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ABSTRACT: We present results of Brownian dynamics simulations of polymer brushes under steady
and oscillatory shear. The brush is sheared by a bare surface and the resulting solvent velocity and
polymer dynamics are solved self-consistently. Under steady shear the deformation of the brush proceeds
in two steps: chains tilt in the flow direction followed by a physical thinning of the brush. The brush-
effective viscosity increases upon compression to near 60% and decreases thereafter. We develop a scaling
based on the Brinkman equation to explain the unusual trends in the viscosity. Upon introducing
oscillatory shear flow in the brush, we observe large increases in the normal stress and bead density
near the upward surface. Shear-induced collisions of beads in the brush increase the osmotic pressure
and thus give rise to these normal forces. The strain amplitude determines the dynamics during oscillatory
flow, and we develop scalings for the range of strain amplitude over which the normal stress increases
occur. The simulation results for a single grafted layer are compared to the experiments performed by
Klein et al. for the shearing of two grafted layers.

1. Introduction

Polymers which are constrained by one end to a
surface will adopt different configurations than when
in free solution. At large coverages the polymers will
tend to stretch away from the surface to form a polymer
brush. Tethered polymers have been utilized exten-
sively for stabilizing both naturally occurring colloids
(such as Casein micelles in milk3) and synthetic colloids
(such as latex particles in paints4). Recent experimental
studies have shown that the rheology of the colloids can
be greatly influenced by the tethered chains through
enhanced slip at the fluid-particle interface5 or possibly
changing the suspension microstructure6 and lubrica-
tion properties7 at large shear rates.

More recently, the rheology of the polymer brushes
themselves have become of interest. Klein et al.1,2 and
Pelletier et al.8 have measured the normal and shear
forces of sheared polymer brushes in good solvents using
the surface force apparatus, SFA. Klein et al.1,2 studied
the shear of a brush-brush system while the shear
experiments of Pelletier et al.8 where performed on a
brush-mica system. Klein et al.1 demonstrated that
substantial normal force increases can be induced under
the application of oscillatory flow at large shear rates
and frequencies (i.e., in the nonlinear deformation
regime) for both compressed and uncompressed brushes.
At small shear rates and frequencies (i.e., in the linear
deformation regime) Pelletier et al.8 found that the
normal forces for a compressed brushed (compressed to
50-90% of the equilibrium thickness) do not change
from the equilibrium value. Furthermore, they found
that the storage modulus is larger than the loss modulus
(at a fixed frequency of 10 Hz) and both increase upon
compression of the brush. Pelletier et al.8 were unable
to detect any tangential (shear) forces in their experi-
ments. During slow steady shearing, Klein et al.2 found
that the normal forces did not change from their
equilibrium values and the shear stress was small
(below the detection of the apparatus) until the brushes
were compressed to 10-15% of their equilibrium thick-
ness at which point they increased rapidly.

The previous SFA experiments are complementary
and provide the following experimental overview for the
rheology of a polymer brush in a good solvent: in the
linear deformation regime a compressed polymer brush
(in either a brush-brush or brush-mica configuration)
does not change thickness and shear forces are small
(unmeasurable) for moderate compressions, shear forces
become significant (though smaller than normal forces)
when a brush-brush system is compressed beyond 10-
15% of the equilibrium thickness, oscillation of a
compressed and uncompressed polymer brush (in a
brush-brush system) in the nonlinear deformation
regime gives rise to increases in the normal forces.

Though we will only simulate good solvent conditions,
it is interesting to mention the systematic work that
has been performed by Granick and co-workers9-11 on
the linear viscoelastic response of polymer brushes in
near Θ solvent conditions using the SFA. Shear forces
are much smaller than the normal forces until the
brushes (in a brush-brush system) are compressed
(approximately 30-50% of the equilibrium thickness
depending on the chain lengths and brush density). This
is in qualitative agreement with the experiments for a
brush in a good solvent, but differs from the good solvent
case in that less compression is needed to see this
increase. Granick et al.11 also compared the rheology
of a brush-mica system to that of a brush-brush
system. The systems are similar in that shear forces
are much smaller than the normal forces; however, a
brush-mica system must be compressed substantially
more (to approximately 10% of the equilibrium thick-
ness) before a substantial rise in the shear forces is
detected. Furthermore, at compressions less than 35%
the shear elastic modulus divided by the normal pres-
sure is smaller in the brush-mica system than in the
brush-brush system. This difference is most probably
due to the interpenetration of the brushes in the brush-
brush system.11

Many studies12-16 have proposed explanations for the
normal force increases observed by Klein et al.1 Kuma-
ran12 proposed that the asymmetric pair distribution of
monomers produced by the flow is unstable to hydro-
dynamic interactions and the brush increases in thick-
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ness (up to a 33% increase). Rabin and Alexander13

considered a tangential force applied to the end of an
Alexander de Gennes step-profile brush. They calcu-
lated that the thickness of an uncompressed brush is
independent of shear rate while a compressed brush will
increase in thickness at large shear rates. Barrat14

showed that the theory of Rabin and Alexander13 can
predict brush thickening (up to a 25% increase) due to
increased excluded volume interactions as the chains
are stretched. The concept proposed by Barrat was
refined by Harden and Cates15 who calculated the
polymer deformation and velocity profile via the brush
in a self-consistent procedure. Harden and Cates15 also
predict swelling of the brush (up to a 25% increase)
during steady shear. The previous theory of Harden
and Cates was recently modified by Aubouy, Harden,
and Cates17 to include two classes of chains: one set is
exposed to the flow and the other set is shielded within
the brush. This new model predicts a larger brush
swelling (up to a 50% increase) which occurs at a
smaller shear rate than that in the original model.
Recent simulations by Doyle et al.16 demonstrated that
oscillation of a polymer brush leads to shear-induced
collisions within the brush, giving rise to shear thicken-
ing. In this paper we will extend the study of Doyle et
al.16 to provide a more comprehensive description of
polymer brush rheology and introduce scalings to de-
scribe several of the observed behaviors.

The study of hydrodynamic properties of polymer
brushes has its origins in earlier investigations of
adsorbed polymer layers (polymers which are attached
at multiple points to a surface to form trains, loops, and
tails). These studies18-20 have almost exclusively pro-
ceeded by treating the layer as a porous medium and
invoking the Brinkman equation:21

where µ is the solvent viscosity, P is the pressure, ui is
velocity, and κ is the pore size. The pore size is the
characteristic distance over which the velocity decays.
For the polymer brush κ is assumed to be a function of
the polymer density. The term µκ2ui in eq 1 accounts
for the hydrodynamic resistance of the adsorbed chains.
We note that more precise descriptions of the hydrody-
namics of adsorbed layers do exist (see, for example, the
nonlocal hydrodynamic theory of Wu and Cates22) but
have not been widely utilized due to their complexities.
Most studies18,19 have assumed the flow does not alter
the polymer concentration profile or have allowed the
concentration profile to change on the basis of a phe-
nomenological model.20 More recently, Brownian dy-
namics simulations23 of dilute tethered chains (repre-
senting the “tails” portion of the adsorbed layer) have
calculated the solvent velocity and polymer concentra-
tion profile self-consistently.

Fewer theoretical studies have been performed of
polymer brush hydrodynamics. Fredrickson and Pin-
cus24 considered a lubrication analysis of the Brinkman
equation for compressed polymer layers which was in
fair agreement with surface force experiments of Klein
et al.25 Milner26 showed that there is greater hydrody-
namic penetration into the SCF parabolic brush27,28

than the Alexander de Gennes step brush.29,30 These
two studies did not take into account the deformation
of the polymer brush due to flow. Harden and Cates15

and Aubouy, Harden, and Cates17 calculated the defor-
mation of the brush and the velocity field self-consis-
tently. Kumaran12 examined the effect of hydrodynamic
interactions of monomers in the brush when the pair
potential is asymmetric due to shear deformation. The
theories of Harden et al.,15 Aubouy et al.,17 and Kuma-
ran12 all predict shear-induced swelling of polymer
brushes.

Stochastic simulations are a powerful tool to study
nonequilibrium polymer dynamics. Simulations of poly-
mer brushes under steady shear were first performed
by Lai and Binder31 using a lattice bond fluctuation
Monte Carlo method where the flow is incorporated via
an enhanced jump rate in the flow direction. They
solved the Brinkman equation21 to determine the flow
and density profile in the brush self-consistently. They
found that the brush thickness decreased slightly (∼2%)
for the largest shear rates. Recently, Lai and Lai32

modified the algorithm of Lai and Binder to have the
blob size input into the Brinkman equation depend on
shear force and not the volume fraction of monomers.
They present scalings for the stretch of the chain in the
flow direction and report that no significant change in
the brush height was observed. Another Monte Carlo
simulation of polymer brushes was recently performed
by Miao, Guo, and Zuckerman33 using an off-lattice
algorithm and a self-consistent calculation of the flow
profile. They studied the tilting and stretching of the
chains and found favorable agreement with the theory
of Rabin and Alexander.13 The brush thickness and
bead density profile were unaffected by the shear flow
over the range of shear rates they simulated.

Molecular dynamics simulations of sheared polymer
brushes were performed by Peters and Tildesley34 which
included explicit solvent molecules. They studied an
uncompressed brush system consisting of chains of
length N ) 20 at a high surface coverage of 33%. The
radius of gyration perpendicular to the walls decreased
with increasing shear rate while the component parallel
to the walls increased. Peters and Tildesley35 recently
extended their study of the same system (N ) 20) in
which some chains were allowed to detach from the wall
to study the shear of the tethered chain with free
polymers. Shear stresses were largest at intermediate
converges which was attributed to entanglements be-
tween the brushes and free chains.

Grest has performed a series of molecular dynamics
simulations of sheared polymer brushes with a con-
tinuum solvent36 and with explicit solvent molecules
(dimers).37 Qualitatively, the results did not differ. He
studied both compressed and uncompressed brushes for
chains of length N ) 100 where N is the number of
beads in a chain. At high shear rates the brushes
stretch in the flow direction and disentangle. No brush
thickening was ever witnessed. The normal and shear
forces were in qualitative agreement with the steady
shear experiments of Klein et al.2

Recently, Neelov et al.38 have performed molecular
dynamics simulations of a single uncompressed polymer
brush subject to a tangential uniform flow field. The
brush is assumed to be freely draining. For small flow
rates they find a 3% increase in the perpendicular
components to the radius of gyration and end-to-end
distance of the chains for a dilute brush of length N )
50. At larger flow rates, areal fractions, and chain
lengths the dimensions of the brush in the direction
perpendicular to the surface decreased.

∂
2ui

∂xj∂xj
- ∂P

∂xi
- µκ

2ui ) 0 (1)
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The previous simulations, except the study of Neelov
et al.,38 found constant or decreased brush heights
during steady shearing which agrees with the theory
of Rabin and Alexander;13 however, this feature directly
disagrees with the more recent theories of Barrat,14

Kumaran,12 Harden and Cates,17 and Aubouy et al.17

Furthermore, the rheological properties of the layers
have only been addressed by a few authors16,34-37 and
demand further study.

In this paper, we present results of Brownian dynam-
ics simulations of a polymer brush under steady and
oscillatory shear. We consider the case of a surface
containing tethered chains which is sheared by a bare
surface. We develop a simulation method to calculate
the solvent velocity in the brush and the polymer
dynamics consistently. The conformation and rheology
of brushes under steady and oscillatory shear are
compared. We present scalings for the critical frequen-
cies and shear rates where shear thickening during
oscillation is witnessed. We compare our simulation
results to the experiments of Klein et al.1,2

2. Simulation Method
The simulated system consists of polymer chains tethered

to a solid flat surface which are sheared via motion of a top
solid surface. The simulation is a modification of the our single
“free” chain, Brownian dynamics algorithm described in a
previous publication.39 The brush is composed of Nc chains
containing N beads each. The polymers are modeled as bead-
rod chains, where the beads act as sources of friction and the
rods serve as constraints to hold successive beads at a constant
relative distance. Physically, the rod length scale corresponds
to a Kuhn step in a polymer molecule and is a measure of the
chain rigidity.

We employ index notation throughout our discussion and
Greek superscripts will refer to bead numbers. A stochastic
differential equation used to compute chain trajectories can
be derived by considering the relevant forces on the chain:
hydrodynamic (Fi

h,ν), Brownian (Fi
br,ν), constraint (Fi

c,ν), ex-
cluded volume (Fi

ev,ν), wall (Fi
wall,ν), and tethering (Ft

t,ν). Ne-
glecting inertia, the forces on a bead are summed and set to
zero. The solvent is treated as a continuum.

The hydrodynamic force on a bead is assumed to be linear
in the slip velocity between the bead and the solvent velocity
at the bead center. Thus,

where ú is the drag on a bead, ri
ν is the location of the center

of the bead ν, and 〈vi(ri
ν)〉 is the ensemble-averaged solvent

velocity at position ri
ν. We set ú ) 3πµa where µ is the solvent

viscosity and a is the bead diameter. We will return to a
discussion of 〈vi(ri

ν)〉 in due course.
We assume that during each time step a bead experiences

numerous collisions with the solvent molecules. These Brown-
ian forces are approximated as a δ-correlated, white noise
process.40 A discrete form for the Brownian forces during an
individual time step beginning at time t and ending at time t
+ δt is

where t* is equal to t + δt/2 which corresponds to a Stratonav-
ich interpretation of the stochastic term.40 The 2kTú term
results from satisfying the fluctuation dissipation theorem.41

The constraint forces are calculated using the method of
Lagrangian multipliers employed by Liu.42 The constraint
force on bead ν is

where Tν are the N - 1 undetermined Lagrangian multipliers,
ui

ν ) (ri
ν+1 - ri

ν)/a, and the rod length is equal to the bead
diameter. The Lagrangian constraints are chosen to satisfy
the constraint of constant rod length at the end of a time step.

We model the excluded volume force using the repulsive part
of a Lennard-Jones potential.43 The dimensionless excluded
volume force on bead ν due to bead ι takes the form

where ε is the depth of the Lennard-Jones potential well and
d′ is the collision diameter. In all of our simulations we have
set ε ) kT and the collision diameter equal to the bead
diameter, d′ ) a. The excluded volume force due to the
bounding walls is directed normal to the walls and is also
modeled as a truncated Lennard-Jones potential.

The first bead in a chain, bead 1, is located at the bottom
surface and does not change position during the course of the
simulation (i.e., the chains are permanently tethered). The
tethering constraint force, Fi

t, is derived by setting ri
1(t + δt)

) ri
1(t). This directly leads to

Note Fi
t,1 is the force exerted by the wall on the polymer. The

polymer exerts a force of equal magnitude and opposite sign
on the wall, -Fi

t,1. We do not need to include the wall-
excluded volume force, F2

wall,1, in eq 7 because bead 1 can
never move and hence never penetrate the wall.

An iterative scheme42 is used to calculate the trajectories
of the chains in our simulations. We have previously shown
that this scheme is equivalent to a midpoint algorithm.39 In
the remainder of the discussion we have made lengths
dimensionless with the bead diameter a, time with the
characteristic diffusion time of a bead úa2/kT, and stress with
kT/a3.

The simulation cell has dimensions of L1 × L2 × L3 where
L1, L2, and L3 are the lengths in the “1,2,3” directions
respectively. The bounding surfaces are parallel to the “1-3”
plane and L2 is then the gap thickness. To simulate an infinite
planar brush, we use periodic boundary conditions in the “1”
and “3” directions. Additionally, we use cell structures and
linked lists44 to greatly reduce the computational time associ-
ated with calculating the excluded volume forces. The number
of chains per simulation cell was set equal to 20, and we
simulated brushes of lengths N ) 20 and N ) 40. We
performed a few additional simulations with 40 chains to verify
that the results did not significantly change. The dimension-
less areal fraction of chains, σ, is given as σ ) (Nca2)/(L1 ×
L3).

To generate the initial chain configurations, the first bead
in each chain is randomly placed on the “1-3” tethering plane
at r2

1 ) 0.5. The tethering of the center of the bead ensures
that the edge of the bead does not intersect the bottom surface.
To generate the remaining beads in the chain, we used one of
two methods. For dilute brushes at small areal fractions, the
beads positions were specified by a self-avoiding random walk.
For larger areal fractions, the chains were initially given
straight configurations directed normal to the grafting surface.
After generating the initial chain configurations, the simula-
tion was run for an equilibrium period during which time the
solvent velocity was set to zero. Compressed equilibrated
brushes were created by first generating an equilibrated
uncompressed brush and then slowly moving the top wall to

Fi
h,ν ) -ú(dri

ν

dt
- 〈vi(ri

ν)〉) (2)

〈Fi
br,ν(t*)〉 ) 0 (3)

〈Fi
br,ν(t*)Fj

br,µ(t*)〉 )
2kTú δνµ δij

δt
(4)

Fi
c,ν ) Tνui

ν - Tν-1ui
ν-1 (5)

Fi
ev,ν ) 24ε(ri

ν - ri
ι) [2( d′

|ri
ν - ri

ι|)14
- ( d′

|ri
ν - ri

ι|)8] for

|ri
ν - ri

ι| e 21/6a (6)

Fi
t,1 ) -〈vi(ri

1)〉 - Fi
br,1 - Fi

ev,1 - T1ui
1 (7)
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the desired height. The simulation was then run for another
equilibration period. Further details of the brush generation
method can be found in ref 46.

2.1. Calculating the Solvent Velocity in the Brush.
The flow is created via the movement of the top plate with a
velocity, U. In the absence of the tethered layer a simple linear
velocity profile would result; however, due to the brush the
flow profile will drastically change. To model the flow, we
introduce the ensemble-averaged solvent velocity at position
xi, 〈ui(xi)〉. Under Stokes’s flow conditions we can write the
general equation for the averaged solvent velocity in the brush
as

In eq 8 〈P〉 is the averaged solvent pressure and 〈fi〉 is the
averaged force density exerted by the brush on the solvent. We
note the factor of 3π in eq 8 arises because the velocity is made
dimensionless with úa2/kT instead of µa3/kT. The averaged
force density 〈fi〉 is equal to 〈F(xi)Fi

h) where F(xi) is the bead
density. We calculate Fi

h using eq 2. Of course 〈fi〉 is a
functional of the solvent velocity since the dynamics are
governed by the solvent flow. This self-consistent mean-field
approach for related Brinkman problems has been shown to
be a very good approximation.45

In our simulation geometry the averaged solvent velocity
reduces to a single scalar velocity component, u1(x2) and is
equal to U at x2 ) L2, on the top plate, and u(0) ) 0. The flow
strength is characterized by the Weissenberg number, Wi,
which we define as equal to the gap average shear rate times
the relaxation time for a free chain (i.e., Wi ) Uτ1/L2. We have
shown in a previous publication39 that τ1 ) 0.0142N2. The
averaged force density 〈fi〉 has two components, 〈fi〉 and 〈f2〉,
which are only functions of x2. 〈f2〉 serves to alter the solvent
pressure and 〈fi〉 serves to alter the convective velocity field
u1(x2). Since the force densities are only functions of x2, we
also take averages over the “1-3” plane.

The force densities calculated in the Brownian dynamics
simulations contain large fluctuations and very large en-
sembles are needed to obtain smooth results, ensembles much
larger than 20 chains. In steady shear flow we can evoke the
ergodic hypothesis and average over time, in addition to
averaging over ensembles, to attain better statistics. We can
circumvent averaging of the forces in steady shear flow by
realizing that the averaged force 〈f1(x2)〉 is equal to 〈u1(x2)F-
(x2)〉 and 〈f2(x2)〉 ) 0. The force densities assumptions are a
direct consequence of the fact that the average velocity of a
bead in the “1” and “2” directions is zero. The averaged
equation of motion for the velocity then takes the familiar
Brinkman21 form for flow through a porous medium:

The corresponding pore size which determines the degree of
penetration of the solvent velocity into the brush is equal to
F-1/2. The polymer brush though is a dynamic porous medium
in that the bead density and hence pore size are complicated
functions of solvent velocity and distance from the tethered
surface. We have confirmed that 〈f1(x1)〉 ) 〈u1(x2)F(x2)〉 and 〈f2-
(x1)〉 ) 0 elsewhere.46 Other authors have invoked the Brink-
man equation in theoretical approaches15,18,20,26 and Monte-
Carlo simulations31,33 of brushes, and also in studying single
tethered chains via Brownian dynamics.23

3. Results and Discussion
3.1. Equilibrium Chain Dimensions. Before dis-

cussing the shearing of polymer brushes, we define a
measure of the equilibrium brush thickness, hext. Fol-
lowing Murat and Grest,47 hext is defined as the distance
from the tethering surface at which the bead-density

profile is equal to zero. hext corresponds to the height
at which a slight decrease in the gap size will result in
a finite normal force. Brushes in which the plate
separation is less than hext, L2 < hext, will be referred
to as compressed brushes. The numerical values for
〈hext〉 are given in Table 1 for reference.

3.2. Steady Shear. 3.2.1. Uncompressed Teth-
ered Chains. In this section we discuss the steady
shear of uncompressed tethered chains, L2/hext ) 1.13.
In the uncompressed brushes we are most interested
in the physical and hydrodynamic thickness, and the
orientation of the chains as a function of N, σ, and Wi.

We can best examine the physical thickness of the
brush by monitoring the bead density profile. In Figure
1 we have plotted the bead density profiles for N ) 20
chains at σ ) 0.125, 0.25, and 0.37 and Wi ) 0-57. The
equilibrium (Wi ) 0) density profiles become more blunt
with increasing σ. For σ ) 0.125 the density profiles
do not differ from the equilibrium profile until Wi ) 1.7.
At larger Wi the brush physically thins via a decrease
in the diffuse tail region of the profile, until at Wi ) 57
the bead density is nearly a step profile (cf. Figure la).
For larger areal fractions of σ ) 0.25 and 0.37, in Figure
l, parts b and c, respectively, physically thinning of the
brush is not observed until Wi ) 4.8. Furthermore, at
the largest Wi the brush at the smallest areal fraction
shows the most substantial change in thickness, nearly
a 50% decrease in thickness, while the most dense brush
is approximately 70% of its original thickness.

A quantitative measure of the thickness of the brush
is the hydrodynamic thickness, Lh. In Figure 2a we

1
3π

∂
2〈ui〉

∂xj ∂xj
-

∂〈P〉
∂xi

+ 〈fi(xi,t;ui)〉 ) 0 (8)

1
3π

∂
2〈u1〉

∂x2 ∂x2
- 〈F(x2)u1〉 ) 0 (9)

Figure 1. Bead number density versus distance from a
tethered surface, Y/hhext for N ) 20 for a range of Wi at areal
fractions of (a) σ ) 0.125, (b) σ ) 0.25, and (c) σ ) 0.37.

Table 1. Equation Brush Thickness

N σ hext

20 0.125 13.3
20 0.25 15.1
20 0.37 16.8
40 0.125 24.4
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show the bead density and velocity profile for one case,
N ) 20, Wi ) 0.057, and σ ) 0.125. The extrapolation
of the far-field linear region of the velocity profile to the
x-axis defines the hydrodynamic thickness of the brush.
The velocity penetrates only a small portion of the brush
and decreases rapidly inside the brush. The same far-
field velocity profile in Figure 2a can be attained by
replacing the brush with a solid surface of thickness Lh.
The hydrodynamic thickness is smaller than the physi-
cal thickness of the brush due to the penetration of the
solvent into the brush. It is clear from Figure 2a that
the velocity inside the brush does not resemble the
linear shear flow profile that would result if the brush
were absent.

In Figure 2b the hydrodynamic thickness divided by
hext versus Wi is shown. At small Wi, Lh/hext increases
with increasing σ for N ) 20. Also, for an areal fraction
of σ ) 0.125 the ratio Lh/hext increases when the chain
size is doubled from N ) 20 to N ) 40. Both these
trends are due to the decreasing tail region in the
density profile which decreases with increasing areal
fraction and chain length.48 For N ) 20 and σ ) 0.125
the hydrodynamic thickness decreases for Wi g 1.7. The
initial decrease in Lh/hext shifts to larger Wi as the areal
fraction increases or as the chain length increases. At
large Wi the hydrodynamic thickness shows a power-
law dependence on Wi and is a weaker function of Wi
for increasing σ and N.

The chains in the tethered layer are stretched and
oriented in the “1” direction by the flow. We have
calculated a measure of the chain tilt:31

where r1
cm/|ri

cm| is the “1” component of the unit vector
directed from the chain-tethering point to the chain
center of mass and 90 - θ is the angle of inclination

from the “2” axis. A smaller value of 〈θ〉 corresponds to
a larger chain tilt or inclination. In Figure 3 we show
the dependence of 〈θ〉 on Wi. The chains tilt away from
the “2” axis with increasing Wi. At a fixed Wi, the
chains at a higher areal fraction and larger N shows
smaller tilt. It is interesting to compare the decrease
in 〈θ〉 to the bead density profiles in Figure 1. The chain
tilt becomes appreciable before a change in the bead
density profiles is detected. For instance, in Figure 1a
for N ) 20 and σ ) 0.125 at Wi ) 0.57 the density profile
does not differ substantially from the equilibrium profile
while in Figure 3 〈θ〉 ) 78°. The degree of inclination
of the chains can also be observed in sample configura-
tions of the tethered chains. In Figure 4a-c we show
sample chain configurations for N ) 20 and σ ) 0.125
at varying Wi. As the Wi increases, the chains are
stretched and the layer thickness decreases. We see in
Figure 4c that, even at large flow strengths, Wi ) 57,
not all of the chains are fully stretched.

Theoretical studies differ as to their predictions of the
response of a tethered layer to increasing shear rate.
Rabin and Alexander13 predict that the height will not
change while Barrat14 predicts the height will increase
as the chains are stretched and the screening of the
excluded volume interactions decreases. Both theories
consider the balance of the osmotic, shear, and elastic
forces on the brush; however, they differ in their
derivation of the osmotic force. Rabin and Alexander13

derive an osmotic force by dividing the excluded volume
free energy by the brush height while Barrat14 takes

Figure 2. (a) Bead number density (symbols) and velocity
(solid line) versus distance from tethered interface, Y/hhext for
N ) 20, Wi ) 0.057, and σ ) 0.125. The dashed line is the
extrapolation of the far-field linear profile. The x-intercept of
the extrapolation defines the hydrodynamic thickness, Lh, of
the brush. (b) Hydrodynamic thickness versus Wi.

〈θ〉 ) 〈Arccos (r1
cm/|ri

cm|)〉 (10)

Figure 3. Chain tilt, 〈θ〉, versus Wi.

Figure 4. Sample tethered chain configurations for N ) 20
and σ ) 0.125 at (a) Wi ) 5.7, (b) Wi ) 17, and (c) Wi ) 57.
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the derivative of the free energy. We find no evidence
of brush thickening, in agreement with the theory of
Rabin and Alexander.13 Rabin and Alexander13 derive
a relationship between the chain length and inclination
〈Re

2〉/〈Re
2〉0 ) 1/[1 - 〈cos(θ)〉2] while Barrat14 predicts

〈Re
2〉/〈Re

2〉0 ) [1 + 〈cos(θ)〉2]2/3/[1 - 〈cos(θ)〉2] where Re is
the chain end-to-end distance and the subscript 0
denotes an equilibrium property. In Figure 5 we show
〈Re

2〉1/2/〈Re
2〉1/2 versus 〈cos(θ)〉 for both compressed and

uncompressed brushes. We will defer a discussion of
the compressed brush results until the following section.
The data for the uncompressed brushes lie below both
theories but follow the same trend (i.e., the chain
extension increases with increasing inclination). Com-
pared to either theory, our simulations indicate less
stretch in the chains for a given inclination. This is due
to the increased nonlinear elastic restoring force as the
chains are extended to near full extension. For this
reason, the data for larger chains with N ) 40 are closer
to the theory of the Rabin and Alexander than for N )
20. Monte Carlo31 studies and recent Brownian dynam-
ics38 simulations of freely draining brushes subject to a
uniform flow field data also fall below the theory of
Rabin and Alexander. Recent molecular dynamics
simulations37 were in agreement with the theory of
Barrat for 〈Re

2〉1/2/〈Re
2〉1/2 versus 〈cos(θ)〉, though no

brush thickening was reported.
The initial difference in the amount of layer deforma-

tion at a given Wi for varying σ and N is attributed to
the differing degrees of solvent penetration i.e., the
difference in the ratio Lh/hext. The solvent penetration
increases with decreasing σ and decreasing N (cf. Figure
2b). All the brushes have similar values of Lh/hext at
low Wi in Figure 2, except the brush with N ) 20 and
σ ) 0.125. This system (N ) 20 and σ ) 0.125) also
shows deformation at much smaller Wi than all the
other systems (cf. Figures 1-3). At large Wi, Wi . 1,
the brush thickness decreases and hence the bead
density also increases. With increasing σ there is a
greater resistance to compression, resulting in a slower
decrease in the brush thickness and Lh.

Previous simulations have examined the deformation
of an uncompressed polymer brush in shear flow.31-34,37,38

Monte Carlo simulations by Lai and Binder31 and Miao
et al.33 for weak flows covering a decade of shear rates
found no appreciable change in brush height. Lai and
Lai32 simulated larger shear rates (about 6 times the
largest shear rate in Lai and Binder’s simulations) and
found no appreciable change in the brush thickness.
Molecular dynamics simulations by Grest37 showed a
decrease in the perpendicular component of the radius

of gyration at the largest shear rates to a value of
approximately 65% the equilibrium value for a system
with N ) 100 and σ ) 0.03. Molecular dynamics of
smaller chains (N ) 20) at large surface coverages (σ )
0.33) by Peters and Tildesley34 showed a decrease in the
perpendicular component of the radius of gyration upon
shear to approximately 70-80% the equilibrium value.
The brush height decreased slightly at the largest shear
rates in both the work of Grest37 and of Peters and
Tildesley.34 More recently, molecular dynamics simula-
tions by Neelov et al.38 of a freely draining brush (with
N ) 51 and 101) showed shear thinning of the brush
thickness of up to 50%. In the simulations presented
in this paper a brush decreases in thickness at large
Wi to between 50 and 75% the equilibrium height. All
the previously mentioned simulations agree that the
largest deformation of the brush occurs in the shear
direction, and when layer thinning is observed, it occurs
at very large Wi. The varying degrees of brush thinning
(or lack of) observed in the different simulations is
primarily due to the different range of shear rates and
chain lengths studied. In the current study we simu-
lated small chains and very large Wi (covering 3 decades
in magnitude) which are both reasons for the substan-
tial brush thinning observed. We note that our limited
data for larger chains of N ) 40 in Figure 2b show less
shear thinning than a brush with N ) 20 at the same
surface coverage.

3.2.2. Compressed Tethered Chains. In this
section we discuss the steady shear of compressed
brushes where L2/hext < 1. We have limited our studies
to one areal fraction, σ ) 0.125, and chain lengths of N
) 20. Unless otherwise stated, all results will be
presented for these parameters with varying Wi and gap
thickness, L2/hext.

In Figure 6 we show bead density profiles for brushes
compressed to L2/hext ) 0.6 and L2/hext ) 0.3. At small
Wi the density profile for L2/hext ) 0.6 looks similar to
the profiles in Figure 1 for the uncompressed brushes
at σ ) 0.25-0.37. The density profile for L2/hext ) 0.3
has distinct peaks associated with ordering of the

Figure 5. Comparison of chain stretch and inclination to the
predictions of Rabin and Alexander13 and Barrat14.

Figure 6. Bead number density versus distance from a
tethered surface, Y/hhext for N ) 20 and σ ) 0.125 at
compressions of (a) L2/hext ) 0.6 and (b) L2/hext ) 0.3.
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compressed chains. The mean volume fraction of the
chains in the compressed brush at L2/hext ) 0.3 is equal
to 0.33, well-below the close-packed limit for a system
of spheres.41 Furthermore, the peaks are asymmetric
and larger near the tethered surface, as would be
expected since the density profiles in the uncompressed
brushes indicate some ordering near the tethering
surface (cf. Figure 1). The density profiles for both
brushes in Figure 6 change very little for Wi e 1.7. At
Wi ) 17 the brush at L2/hext ) 0.6 decreases in thickness
and there is a diffuse tail region in the density profile.
We recall that, for the uncompressed brushes, shear flow
tended to decrease the tail region in the density profile.
At Wi ) 17, the density profile for the brush at L2/hext
) 0.3 changes very little near the walls, while the peaks
that existed at lower Wi in the center of the gap
diminished as shown in Figure 6b. The shear flow thus
tends to decrease the ordering which was present in the
center of the gap at smaller Wi.

To quantitatively measure the brush deformation, we
show the dependence of 〈θ〉 on Wi in Figure 7 for an
uncompressed brush and compressed brushes at gap
widths of L2/hext ) 0.3 and 0.6. The compressed brushes
have a larger inclination at a given Wi than the
uncompressed brush. For Wi < 0.3, the most com-
pressed brush, L2/hext ) 0.3, shows more deformation
than the brush at L2/hext ) 0.6. For 0.3 < Wi < 1 the
trend changes, and finally for Wi < 1 the magnitude of
〈θ〉 is slightly smaller for L2/hext ) 0.3 than for L2/hext )
0.6. The compressed brushes do not show an ap-
preciable decrease in thickness until Wi > 10 and the
decrease is larger as L2/hext increases. The decrease in
layer thickness is due to the finite length of the chains.
At equilibrium, the chains in a compressed brush adopt
more compact configurations than those in an uncom-
pressed brush. The sum of the chain extensions in the
“1” and “2” directions are constrained by the chain
length. The compressed brush has less extension in the
“2” direction and thus can be stretched to a greater
extent in the “1” direction before the finite chain length
becomes a factor.

In Figure 5 we compared the ratio of 〈Re
2〉l/2/〈Re

2〉1/2

versus 〈cos(θ)〉 for the compressed brushes to the un-
compressed brushes and the theories of Rabin and
Alexander and Barrat. For small 〈cos(θ)〉 the data for
the compressed brushes lie between the Rabin and
Alexander13 and Barrat14 theories and above the un-
compressed results. At larger 〈cos(θ)〉 the compressed
brush data line lies below both theories. The better
agreement between the compressed brush data and the
theories verses the uncompressed brush data can be
attributed to the fact that the compressed layers can

be deformed more (tilted and stretched) before the finite
extensibility of the chains becomes important.

3.2.3. Effective Viscosity and Normal Pressure.
We define an effective viscosity, µeff, for the layer as the
shear stress on either the tethering surface or top
moving surface divided by the gap average shear rate,
U/L2. In the absence of the tethered polymer layer the
effective viscosity is equal to the solvent viscosity. In
our model the plates are homogeneous (i.e., they do not
include the atomic structure of the surface), and hence
a polymer can only transmit a shear stress to a tethering
plate via the tethering force. Any additional shear
stress on the surfaces is due to the solvent and is
therefore proportional to the local shear rate at the
surface. Note the polymer indirectly contributes to the
solvent shear stress since the bead-density profile and
the velocity profile are solved self-consistently. We also
calculate the normal force on both the top and bottom
plate due to the polymer chains. A normal stress (or
normal pressure) is defined as the average normal force
on the surface divided by the area of the surface. The
total force exerted by the fluid on the brush is transmit-
ted through the chains to the tethering surface, and this
results in equal stresses at the top and bottom surface,46

as would be expected.
In Figure 8 we show the normal stress versus L2/hext

for N ) 20, σ ) 0.125, and Wi ) 0.057-57. At Wi )
0.057 the normal stress was found to be equal to the
equilibrium normal stress for all L2/hext. The equilib-
rium normal stress increases with decreasing L2/hext due
to the osmotic compressibility of the brush.30,49-51 For
L2/hext g 0.3, the normal stress at a fixed gap width L2/
hext decreases with increasing Wi. For L2/hext ) 0.23
the normal stress did not change over the range of Wi
simulated. Furthermore, as the gap width increases,
the initial decrease of the normal stress occurs at a
smaller Wi. The polymer transmits a normal stress to
the walls through the excluded volume forces. A finite
normal stress only results if the chains tethered to the
bottom surface come into contact with the top surface.
In section 3.2.2. we demonstrated that the physical
thickness of the tethered layers decreases with increas-
ing Wi and that the decrease at a given Wi is larger
with increasing L2/hext. The same trend in the physical
thickness of the brushes presented in section 3.2.2. is
observed in the normal stress in Figure 8. We find no
evidence of normal stress increasing with Wi.

In Figure 9 we show the effective viscosity, made
dimensionless with the solvent viscosity, versus L2/hext
for N ) 20, σ ) 0.125, and Wi ) 0.057-57. At a given
gap width, the viscosity does not change with increasing

Figure 7. Chain tilt, 〈θ〉, versus Wi. Figure 8. Normal stress versus L2/hext for N ) 20, σ ) 0.125,
and various values of Wi.
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Wi for Wi < 1.7 and this corresponds to the zero shear
brush viscosity. The zero shear brush viscosity first
increases with decreasing gap width until the brush is
compressed to 60% of the original uncompressed brush
thickness and attains a maximum value of nearly 7. At
smaller gap widths the zero shear viscosity decreases
slowly with decreasing gap width. As the Wi is in-
creased at a given gap width, the brush viscosity
decreases. For the two smallest gap widths simulated,
L ) 0.23 and 0.3, the effective viscosity changes very
little with increasing Wi.

The trends in the effective viscosity can be understood
by revisiting the Brinkman equation:

The shear rate on the top plate can be estimated by
dividing the velocity on the top plate, U, by the
characteristic distance over which the velocity decays,
or the pore size, κ. The pore size in the brush is equal
to F(x2)-1/2. The effective viscosity then scales as (U/κ)/
(U/L2) or equivalently L2/κ. First, we consider the
compressed layers at L2/hext < 0.6. If we approximate
the compressed layer as a step function of constant
density F, then F ∼ σ/L2 and the effective viscosity
∼(L2σ)1/2. In Figure 10a we show a semilog plot of the
zero shear effective viscosity divided by σ1/2 versus L2/
hext for N ) 20 at σ ) 0.125 and 0.25. The data are in
agreement with the power law scaling of µeff ∼ (L2/hext)1/2

and collapses onto a single curve for L2/hext < 0.5,
confirming the scaling µeff ∼ (L2σ)1/2 for small gaps. This
scaling will fail when the brush is compressed to a
length scale comparable to the persistence length of the
chain. For uncompressed brushes, (L2/hext) > 1, the
characteristic distance over which the velocity decays
is the L2 - Lh and the effective viscosity scales as µeff ∼
L2/(L2 - Lh). In Figure 10b we have graphed µeff versus
L2/hext and compared the simulations to L2/(L2 - Lh).
We find very good agreement L2/hext g 1.

In the experiments of Klein et al.2 the top plate
velocity was held constant as the gap width decreased,
resulting in an increasing gap Wi as the gap decreased.
In Figure 11a we show results for a simulation in which
the top plate velocity was held constant at a value of U
) 0.15. This plate velocity corresponds to a Wi ) 0.057
at L2/hext ) 1.13. The shear stress now increases with
decreasing gap width and scales as (L2/hext)-1/2 for small
gaps (shown as the dashed line in Figure 11a). The

shear rates simulated in Figure 11a are in the linear
viscoelastic regime, and thus the shear stress curves for
smaller velocities (U < 0.15) will only differ quantita-
tively by a multiplicative factor, but not qualitatively.
The experiments of Klein et al.2 are shown in Figure

Figure 9. Effective brush viscosity versus L2/hext for N ) 20,
σ ) 0.125, and various values of Wi.

1
3π

∂
2〈v1〉

∂x2 ∂x2
- 〈F(x2)v1(x2)〉 ) 0 (11)

Figure 10. (a) Semilog plot of the zero shear brush viscosity
divided by σ1/2 versus L2/hext. The solid line shows the expected
power law (L2/hext)1/2 for small compressions. (b) Semilog plot
of the zero shear brush viscosity versus L2/hext. The lines are
equal to L2/(L2 - Lh).

Figure 11. (a) Shear and normal stress versus L2/hext for N
) 20, σ ) 0.125, and a constant plate velocity equal to U )
0.15. The inset shows the lubrication factor (shear stress
divided by normal stress) versus L2/hext. (b) Experimental
results of Klein et al.2 for the shear of mica surfaces bearing
polystyrene brushes with molecular weights of 2.6 × 104, 1.4
× 105, and 3.75 × 105. The experimental stresses are normal-
ized with hextR/s3 where R is the radii of curvature of the mica
sheets in the SFA, s is the mean spacing between chain
anchoring points, and hext is the brush height.
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11b. In contrast to the experiments, we are able to
measure shear stresses for all gap widths; however, this
difference is merely due to the inherently different
resolution in the simulation and experiment. A more
important trend is that the shear forces in both the
experiments and simulations are much smaller than the
normal forces. The inset of Figure 11a shows the
lubrication factor (ratio of the shear-to-normal stress)
versus gap thickness for the same range of parameters
shown in Figure 11a. Upon compression a polymer
brush is a good lubricant as it supports a large normal
load while producing a small shear stress. Further-
more, our scaling theory also predicts a sharp rise in
the shear stresses for strongly compressed brushes in
qualitative agreement with the experimental data of
Klein et al.2 We note that although we were unable to
attain simulation data for L2/hext < 0.2, the data for L2/
hext < 0.5 do scale as (L2/hext)-1/2 which lends support
for our scaling theory.

Recent molecular dynamics simulations by Grest36,37

show similar trends for the shear stresses (i.e., increas-
ing upon brush compression and having a magnitude
smaller than the normal forces). An important point
raised by Grest36,37 is that while the normal forces in a
plate/plate system (simulation geometry) and a crossed
cylinder system (SFA geometry) are directly related, the
relationship for the shear forces is unclear.

3.3. Oscillatory Shear. 3.3.1. Velocity Calcula-
tion. In the oscillatory shear simulations we now
impose a velocity at the top plate, v1(x1 ) L2) ) U cos-
(ωt). The gap-averaged Weissenberg is defined as Wi
) U/L2τ1. Both the frequency, ω, and time, t, have been
made dimensionless with τ1. Since the velocity of the
top plate is time varying, it follows that the force density
in the brush will now also be a function of time.

Though it is straightforward to solve the Brinkman
equation, eq 8, at every time step, we cannot simulate
large enough ensembles to get accurate force densities.
A conservative estimate46 of the ensemble size necessary
to attain accurate time and spatial resolution of the
force densities is 1000 chains which corresponds to
approximately a 1/3 year of CPU time.

Due to these computational limitations, we will as-
sume that the force density, 〈f1(x2)〉, is zero throughout
the brush, giving a simple shear velocity profile. This
is a poor approximation for small frequencies, as ω f 0
we approach the limit of steady shear, but we are most
interested in the chain dynamics at high frequencies
and large Wi, corresponding to the conditions in the
experiments of Klein et al.1 As a check of the previous
approximation, we have calculated the average of the
quantity f1(x2,t) v1(x2,t)/|v1(x2,t)| where we have averaged
over both time and ensembles. f1(x2,t) v1(x2,t)/|v1(x2,t)|
is the projection of the force density f1(x2,t) in the
direction opposing the flow and is thus a measure of
the average hydrodynamic resistance of the layer. In
fact, we shall refer to the averaged value of f1(x2,t) v1-
(x2,t)/|v1(x2,t)| as the hydrodynamic resistance of the
layer. We note that, due to the symmetry of the flow,
the time average of f1(x2,t) alone is always zero. In
Figure 12 we show the hydrodynamic resistance versus
distance from the tethered layer for a compressed brush,
L2/hext ) 0.38, at Wi ) 570. At ω ) 10, the resistance
is quite large and decreases substantially at the higher
frequencies, ω ) 100 and 200. The displacement of the
brush during the oscillatory cycle is proportional to the
strain amplitude which we define as A ) Wi/ω. At large

Wi the beads in a chain move with the local fluid velocity
until they are they are constrained by the tethering
point. Keeping the strain amplitude small (relative to
the chain length) ensures that the chain never “feels”
its tethering constraint and the beads move affinely
with the fluid, resulting in a small hydrodynamic
resistance in the layer. When A is small and Wi large,
the brush behaves much like a free suspension of
spheres. We will show shortly that the interesting
brush dynamics are governed by the strain amplitude
and dramatic increases in the normal stress occur in a
regime in which the chains are not constrained by their
tether. This is the regime in which our assumption of
〈f1(x2)〉 ) 0 is most valid. Note that in all of the
oscillatory shear simulations presented in this section
we have thus made the assumption that 〈f1(x2)〉 ) 0. The
velocity profile is then given by v1(x2, t) ) x2Wi cos(ωt).
The normal stresses are positive definite over the entire
oscillatory cycle. We present values for the normal
stresses and bead density profiles which are time- and
ensemble-averaged. The time averaging is taken over
the full duration of the simulation and hence encom-
passes many oscillatory cycles.

3.3.2. Compressed Tethered Chains. We focus
first on the normal stresses for compressed layers. In
Figure 13 we show the normal stress (divided by the
equilibrium value) versus 1/A ) ω/Wi for a compressed
brush at L2/hext ) 0.38 with N ) 20, σ ) 0.125, and Wi
) 5.7-570. For all Wi there is a critical frequency

Figure 12. Averaged force density, f1v1/|v1|, versus distance
from a tethered surface for L2/hext ) 0.38, Wi ) 570, and ω )
10, 100, and 200. Averages have been taken over time and
ensembles as described in the text.

Figure 13. Normal stress divided by the equilibrium normal
stress versus frequency divided by Wi for a compressed brush
at L2/hext ) 0.38 and an areal fraction σ ) 0.125, N ) 20, and
Wi ) 5.7, 57.170, and 570. The inset shows normal stress
divided by the equilibrium normal stress versus frequency.
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where the normal stress increases and the maximum
in the normal stress occurs at approximately the same
value of ω/Wi (ω/Wi ) 0.3-0.4 or A ) 2.5-3) for all Wi.
The increase in the normal stress can be as large as 3
times the equilibrium value for Wi ) 570. The critical
frequency and the stress at the critical frequency
increases with increasing Wi.

In Figure 14 we show the normal stress versus ω/Wi
for Wi ) 570 and several gap widths. For all gap widths
in Figure 14 there is a critical frequency where the
normal stress increases. As the gap width decreases,
the critical frequency decreases and the range of fre-
quencies, where the normal stress exceeds the equilib-
rium value, increases.

The increase in the normal stress is due to the
increased collisions beads with their neighbors as they
are sheared past each other. The collisions increase the
osmotic pressure in the brush which swells the com-
pressed brush and leads to an increase in the normal
stress. This is analogous to “shear-induced diffusion”
in the theory of free suspensions,52,53 where the collision
process increases the fluctuating kinetic energy in a
suspension and can cause particles in a suspension to
diffuse from regions of high concentration to low.52,53

In Figure 15 we show bead density profiles versus
distance from the tethered surface for brushes com-
pressed to L2/hext ) 0.6 and L2/hext ) 0.3. The frequen-
cies in Figure 15a,b correspond to the frequencies at
which the largest increase in normal stress occurred in
Figure 14. For both brushes we see a distinctive
increase in the bead density profile near the upward
surface. The growth in the peak near the upward plate
results from the swelling of the brush.

We turn now to a discussion of the trends in the
normal stresses observed with increasing Wi in Figure
13 and increasing gap width in Figure 14. The normal
stresses decrease toward zero at small frequencies
because the flow approaches steady shear, leading to a
decrease in the normal stress as a result of a physical
thinning of the brush. The layer thinning occurs when
a chain is stretched to near full extension. If we assume
that the chain ends are at the upward surface, as shown
in the schematic in Figure 16, then simple geometric
arguments show that this occurs for a displacement δx
) (N2 - L2

2)1/2. If we assume that the chain end moves
affinely with the top plate velocity and traverses from
+δx to -δx during half a cycle (i.e., returning to its
initial starting point after a full oscillatory cycle), then

δx ) L2 Wi/ω. From geometric arguments then

(cf. Figure 16). This is the critical ratio at which the
chain will begin to feel its tether point and is the lower
limit of ω/Wi where an increase in the normal stress
will occur. For the parameters in Figure 13 (N ) 20, σ
) 0.125, and L2/hext ) 0.38) eq 12 predicts that the stress
will increase at ω/Wi ) 0.26 in agreement with the
simulation data. In Figure 16b we show a sample
tethered chain configuration under conditions where the
largest increase in normal stress was observed in Figure
13: Wi ) 570 and ω ) 189 (ω/Wi ) 0.33) at a
compression L2/hext ) 0.38. The configuration shown
in Figure 13 is representative of the maximum chain
stretch during a cycle. We see that the chains are
stretched to near full extension as expected from the
previous arguments. Equation 12 also predicts that the
increase in the stress will occur at a lower ratio of ω/Wi

Figure 14. Normal stress divided by the equilibrium normal
stress versus frequency divided by Wi for compressed brushes
at L2/hext ) 0.23 - 0.9 and Wi ) 570, σ ) 0.125, and N ) 20.

Figure 15. Bead density versus distance from a tethered
surface Y/hext for brushes compressed to (a) L2/hext ) 0.6 and
(b) L2/hext ) 0.3.

Figure 16. (a) Schematic of a stretched polymer chain under
shear flow. (b) Sample configuration of the tethered chains at
L2/hext ) 0.38, Wi ) 570, ω ) 189, N ) 20, and σ ) 0.125.

ω/Wi ) [(N/L2)
2 - 1]-1/2 (12)
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as the gap width increases in accord with the trends
observed in Figure 14. In Figure 17 we show the normal
stress data from Figure 14 versus (ω/Wi)[(N/L2)2 - 1]1/2.
The simple scaling presented in eq 17 collapses the data
very well such that the maximum stress occurs at
approximately a value of (ω/Wi)[(N/L2)2 - 1]1/2 ) 1. We
note that for a brush-brush system we replace N by
2N and L2 by 2L2 in the previous scalings and recover
again eq 12.

In the limit of (ω/Wi) f ∞ the chains do not move
during the oscillation and the normal stresses in Figures
13 and 14 approach the equilibrium value. We now
calculate the highest frequency at which collisions will
occur. We consider two beads which are separated in
the “2” direction by a distance δy′ and in the “1” direction
by a distance δx′ (cf. Figure 16a). Since the flow is
linear, the relative velocity of the beads will be equal
to Wi δy′. The maximum relative displacement of the
beads in the flow direction during half a oscillatory cycle
is δx′ ) δy′2Wi/ω. If we assume that the beads are
isotropically distributed, then δx′ ) δy′ and it follows
that ω/Wi ) 2. Thus, the upper limit where an increase
in the normal stress will occur, ω/Wi ) 2, is independent
of gap width in agreement with the data in Figure 14.

In summary, the critical parameter in determining
whether increases in the normal forces occur during
oscillation at large Wi is the strain amplitude. The
smallest amplitude at which increases occur is when the
brush is oscillated on the order of the Kuhn length
where beads first begin to collide during an oscillatory
cycle. The largest amplitude at which thickening occurs
is dictated by the finite extensibility of the polymer
chains. The magnitude of the largest amplitude is on
the order of the chain contour length. Thus, there is a
range of strain amplitudes over which normal force
thickening is observed. Lastly, the proposed mechanism
for the increased normal forces is the enhancement of
bead collisions in an oscillatory flow.

Klein et al.1 measured normal force increases during
oscillatory shear of a brush-brush system using the
SFA. Normal force increases were observed for both
compressed and uncompressed brushes. In our simula-
tions we found that the critical parameter governing the
brush thickening at large Wi for compressed brushes
was the strain amplitude, Wi/ω or A. In the experi-
ments of Klein et al.1 the strain amplitude is in the
range 5-12.6 (or ω/Wi ) 0.08-0.2). We note that our
calculation of the strain amplitude for the system of
Klein et al. does not require the use of a relaxation time
τ1 since Wi/ω is equal to the dimensional shear rate

divided by the dimensional frequency. A crude lower
bound for τ1 can be constructed by comparing to the
experiments of Pelletier et al.8 for a similar brush
system54 which suggested that τ1 > 0.01 s. Using τ1 )
0.01 s for the Klein et al.1 system gives Wi ) 50-100.
We stress that the exact value of the Wi is not necessary
to compare to our simulations and scalings; it need be
merely O(1) or larger. If we assume a chain contour
length of 140 nm for the chains in the Klein et al.
experiments, our scalings predict normal force increases
for strain amplitudes in the range 0.5 e A e 2. There
are several reasons why our predicted bound for the
largest amplitude is in conflict with the experiments.
Foremost is that the oscillatory simulations have very
crude hydrodynamics, and the neglect of screening in
the brush is a poor assumption at large amplitudes
where the chains begin to feel their tether and transmit
large stresses to the fluid. Secondly, the scaling bound
for the largest amplitude at which thickening occurs (eq
12) is also an approximation for the simulation data
which can be seen in Figure 14. Further SFA experi-
ments which systematically vary the strain amplitude
at large Wi would provide a more stringent test of our
proposed mechanisms for normal force thickening in
oscillatory flow.

3.3.3. Uncompressed Tethered Chains. The shear-
induced collision process described for the compressed
chains should produce brush thickening in brushes
which are not compressed by the upper surface. How-
ever, in Figure 14 we see that the range of frequencies,
at which a normal stress increase is predicted, will
decrease with increasing gap width (in agreement with
the scalings presented in the previous section). In
Figure 18 we compare the bead density profile of an
uncompressed brush at equilibrium and under oscilla-
tion at ω ) 1140, Wi ) 570 (ω/Wi ) 2) and σ ) 0.125.
Under oscillation we observe an increase in the mean
thickness of the brush, but the diffuse tail region
changes very little. We have observed the same trend
for brushes at higher areal fractions.46 We found that
at higher frequencies the density profile monotonically
approaches the equilibrium profile. At lower frequen-
cies the brush thickness decreases. The data in Figure
18 that represent the largest thickening witnessed are
very modest.

In the experiments of Klein et al.1 they observed
increases in the normal force for uncompressed brushes,
suggesting a swelling by nearly 25%. The polystyrene
chains in the experiments contain approximately 140
Kuhn steps1,46 which is larger than the systems we can
currently simulate, and so we speculate on the expected

Figure 17. Normal stress divided by the equilibrium normal
stress versus rescaled frequency, (ω/Wi)[(N/L2)2 - 1]1/2 for N
) 20, σ ) 0.125, and Wi ) 570.

Figure 18. Bead density versus distance from a tethered
surface for oscillated uncompressed brushes.
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simulation trends for larger N. Very few collisions occur
in the diffuse tail region of the density profile. As N
increases, the tail region decreases (relative to the total
profile height55), and this should give rise to more
collisions. Furthermore, the longer chains could be
oscillated at lower frequencies before a chain’s finite
extensibility comes into play. Further simulations are
required to confirm these speculations.

4. Summary

We have presented simulation and scaling results for
a single polymer brush under steady and oscillatory
shear. Under steady shear the deformation of the brush
proceeded in two steps: chains tilt in the flow direction
followed by a physical thinning of the brush and a
blunting of the density profiles. Brushes at smaller
areal fractions deform at a smaller value of Wi due to
the increased penetration of the velocity into the brush.
Many of these trends had been witnessed in previous
simulations,16,31-38 but in addition we derived scalings
for brush rheology observed in the simulations and
compared steady to oscillatory shear. As in previous
simulations,16,31-37 we found no brush thickening under
steady shearing which contrasts with many theoretical
studies.12,14,15,17 We developed a scaling to explain the
initial increase in the viscosity upon compression to near
60% and decrease occurring thereafter. The viscosity
is determined by the characteristic shear rate which is
the ratio of the top plate velocity, U, divided by the
characteristic distance over which the velocity decays,
namely the fluid region above an uncompressed brush
and the pore size in a compressed brush. Compressed
brushes sheared at small Wi had smaller shear than
normal forces, and we developed a scaling which shows
an abrupt increase in the shear stress at small gaps.
These trends were in qualitative agreement with the
experimental results of Klein et al.2 which were per-
formed on a brush-brush system under steady shear.
Our simulations were performed for a single brush
compressed by a smooth wall, and thus the effects of
interbrush entanglements were not captured. Our
trends for the shear and normal stresses of a com-
pressed brush under steady shear were in qualitative
agreement with recent molecular dynamics simulations
by Grest36,37 for a brush-brush system.

We next turned to the dynamics of oscillation to
explain the dramatic normal force increases reported
by Klein et al.1 during oscillatory shear flow of both
compressed and uncompressed polymer brushes. Large
increases in the normal stress and bead density near
the upward surface occurred during oscillatory shearing
of compressed brushes at large Wi and frequencies, ω.
Shear-induced collisions of beads in the brush were
identified as the cause of an increased osmotic pressure
in the brush with concomitant swelling. The maximum
increase occurs at a critical ratio of ω to Wi, and thus
strain amplitude, A ) Wi/ω, determined the dynamics
during oscillatory flow. Scalings were determined for
the range of A over which the simulated normal stresses
increased. At large A (small ω/Wi) the onset of the
normal stress increases were limited by the chain
extensibility. The low A limit of normal stress increases
was dictated by the onset of collisions in a system of
beads. The range of strain amplitudes (5-12.6) where
increased normal stresses were observed by Klein at al.1
for compressed brushes was larger than the range
predicted from our scaling theory for their system (0.5-

2.). We neglected the stress transmitted by the chains
to the fluid in our calculations (because of computational
resource limits); this is a poor approximation at large
amplitudes. The shear-induced collision mechanism did
lead to a thickening of uncompressed brushes, but only
in the mean thickness and not the tail region. We
speculate that larger chains (which have a smaller tail
region in the density profile and are not near full
extension at equilibrium in the brush) must be simu-
lated to observe thickening throughout the full extent
of an uncompressed brush. Thus, we were unable to
reproduce the dramatic normal force increases observed
by Klein et al.1 for uncompressed brushes under oscil-
lation.

A general shortcoming of the present simulations is
the required computational time which limited us to
studies of small chains and to implement crude hydro-
dynamics in our oscillatory simulations. Nevertheless,
we were able to provide a fundamental physical under-
standing of why the dynamics of a polymer brush is
drastically different in steady and oscillatory shear flow.
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