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Abstract 

Certain non-Hermitian systems exhibit the skin effect, whereby the wavefunctions become 

exponentially localized at one edge of the system. Such exponential amplification of 

wavefunction has received significant attention due to its potential applications in e.g., classical 

and quantum sensing. However, the opposite edge of the system, featured by the exponentially 

suppressed wavefunctions, remains largely unexplored. Leveraging this phenomenon, we 

introduce a non-Hermitian cooling mechanism, which is fundamentally distinct from 

traditional refrigeration or laser cooling techniques. Notably, non-Hermiticity will not amplify 

thermal excitations, but rather redistribute them. Hence, thermal excitations can be cooled 

down at one edge of the system, and the cooling effect can be exponentially enhanced by the 

number of auxiliary modes, albeit with a lower bound that depends on the dissipative 

interaction with the environment. Non-Hermitian cooling does not rely on intricate properties 

such as exceptional points or non-trivial topology, and it can apply to a wide range of Bosonic 

modes such as photons, phonons, magnons, etc.  

 

 

Introduction. Non-Hermiticity arises naturally in open quantum systems. Prototypical 

examples are loss and gain, which were often considered nuisances in standard Hermitian 

quantum mechanics. Recently it was realized that a careful balance between gain and loss can 

lead to the emergence of intriguing phenomena such as parity-time symmetry breaking and 
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exceptional points [1–5]. Other non-Hermitian phenomena, such as non-Hermitian 

topology [6–11], which can be defined solely based on eigenvalues instead of eigenvectors, 

have generated considerable attention as well.  

A particularly interesting property of certain non-Hermitian systems is the non-Hermitian skin 

effect (NHSE) [12–18], whereby the wavefunctions are exponentially localized at one 

boundary of the system. Various novel applications have been proposed based on the NHSE, 

such as directional amplification of signals [19–22] and (potentially exponentially) enhanced 

sensing [23–25]. However, the majority of studies in non-Hermitian physics focus on non-

Hermiticity-induced amplification [1,2,24,25,3,4,15,19–23]. It is worth noting that the 

exponential amplification of Bosonic wavefunctions on one edge implies the exponential 

suppression of wavefunctions on the opposite edge. This property remains largely unexplored. 

In this work, we focus on applications of this effect in non-Hermitian systems, in particular 

toward cooling thermal excitations. 

Cooling down thermal excitations is an essential step for numerous applications that span 

nearly all scientific and technological domains. However, traditional refrigeration often 

requires bulky devices, and it can be rather difficult to cool down below certain limits, such as 

several milli-Kelvin in dilution refrigerators [26]. Meanwhile, laser cooling relies on relatively 

weak nonlinear optical processes [27–30], necessitating strong pumping lasers that can 

potentially result in side effects. A critical observation is that in both traditional refrigeration 

and laser cooling, cooling is achieved by transferring thermal excitations to auxiliary modes 

(thermal bath) that have smaller occupation numbers (Figure 1a, 1b). This raises the question: 

is this a necessary condition for cooling? 

In this work, we propose a non-Hermitian cooling mechanism, which is related to non-

reciprocal refrigeration [31,32], but is fundamentally different from traditional refrigeration or 

laser cooling. The non-Hermitian cooling stems from the directional transport of thermal 

excitations and can be achieved even if the auxiliary modes have the same occupation number 

(Figure 1c). We will demonstrate that the directional transport does not significantly amplify 

but only redistributes thermal excitations in non-Hermitian systems. This guarantees that the 

localization of thermal excitation and heating on one edge (i.e., NHSE) will at the same time 

result in cooling on the opposite edge. By employing two different theoretical approaches, we 

reveal that the cooling effect can be exponentially enhanced by the number of auxiliary non-

Hermitian modes, although a lower bound emerges when the dissipative interaction with the 

environment is included.  
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The non-Hermitian cooling is inherently versatile. In principle, it applies to any type of Bosonic 

excitations including photons, phonons, magnons, etc. The non-Hermitian cooling does not 

require intricate properties such as parity-time symmetry [1,33–35], exceptional points [1–5], 

or non-trivial topologies [15,24,25]. The only requirement is the non-reciprocal hopping and 

directional transport of the excitations, corresponding to the emergence of the NHSE. Hence, 

we expect non-Hermitian cooling to be widely applicable.  

In the following, we will first explain the distinctiveness of non-Hermitian cooling by 

comparing it with traditional refrigeration and laser cooling methods. Then, starting from two-

mode systems, we will demonstrate the performance of non-Hermitian cooling, including the 

exponential enhancement in multi-mode systems, as well as the lower bound of the cooling 

effect. Finally, we will discuss some issues relevant to the practical realization of non-

Hermitian cooling.  

 

 

Figure 1 Illustration of the mechanism of (a) traditional refrigeration, (b) laser cooling, and (c) non-
Hermitian cooling. Red (blue) circles denote the principal (auxiliary) mode, and the color filling denotes 
thermal occupation. The arrows indicate the transfer of thermal excitation, with thicker arrows 
corresponding to faster transfer.   

 

Traditional refrigeration, laser cooling, and non-Hermitian cooling. For clarity, we will 

use principal and auxiliary to denote the mode to be cooled down and the modes that facilitate 

the cooling process, respectively. For traditional refrigeration, the key step is to attach the 

principal mode to the auxiliary modes (thermal bath) with the same intrinsic frequency but 

lower temperature, which have smaller occupation numbers. Then, the thermal excitations 

would naturally flow into the thermal bath via heat transfer, leading to the cooling effect (Figure 

1a). Clearly, the lowest achievable temperature is the temperature of the thermal bath. While 

diverse schemes have been devised to create thermal baths with low temperatures, it can be 

extremely demanding and costly for traditional refrigeration to go beyond a certain limit, e.g., 

several milli-Kelvin in dilution refrigerators [26].  
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Laser cooling uses a different mechanism – a low-frequency principal mode is coupled to an 

auxiliary mode with a higher (usually optical) frequency, whose effective thermal occupation 

is much smaller even at elevated temperatures (Figure 1b). It is worth noting that some other 

processes, such as dynamic nuclear polarization [36], employ a similar mechanism. For laser 

cooling, the thermal excitations in the principal mode are pumped to the auxiliary mode by an 

external laser, which compensates for the energy difference. While laser cooling is remarkably 

successful, as seen in the achievement of picokelvin temperatures for ultracold atoms [37], it 

is ultimately limited by the laser power and the dissipation of the principal and auxiliary modes. 

Specifically, the transfer of thermal excitations via laser pumping relies on intrinsically weak 

and usually nonlinear optical processes. Hence, strong pumping lasers are required, which can 

cause heating and damage of the surrounding, especially in solid-state systems. Moreover, the 

auxiliary high-frequency modes usually have high dissipation rates as well, which also limits 

the effectiveness of laser cooling.  

One can see that both traditional refrigeration and laser cooling result from transferring thermal 

excitations to auxiliary modes with smaller occupation numbers. Indeed, for bosonic modes, 

the transition (energy transfer) rate from the principal to the auxiliary mode is 𝑔𝑛 (1 + 𝑛 ), 

while that in the reverse direction is 𝑔𝑛 (1 + 𝑛 ), so the net flow is 𝑔(𝑛 − 𝑛 ). Here 𝑛  

(𝑛 ) is the occupation number of the principal (auxiliary) mode, while 𝑔 is the reciprocal 

coupling strength. Clearly, cooling of the principal mode requires 𝑛 < 𝑛 . Similar analyses 

hold for fermionic modes as well. 

Nevertheless, this is not a necessary condition for cooling in a non-Hermitian system. Even if 

the principal and auxiliary modes have the same occupation number, cooling could still be 

achieved if (1) the transfer of excitations is directional, so that the excitations preferably jump 

from the principal to the auxiliary modes (Figure 1c); (2) the directional transport does not 

significantly amplify total thermal excitations in the system. In the following, we will 

demonstrate that both conditions can be satisfied in certain non-Hermitian systems.  

Non-Hermitian cooling in two-mode systems. To better understand the non-Hermitian 

cooling effect, let us first examine a two-mode system, where the principal mode-1 and 

auxiliary mode-2 have the same intrinsic frequency 𝜔  (inset of Figure 2b). We will assume 

the two modes to be bosons, such as photons, phonons, or magnons, but the discussions below 

can be adapted to fermionic modes as well. We will show that in a non-Hermitian system, the 

transition rate from modes 1 to 2 can be different from that in the reverse direction, resulting 
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in an unbalanced steady-state occupation (SSO) and an effective cooling effect. We consider 

the following Hamiltonian of the two-mode system in the rotating frame of 𝜔  

 ℋ = 𝑡 𝑎 𝑎 + 𝑡 𝑎 𝑎 . (1) 

Here 𝑎  (𝑎 ) is the annihilation (creation) operator of mode-𝑖, while 𝑡 = 𝑡𝑒  and 𝑡 =

𝑡𝑒  are the inter-mode coupling strength. The interaction is non-Hermitian when 𝐴 has a 

non-zero real part. For definiteness and without loss of generality, we will take 𝐴 > 0 as a 

real number unless explicitly stated. The time evolution of the density matrix 𝜌  can be 

described by the quantum master equation [38–40], = −𝑖(ℋ𝜌 − 𝜌ℋ ) + 𝑖Tr{𝜌(ℋ −

ℋ )}𝜌 + ∑ ℒ(𝑜 )𝜌 , which is adapted for a non-Hermitian Hamiltonian ℋ ≠ ℋ  (see 

Supplementary Materials, SM, for detailed discussions). The dissipative interactions with the 

environment (thermal bath) are described by the Lindblad operators ℒ(𝑜 )𝜌 ≡ 𝑜 𝜌𝑜 −

𝑜 𝑜 𝜌 − 𝜌𝑜 𝑜  for operator 𝑜 .  

One can readily observe that when the dissipative interactions with the thermal bath are ignored, 

the “Rabi” oscillation between modes 1 and 2 is still periodic, but will deviate from a normal 

sinusoidal function (Figure 2a). Compared with the 1 → 2 oscillation, the reverse 2 → 1 

oscillation takes a longer time 𝜏 ∼ , resulting in an unbalance between the two modes, 

and the excitations would preferably reside in mode 2.  

 

Figure 2. (a) Unbalanced “Rabi” oscillation in the non-Hermitian two-mode system with 𝑒 = 2. 

Green and white shaded regions correspond to 𝑛 < 𝑛  and 𝑛 > 𝑛 , respectively. (b) Steady-state 

occupation as a function of 𝑒  with 𝜅 = 𝜅 = 0.01 𝑡. Inset of (b): Illustration of a non-Hermitian 

two-mode system 
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Considering the dissipative interactions with the thermal bath and assuming the occupation 

numbers to be small, one has (SM) 

 

𝜕𝑛

𝜕𝑡
≈ 𝑖 𝑡 𝑎 𝑎 − 𝑡 𝑎 𝑎 − 𝜅 [𝑛 − 𝑛 ], 

𝜕 𝑎 𝑎

𝜕𝑡
≈ 𝑖 𝑡∗ 𝑎 𝑎 − 𝑡 𝑎 𝑎 −

𝜅 + 𝜅

2
𝑎 𝑎 . 

(2) 

Here 𝜅  is the dissipation rate of mode-𝑖, and 𝑛  is the occupation number of the thermal 

bath, which is assumed to be the same for the two modes. Note that 𝑛  is also the equilibrium 

occupation number of the two modes if the non-Hermiticity is absent (i.e., 𝑡 = 𝑡 ). 

Meanwhile, ⟨𝑜⟩ ≡ Tr{𝜌𝑜} indicates the thermal average of operator 𝑜, and 𝑛 ≡ 𝑎 𝑎  is 

the occupation of mode-1. Similar equations hold when modes 1 and 2 are exchanged. In the 

steady state, one has  

 
𝑔 𝑛 + 𝜅 𝑛 ≈ 𝑔 𝑛 + 𝜅 𝑛 , 

𝑔 𝑛 + 𝜅 𝑛 ≈ 𝑔 𝑛 + 𝜅 𝑛 , 
(3) 

where 𝑔 =  is the non-Hermitian transition rate from mode 𝑖 to 𝑗. Note that 

one recovers 𝑔 =  for 𝐴 = 0, which is a well-known result obtained from Fermi’s 

golden rule.  

The SSO 𝑛  and 𝑛  as a function of 𝑒  are shown in Figure 2b, where we assume 𝜅 =

𝜅 = 0.01𝑡 and 𝑛 = 1. In a Hermitian system with 𝐴 = 0, one has 𝑛 = 𝑛 = 𝑛 , as 

expected. In contrast, one has 𝑛 < 𝑛  for 𝐴 > 0, which is the non-Hermitian cooling effect. 

Moreover, 𝑛  gradually decreases to zero as 𝑒  increases. Nonetheless, for finite values of 

𝑒 , the cooling effect is limited. For example, one has 𝑛 ≈ 0.4 𝑛  when 𝑒 = 2. Note that 

this cooling effect is closely related to non-reciprocal refrigeration [31,32]. 

Exponential non-Hermitian cooling in multi-mode systems. The cooling effect described in 

the previous section can be exponentially enhanced if more auxiliary modes are added. Ideally, 

one should be able to achieve 𝑛 ∝  in a 𝑁-mode non-Hermitian chain (Figure 3a). 

The Hamiltonian of the chain in the rotating frame is 
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 ℋ = 𝑡 , 𝑎 𝑎 + 𝑡 , 𝑎 𝑎  (4) 

with 𝑡 , = 𝑡𝑒  and 𝑡 , = 𝑡𝑒 . This is the renowned non-Hermitian Hatano-Nelson 

model [12,18]. By diagonalizing Eq. (4), one has ℋ|𝜓 ⟩ = 𝜖 |𝜓 ⟩, where the 𝛼-th eigenstate 

has energy 𝜖  and right eigenvector |𝜓 ⟩. Under the current setting, ℋ can be mapped to a 

Hermitian Hamiltonian by a similarity transformation [8,41]. Consequently, 𝜖  are all real 

number, while |𝜓 ⟩ are exponentially localized on the right boundary, i.e., 𝜓 ≈ 𝑒 𝜓 , 

which is the NHSE [8,18]. In many scenarios, the coupling strengths 𝑡𝑒±  are much smaller 

than other energy scales, such as the intrinsic mode frequency 𝜔  and the temperature 𝑇. 

Hence, if one arbitrarily applies standard thermodynamics to the Hatano-Nelson model [42], 

then all the eigenstates |𝜓 ⟩ should have almost the same probability to be occupied, and the 

SSO of the 𝑖-th mode is 

 𝑛 = 𝑛 𝜓 . (5) 

Here the superscript HN indicates that the occupations are obtained directly from the 

wavefunctions of the Hatano-Nelson model. One can easily verify that 𝑛 = 𝑛  if the 

Hamiltonian is Hermitian (𝐴 = 0), as expected. In contrast, with 𝐴 > 0, the NHSE implies 

that the SSO on the left edge is exponentially suppressed with 𝑛 ≈ 𝑒 𝑛  and 𝑛 ∼

𝑛 𝑒 , corresponding to the exponential cooling effect.  
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Figure 3 Illustration of a non-Hermitian 𝑁-mode chain. The color filling denotes SSO. (b) SSO of each 

mode in the chain with varying length 𝑁. The dashed line indicates the exponential scaling of 𝑛 ∝

. (c) SSO of the leftmost mode-1 as a function of 𝑁 with varying 𝜅. The solid blue line comes 

from Eq. (5), which coincides with the case of 𝜅 → 0. We set 𝑒 = 2 in (b, c) and 𝜅 = 0.01 𝑡 in (b). 

 

One may wonder whether the exponential cooling effect described above can survive if the 

dissipative interactions with the environment are incorporated. Fortunately, the answer is yes, 

although a lower bound on 𝑛  would arise with given 𝑒  and 𝜅. Generalizing the steady-

state equations Eq. (3) to the 𝑁-mode system, one has  

 𝑔 , 𝑛 + 𝑔 , 𝑛 + 𝜅𝑛 = 𝑔 , 𝑛 + 𝑔 , 𝑛 + 𝜅𝑛 ,     𝑖 = 1,2, … , 𝑁 (6) 

where for simplicity, we assume the thermal dissipation rate ( 𝜅 ) and the thermal bath 

occupation (𝑛 ) to be the same for all modes. Meanwhile, we set 𝑔 , = 𝑔  and 𝑔 , =

𝑔 , and the open boundary condition is implicitly incorporated by setting 𝑔 = 𝑔 =

𝑔 , = 𝑔 , = 0.  

An intriguing and important observation from Eq. (6) is that the sum of SSO on all modes 

remains a constant, i.e., ∑ 𝑛 ≡ 𝑁𝑛 , regardless of the values of 𝑔 . This implies that an 

increase in the SSO of some modes must be accompanied by a decrease in other modes. While 

the thermal excitations can internally redistribute in different modes, the 𝑁-mode system as a 

whole must exhibit 𝑁𝑛  excitations to the environment. This should be compared with the 

cases whereby an input signal is amplified by the non-Hermitian chain [19–21], which can be 

used to improve classical and/or quantum sensing [24,25]. Here, the non-Hermitian chain does 

not amplify but only redistributes the thermal excitations. This crucial property guarantees that 

the NHSE will lead to exponential non-Hermitian cooling. 

We numerically solve the steady-state equations Eq. (6) to obtain the SSO in a non-Hermitian 

chain (Figure 3b, 3c). 𝑒  is set to 2 unless explicitly stated. With a fixed and finite 𝜅, the 

SSO of the leftmost mode 𝑛  first decreases exponentially with 𝑁 , and then becomes a 

constant lim
→

𝑛 (𝜅, 𝑁) ≈  (SM). While obtained using a different approach, 𝑛  

in Eq. (5) coincides with the case of 𝜅 → 0 , i.e., 𝑛 ≈ lim
→

𝑛 (𝜅, 𝑁) . This agreement 

suggests that the theoretical results presented here should be robust.   

Cooling down a reciprocally coupled mode. In some situations, establishing a non-Hermitian 

interaction can be challenging, and/or can lead to unwanted side effects for the principal mode, 
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such as extra dissipations [43]. In this case, one can attach the principal mode (denoted by 0 

here) to mode-1 in the non-Hermitian chain described above. The interaction between modes 

0 and 1, ℋ = 𝑡 𝑎 𝑎 + 𝑎 𝑎 , can be Hermitian (Figure 4a). The cooling effect of mode-0 

comes from the fact of 𝑛 ≪ 𝑛 , as the flow of thermal excitation will be dominantly in the 

0 → 1 , other than the 1 → 0  direction, even if the transition between modes 0 and 1 is 

reciprocal. Using the steady-state equations Eq. (6), one can obtain the SSO (Figure 4b, SM) 

 𝑛 ≈
𝑔 𝑛 + 𝜅 𝑛

𝑔 + 𝜅
, (7) 

where 𝜅  is the dissipation rate of mode 0, and 𝑔 =
| |

 is the reciprocal transition rate 

between mode 0 and 1. One can see that a cooling effect (𝑛 < 𝑛 ) can be realized whenever 

𝑛 < 𝑛 .  

 

 

Figure 4 (a) A Hermitian principal mode-0 is attached to the non-Hermitian chain. (b) SSO of mode-0 

as a function of 𝜅  and 𝑡 . The non-Hermitian chain has 𝑁 = 15 modes with 𝑒 = 2 and 𝜅 =

0.01 𝑡. 

 

Discussions. The non-Hermitian cooling efficiency depends on two parameters, namely 𝑒  

and . In theory, one can achieve 𝑒 → ∞ by judiciously designing the interaction between 

the two modes using e.g., reservoir engineering [43] or parametric driving [20,44]. In practice, 

𝑒 ≳ 3 has been realized in e.g., Josephson junctions [19], optomechanical circuits [45], and 

optically levitated nanoparticles [46]. Hence, we believe 𝑒 = 2 used in this work is feasible. 



10 
 

The non-Hermitian interaction between multiple modes has been demonstrated as well [47]. 

Still, additional experimental efforts are required to further increase 𝑒  and 𝑁, so that the 

potential of the non-Hermitian cooling effect can be fully exploited. Furthermore, strong 

couplings ( ≪ 1 ) can be realized between microwave resonators [48], mechanical 

resonators [49], magnons [50,51], etc. It should be emphasized that the coupling 𝑡 here can 

be linear interactions without external pumping, such as the Zeeman interaction between 

magnons and microwave resonators. In contrast, for laser cooling the interactions between the 

principal and auxiliary modes are relatively weak (nonlinear) optical processes under external 

laser pumping, which leads to some limitations discussed before.  

The presented non-Hermitian cooling is applicable to various excitations, including 

photons [15,52], phonons [17,45,53,54], Josephson circuits [19,20], magnons [39,55], etc, 

whereby non-Hermitian interactions have been realized. Moreover, the non-Hermitian cooling 

exists whenever the wavefunction density is suppressed in certain local regions (not necessarily 

on the edge) of the non-Hermitian system. It does not require sophisticated properties such as 

exceptional points [1–5], non-trivial topology [15,25], or mixing between different quadratures 

of the electromagnetic fields [24]. As an example, we investigated the non-Hermitian Su–

Schrieffer–Heeger model, which can undergo topological phase transitions under certain 

conditions [8,18,56]. We find that non-Hermitian cooling exists and is almost identical in both 

topologically trivial and non-trivial phases.  

In summary, we proposed a non-Hermitian cooling mechanism that is fundamentally different 

from traditional refrigeration and laser cooling techniques. The non-Hermitian cooling is 

generically applicable to various physical systems and can be exponentially enhanced by the 

number of auxiliary modes. We anticipate the non-Hermitian cooling paradigm to find 

applications in various domains such as quantum information science, where cooling towards 

the ground state is desirable. 
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