Safety Issues for High Temperature Gas Reactors

Andrew C. Kadak Professor of the Practice

Major Questions That Need Good Technical Answers

- Fuel Performance
 - Normal operational performance
 - Transient performance
 - Ejected Rod (maximum energy insertion capability)
 - Reactivity insertions (seismic, water)
 - Accident Performance
 - Weak fuel issues
 - Mechanistic source term for high burn-up fuel
 - Fuel fabrication quality assurance

- Risk Dominant Accident Sequences
 - Establish risk informed design to identify risk dominant accident sequences to be analyzed.
 - Use either IAEA¹ or NRC² risk informed approach to establish safety requirements of plant.
 - Use of safety goal as a design guide
 - Application of risk informed "Defense in Depth"
 - Scope of risk analysis may be easier due to inherent robustness of basic design.
 - 1. "Development of Technology Neutral Safety Requirements for Innovative Reactors", IAEA TECDOC Draft Dec. 2004
 - "Regulatory Structure for New Plant Licensing, Part 1: Technology Neutral Framework, Dec. 2004, Draft, US NRC.

* Severe challenge to the Fission Products Confinement Function

LEVELS OF DEFENCE IN DEPTH (From INSAG-10)

Levels of defence	Objective	Essential means	Acceptable failures of the Level of Defence
Level 1	Prevention of deviations from normal operation and failures	Conservative design and high quality in construction and operation	(events/year)
Level 2	Control of deviations from normal operation and detection of failures	Control, limiting and protection systems and other surveillance features	< 10 ⁻²
Level 3	Control of accident conditions within the design basis	Engineered safety features and accident procedures	10 ⁻² - 10 ⁻⁶
Level 4	Control of severe plant conditions	Complementary measures and accident management	10 ⁻⁶ - 10 ⁻⁷
Level 5	Mitigation of radiological consequences of significant releases of radioactive materials	Off-site emergency response	< 10 ⁻⁷

- Expected Significant Accident Sequences
 - Air Ingress
 - Water Ingress (reactivity insertion)
 - Seismic Events (reactivity insertion)
 - Loss of Load
 - Rod Ejection (more significant in block reactors)
 - Failure of reactor cavity cooling system
 - Recuperator By-pass events (overcooling)
 - Graphite dust, plate-out, lift off
 - Impact of Terrorism
 - Identification of "cliff edge" effects

Knowledge Required

- Improved understanding of core behavior
- Improved understanding of heat transfer in core and vessel
 pebble and block bypass flows
- Materials behavior at high temperature in helium (plus contaminants) including radiation effects and chemical attack on graphite
- Blow down loads and timing of accident event sequences.
- Behavior of fuel, fission product release behavior in reactor building and structures under accident conditions.
- Development and validation of computer codes used in the analysis
- Validation of passive performance of safety systems natural circulation heat conduction and convection.

Issues

- Fuel Temperature limits (1600 C ?)
- Regulatory Credit for Basic Design Strengths
- Need new risk informed licensing process to allow credit for innovative systems.

Containment

- Based on design and accident analysis of source term and sequences - a containment of radioactive materials strategy is developed to assure that safety goals are met.
 - Full pressure containment
 - Confinement low pressure not pressure tight
 - Dynamic containment/confinement (time dependent)
 - Performance is quite different than water reactors.

Classification of Safety "Systems"

- Ideally safety system classification should be done on importance to safety function in a risk informed manner.
- Some "systems" are not components but parameters in analysis for passive performance (ex. emissivity of reactor vessel).

Expectations

- Water Ingress generally understood and can be limited by amount of water ingress some German experience at AVR
- Seismic reactivity simulations can assess reactivity impact.
- Rod ejection more significant for block reactors but fuel energy limits like for LWRs can be established for rod worths.
- Testing on heat transfer and flow can be verified by South African tests and Chinese pebble bed reactor including reactor cavity cooling systems.
- Fuel behavior data to be provided by past German and focused South African and US testing programs

Challenges

- Verification of high temperature material behavior (fuel, graphite, metals, carbides)
- Validation of analysis tools
- Air ingress
 - Most visible concern among the public
 - Most significant in terms of potential offsite consequences
 - Can not be eliminated by "design"

Air Ingress Status

- Most "eliminate" connecting "vessel" failure as too low a probability event (10⁻⁸).
- Break sizes limited to largest connecting "pipe".
- Two breaks (top and bottom) considered unlikely but are analyzed (chimney effect)
- Graphite corrosion behavior not well modeled in existing codes.
- CFD analysis and confirmatory experiments needed.

Air Ingress Tests

- Japanese series on prismatic configuration
 - Diffusion
 - Natural Circulation
 - Corrosion (multi-component)
- German NACOK tests pebble bed
 - Natural circulation
 - Corrosion
- MIT CFD (Fluent Methodology Development)

Experimental Apparatus - Japanese

Figure 16: Apparatus for Isothermal and Non-Isothermal experiments

Figure 17: Structured mesh

Isothermal Experiment

Figure 18: Mole fraction of N₂ for the isothermal experiment

Thermal Experiment

- Pure Helium in top pipe,
 pure Nitrogen in the
 bottom tank
- N₂ Mole fractions are monitored in 8 points
- Hot leg heated
- Diffusion Coefficients as a function of temperature

Figure 19: The contour of the temperature bound4ary condition

Thermal Experiment

Thermal Experiment (Cont.)

Figure 23: The vibration after the opening of the valves.

Multi-Component Experiment

- Graphite Inserted
- Multiple gases: O₂,
 CO, CO₂, N₂, He,
 H₂O
- Mole fraction at 3 points are measured
- Much higher calculation requirements
- Diffusion Coefficients

Figure 34: Apparatus for multi-Component experiment of JAERI

Multi-Component Experiment(Cont.)

Figure 36: Mole Fraction at Point-1 (80% Diffusion Coff.)

Multi-Component Experiment(Cont.)

Figure 37: Mole Fraction at Point-3

Multi-Component

Figure 38: Mole Fraction at Point-4

NACOK Natural Convection Experiments

Figure 39: NACOK Experiment

Boundary Conditions

Figure 41: Temperature Profile for one experiment

Figure 42: Mass Flow Rates for the NACOK Experiment

Future NACOK Tests

- Blind Benchmark using MIT methodology to reproduce recent tests.
- Update models
- Expectation to have a validated model to be used with system codes such as RELAP and INL Melcor.

Air Ingress Mitigation

- Air ingress mitigation strategies need to be developed
 - Realistic understanding of failures and repairs
 - Must be integrated with "containment" strategy to limit air ingress
 - Short and long term solution needed

Overall Safety Performance Demonstration and Validation

- China's HTR-10 provides an excellent test bed for validation of fundamentals of reactor performance and safety.
- Japan's HTTR provides a similar platform for block reactors.
- Germany's NACOK facility vital for understanding of air ingress events for both types.
- PBMR's Helium Test Facility, Heat Transfer Test Facility, Fuel Irradiation Tests, PCU Test Model.
- Needed open sharing of important technical details to allow for validation and common understanding.

Chinese HTR-10 Safety Demonstration

- Loss of flow test
 - Shut off circulator
 - Restrict Control Rods from Shutting down reactor
 - Isolate Steam Generator no direct core heat removal only but vessel conduction to reactor cavity

Video of Similar Test

Loss of Cooling Test

Loss of Cooling Test

Summary

- Safety advantages of High Temperature Reactors are a significant advantage.
- Air ingress most challenging to address
- Fuel performance needs to be demonstrated in operational, transient and accident conditions.
- Validation of analysis codes is important
- Materials issues may limit maximum operating temperatures and lifetimes of some components.
- International cooperation is essential on key safety issues.