, S

′
y, S

′
z) ·A′ ·

 I ′x
I ′y
I ′z

 . (S35)

Using (S′
x, S

′
y, S

′
z)
T = RT (Sx, Sy, Sz), we can get the ZFS and hyperfine tensors in the lab frame

D = R ·D′ ·RT , A = R ·A′ ·RT . (S36)

The full Hamiltonian is then obtained by plugging these tensors into Eq. (S31).
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NV Frame

Instead of working in the lab frame and calculating the co-rotating ZFS and hyperfine tensors, we can work in the
NV frame to avoid complicated tensor rotations. Instead, in this case, the external static magnetic field has a rotation
described by RT which is opposite to the diamond rotation, and the rotating frame transformation leads to additional
terms in the Hamiltonian.

To simplify the analysis, here we consider a one-axis rotation ω along y. In the NV frame, the system Hamiltonian
can be written as

H = DS2
z+AzzSzIz+A⊥(SxIx+SyIy)+γeB [cos(ωt)Sz − sin(ωt)Sx]+γnB [cos(ωt)Iz − sin(ωt)Ix]−ωSy−ωIy. (S37)

The simulation in the NV frame should give the same results as the simulation in the lab frame. In Fig. S5 we show
a simulation of the nuclear spin evolution with the same parameters as in the main text, which shows consistent
behavior.

0 2 4 6 8 10 12
t (ms)

0

0.2

0.4

0.6

0.8

1

Si
gn

al

|  z B | n(t) |2

| +z NV | n(t) |2

Theory S(t)

a b

enhanced rotation

αΩ

c

NV (z)
15N

Magnetic �eld B
Nuclear spin eigenstate
Simulated evolution

15N

t

B

FIG. S5. Gyroscope with hyperfine-enhanced sensitivity simulated in the NV frame. a. Effective dynamics of
the electro-nuclear system for the hyperfine-enhanced gyroscope in the NV frame. In the frame of the NV, the magnetic field
counter rotates to the rotation, while the nuclear spin’s rotation is enhanced from the magnetic field rotation. b. Simulation
of the nuclear spin state evolution on the Bloch sphere. The diamond is rotated about y axis with a rate ω = 2π × 0.1 kHz,
and the magnetic field is set to B = 50 G. c. The overlap of the final nuclear spin state with either its initial state or the state
along the B field direction.

Master Equation for Relaxation Time

While the coherence evolution of a closed system can be calculated using the Schrödinger’s equation, the evolution
of an open system (e.g., depolarization and/or dephasing processes that exist due to the system-bath coupling) can
be derived using the Lindblad equation under the assumption of Markov bath,

∂

∂t
ρ(t) = −i[H(t), ρ(t)] +

M∑
k=1

(
Lkρ(t)L

†
k −

1

2
L†
kLkρ(t)−

1

2
ρ(t)L†

kLk

)
, (S38)
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where Lk are Lindblad operators. To describe the spin relaxation dynamics in our system, the Lindblad operators
are Lk =

√
Γ |ms⟩ ⟨m′

s| where ms,m
′
s = {−1, 0,+1} and the jump rate Γ = 1/(3T1e) [29].

In a practical simulation, the differential equation in Eq. (S38) is converted to an integral equation and is solved
by calculating ρ(t+ δt) from ρ(t) stepwise. The simulation precision depends on the step size δt.

Due to the large order of magnitude difference between the system energy scale (∼GHz) and the rotation rate (<kHz)
which is of interest in our study, numerically calculating the evolution using the Lindblad equation in Eq. (S38) is chal-
lenging. To improve the simulation efficiency, we modify the Lindblad equation to eliminate the second approximation.
The detailed derivation is as follows.

Derivation

The system evolution of an open quantum system can be described by a superoperator map. According to the
Kraus Representation Theorem, a concrete expression of such a map can be written in the form of

S[ρ] =
K∑
k=1

MkρM
†
k , with

K∑
k=1

M†
kMk = I (S39)

where Mk are Kraus operators.
We can further write the evolution of ρ from t to t+ δt as

ρ(t+ δt) =
∑
k

Mk(δt)ρ(t)M
†
k(δt). (S40)

To separately account for contributions of the coherent evolution under the system Hamiltonian and the dephas-
ing/depolarization process due to system-bath coupling, we separate the set of Mk to M0 and Mk (k > 1). The
coherent part is included in M0 = e−iH(t)δt + δtK + O(δt2) with K hermitian, and the system-bath coupling effects

are included in Mk =
√
δtLk +O(δt). To satisfy the Kraus sum normalization condition

∑
M†
kMk = I, yielding

M†
0M0 +

∑
k>0

M†
kMk = I + δt(eiH(t)δtK +K†eiH(t)δt)+ δtL†

kLk +O(δt2) = I + δt(K +K†)+ δtL†
kLk +O(δt2), (S41)

we obtain K = − 1
2

∑
k>0 L

†
kLk. The evolution of ρ is then calculated by

ρ(t+δt) =M0ρ(t)M
†
0+

∑
k>0

Mkρ(t)M
†
k = e−iH(t)δtρ(t)eiH(t)δt+δt

∑
k>0

(
Lkρ(t)L

†
k −

1

2
L†
kLkρ(t)−

1

2
ρ(t)L†

kLk

)
. (S42)

When the jump rate is set to zero, the evolution in Eq. (S42) comes back to the form when considering only the
coherent evolution under the system Hamiltonian, only requiring the step size δt smaller than the characteristic time
scale T of the change in H(t). And the second term linear in δt requires that δt should be much smaller than the
characteristic jump time 1/Γ.

Simulation Results

Simulations were performed for varying values of T1e to compute the system coherence time. Simulations using a
modified Lindblad equation in Eq. (S42) demonstrated a ∼ 85% improvement in time efficiency per repetition. In the
adiabatic regime (at B = 50G and Ω = 0.1kHz), we find the decay time of the signal yields consistently τ ≈ 1.5T1e
Fig. S6(b), consistent with predictions from the spin fluctuator model [29]. Nevertheless, in the inertial regime under
fast rotation in Fig. S6(a), the ratio τ/T1e is a bit more unclear due to dynamical decoupling effects from the rapid
rotation of the electron spin; our results yield that decreases with T1e, as well as the rotation rate Ω.

Nuclear Spin Dephasing

We also consider the effect of inhomogenous dephasing due to static thermal noise in the adiabatic regime. We
compute the system coherence time under a non-Markovian process where the we impose static local field fluctuations
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FIG. S6. Hyperfine-enhanced regime coherence time simulation (a) Decay of the gyroscope signal and fitted coherence

times (following envelop fit S(t) = c0 + c1e
−t/τ ) at B = 50G and Ω = (2π)0.1kHz for various T1e values. (b) Simulated ratios

τ/T1e from (a) as a function T1e.

across the ensemble. In particular, we simulate the evolution of the Hamiltonian averaged over N spins where for
each spin i:

Hi = H0 + δBi · S⃗ + δBi · I⃗ (S43)

where Bi is sampled from a Gaussian distribution with mean ⟨δB⟩ = 0 and we can describe the ensemble density
matrix

ρ(t) =

∫
e−iHitρ(0)eiHitP (δB)dδB (S44)

where P (δB) = e−(δB)2/2(∆B)2

√
2π∆B

where ∆B =
√

⟨δB2⟩ is the strength (variance) of the magnetic field fluctuations. For

a typical NV ensemble sample, ∆B ∼ 0.1− 0.5G.
During the system evolution under a bias magnetic field B, the nuclear spin precesses with an effective Larmor

frequency ωeff = γnBeff where Beff =
√
B2
z + α2(B2

x +B2
y) due to the transverse hyperfine enhancement. In the

NV frame, the external magnetic field rotates counter-clockwise, and the nuclear spin precesses about the axis defined
by Bx = −B sin(Ωt)x̂, Bz = B cos(Ωt)ẑ. In cases where Beff ≫ ∆B , because we assume that the static noise does not
rotate with the diamond (and thus rotates with the bias magnetic field in the NV frame), the large energy gap of the
nuclear spin suppresses the influence of the transverse noise δBx and δBy. Nevertheless, the δBz noise causes a pure
dephasing process, and the ensemble of spins precess at different frequencies, resulting in a decay in the transverse
spin components (T ∗

2 process). Under a Gaussian distribution for δB, we can characterize the decay T ∗
2 =

√
2/∆B

shown in Fig. 3b.
Thus during the gyroscope protocol, longitudinal noise results in a pure dephasing process for the nuclear spin,

which reduces the effect of the ensemble nuclear precession in the measured signal. In particular, as seen in Fig. S5,
the simulated dynamics of the system results in a signal with oscillations largest at θ = nπ/2. In the presence of
noise, these oscillations are suppressed by the T ∗

2 dephasing process. Thus, even though the transverse Bloch vector
components of the nuclear spin decays during the sensing protocol, a pure dephasing process does not result in a
decay of the overall measured signal that is used to extract the rotation rate and our protocol is robust against static
magnetic field fluctuations, in contrast to previous NV-gyro protocols.

In our simulations in main text Fig. 3(b), we assume that δBx, δBy = 0 for an ensemble of N = 1000 spins,
and we compute T ∗

2 by measuring the decay of the oscillations in the signal at θ = nπ/2, where the nuclear spin
experiences the same effective magnetic field strength. Varying ∆Bz

, we confirm that fluctuations in Bz results in a T ∗
2

decay process. Despite the enhancement factor’s amplification of the transverse noise, because the effective magnetic
field is also amplified by the same magnitude, as long as Beff ≫ δBx,y, the dephasing process will be dominated
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by the longitudinal noise. Considering only δBx,y noise, we see that the dephasing of the signal is much weaker.
Furthermore, in cases where the static fluctuations rotate with the diamond (thus remaining static in the NV frame),
the components of δB change in strength with the rotation, but ultimately, a pure dephasing process dominated by
the longitudinal noise persists.
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