Automated Negotiation from Declarative
Contract Descriptions®

Daniel M. Reeves Michael P. Wellman
Benjamin N. Grosof

University of Michigan Artificial Intelligence Laboratory
1101 Beal Av, Ann Arbor, MI 48109-2110 USA
{dreeves, wellman }@umich.edu
http://ai.eecs.umich.edu/people/{dreeves,wellman}/

MIT Sloan School of Management
50 Memorial Dr, Room E53-317
Cambridge, MA 02142 USA
http://www.mit.edu/ "bgrosof/
bgrosof@mit.edu

2002 April 24

Abstract

Our approach for automating the negotiation of business contracts
proceeds in three broad steps. First, determine the structure of the nego-
tiation process by applying general knowledge about auctions and domain-
specific knowledge about the contract subject along with preferences from
potential buyers and sellers. Second, translate the determined negotiation
structure into an operational specification for an auction platform. Third,
after the negotiation has completed, map the negotiation results to a final
contract. We have implemented a prototype which supports these steps
by employing a declarative specification (in Courteous Logic Programs)
of (1) high-level knowledge about alternative negotiation structures, (2)
general-case rules about auction parameters, (3) rules to map the auction
parameters to a specific auction platform, and (4) special-case rules for
subject domains. We demonstrate the flexibility of this approach by au-
tomatically generating several alternative negotiation structures for the
domain of travel shopping in a trading agent competition.

*Revised and extended version of a paper appearing in the Fifth International Conference
on Autonomous Agents (Agents-01), pages 51-58, May 2001.

1 Introduction

One form of commerce that can benefit substantially from automation is con-
tracting, where agents form binding, agreeable terms, and then execute these
terms. The overall contracting process comprises several stages, including broad-

ly:
1. Discovery. Agents find potential contracting partners.

2. Negotiation. Contract terms are determined through a communication
process.

3. FExecution. Transactions and other contract provisions are executed.

In this work we are concerned with bridging these three stages, and pri-
marily with the process by which an automated negotiation mechanism can be
configured to support a particular contracting episode. We begin by presenting
a shared language with which agents can define the scope and content of a ne-
gotiation, and reach a common understanding of the negotiation rules and the
contract implications of negotiation actions. Note that we are concerned here
with the definition of negotiation mechanisms and not the negotiation strategies
employed by participating agents, though in designing a mechanism one must
consider the private evaluation and decision making performed by each of the
negotiating parties.

Our prototype system for automated contracting is called ContractBot.! By
starting from a formal description of a partial contract—describing the space
of possible negotiation outcomes—ContractBot automatically generates config-
uration parameters for a negotiation mediator (auction) platform. Then, by
monitoring the individual auction results, it generates a final, executable con-
tract.

Section 2 gives an overview of our approach to automated contracting.
Section 3 provides background on auction-based negotiation. We introduce
our represention (and, in part, implementation) language—Courteous Logic
Programs—in Section 4. Section 2.3 frames the overall process of automated
contract negotiation and shows how rules generated during the negotiation pro-
cess can be combined with the partial contract to form an executable final
contract. In Section 5, we discuss in detail how the language is used to infer
parameters for configuring the negotiation—that is, parameters for a set of auc-
tions. We focus on a Trading Agent Competition [22] as an example domain
(Sections 6 and 7). Finally, in Section 8, we discuss details of our prototype,
including a brief discussion of other uses for automatic auction generation.

IThe source code, rulesets, and the examples described in this paper are available at
http://ai.eecs.umich.edu/people/dreeves/contractbot/.

2 ContractBot Framework

The central question in configuring a contract negotiation is, “What is to be
negotiated?” In any contracting context, some features of the potential contract
must be regarded as fixed, with others to be determined through the contract-
ing process. At one extreme, the contract is fully specified, except for a single
issue, such as price. In that case, the negotiation can be implemented using
simple auction mechanisms of the sort one sees for specified goods on the Inter-
net. The other extreme, where nothing is fixed, is too ill-structured to consider
automating in the current state of the art.

Most contracting contexts lie in between, where an identifiable set of issues
is to be determined through negotiation. Naturally, there is a tradeoff between
flexibility in considering issues negotiable and complexity of the negotiation
process. But regardless of how this tradeoff is resolved, we require a means
to specify these issues so that we can automatically configure the negotiation
mechanisms that will resolve them. That is, we require a contracting language.

Our approach uses a form of logic-based knowledge representation to rep-
resent contracts and extends this language to express and reason about partial
contracts. The partial contract, or contract template, describes possible nego-
tiable parameters and how they are interrelated, along with meta-level rules
about the negotiation and about individual auctions. It combines all this with
rules from agents about their constraints and preferences over the possible nego-
tiation structures. From implications of the rules, it generates the appropriate
auctions and determines the auction parameters. Transactions in the auctions
generate additional rules, which produce results for the final contract. As part of
this new framework, our approach allows for reuse of the information in multiple
stages of the contracting process.

2.1 Contracting Language

That our language must support all three stages of contracting (discovery, ne-
gotiation, and execution) is one argument for adopting a declarative approach.
“Declarative” here means that the semantics say which conclusions are entailed
by a given set of premises, without dependence on procedural or control aspects
of inference algorithms. In addition to flexibility, such an approach promotes
standardization, human understandability, and information reuse.

Traditionally, contracts are specified in legally enforceable natural language
(“legalese”), as in a typical mortgage agreement. At the other extreme are auto-
mated languages for restricted domains (e.g., Electronic Data Interchange). In
the latter, most of the meaning is implicit in the automated representation. We
are in the sparsely occupied middle ground, aiming for considerable expressive
power but also considerable automatability.

We represent contracts as sets of business rules, expressed as Courteous
Logic Programs (CLPs) [11, 12]. The rules must specify the goods and services
to be provided, along with applicable terms and conditions. Such terms include
customer service agreements, delivery schedules, conditions for returns, usage

restrictions, and other issues relevant to the good or service provided.

2.2 Background Knowledge

ContractBot configures auctions based on rules about the contract and about
the negotiation, as well as general background knowledge about auction con-
figuration itself. This background knowledge (described in detail in Section 5)
includes rules defining;:

1. The process of generating suites of auctions for negotiation of multiple
parameters, and for aggregating agent preferences about which auctions
to generate.

2. Behavioral elements of individual auctions [24], and relationships among
these elements.

3. Means of specifying these behaviors for a particular auction platform.

To configure a set of auctions for a particular domain, we incorporate addi-
tional rules from the contract template and from potential buyers and sellers.
These rules, combined with the background knowledge about auction configu-
ration, are used to infer the actual auction parameters for a suite of auctions
that will implement the chosen negotiation structure.

2.3 Configuring Negotiation Mechanisms

A natural endpoint for the discovery phase of contracting is a specification of a
partial contract, or contract template. This captures the discovered contracting
opportunity, recognizing that further details must be negotiated to determine
whether an actual contract will result. For our purposes, a contract template
must express the space of possible negotiation outcomes, and any additional
guidance that might influence the structure of subsequent negotiation.

Our language uses Courteous Logic Programs for representing all of these
aspects of the contract template, as well as the final contract. As shown in
Figure 1, the contract template comprises rules that will implement the final
agreement (the “proto-contract”), along with rules describing the contract issues
to be negotiated (the “negotiation-level rules”).

The proto-contract refers to baseline facts and conditions regarding mechan-
ics of the deal (e.g., payment and delivery) and ancillary agreements such as
return policies or provisions for failure of one party. It is the part of the con-
tract that carries over unchanged into the final contract. The proto-contract
combines with facts to be determined through negotiation to constitute an ex-
ecutable ruleset implementing the agreement.

The negotiation-level rules address both questions of what is to be negoti-
ated, and how. Rules describing ways that the contract issues may be partitioned
into separable components define the space of possible goods to be negotiated at
auction. Rules referring to policies for negotiating individual components define
the auction behaviors for the corresponding goods.

Contract Template Executable Contract

Rules Rules
Implementing Implementing
Agreement Agreement
("proto-contract") ("proto-contract")
Transaction
Negotiation-level | |,| Negotiation | || Facts (buyer,
Rules Mechanism seller, price, qty,
other attributes)

Figure 1: Overall contracting process, partial to complete contract.

This distinction between deal-level and negotiation-level rules need not be
sharp, however. In fact, an important advantage of a rule-based representa-
tion language is the ability to apply rules for multiple purposes. Rules in the
proto-contract that implement some aspect of the final deal may also be used
in determining an appropriate negotiation mechanism. For example, time con-
straints on delivery may dictate auction final clearing times.

Based on inference from the overall contract template and (optionally) rules
submitted by agents, ContractBot configures a set of auctions constituting a
negotiation mechanism customized for this contracting episode. This step effec-
tively bridges the discovery and negotiation phases of contracting.

After ContractBot configures and initiates the negotiation mechanism, it
monitors the constituent auctions, waiting for transactions. Each transaction
generates a fact specifying which aspect of the contract the transaction pertains
to, who the buyer and seller were, and the price and quantity. The proto-
contract contains rules that make use of such transaction facts once they are
filled in. For example, the proto-contract would typically include a rule dictating
that the amount paid by agent X to agent Y is the sum of the prices in all
transactions in which X bought from Y minus the sum of transactions in which
Y bought from X.

Finally, after the set of auctions are configured and run and the negotiation
phase is complete, we can automatically enter the execution phase by generating
the final contract as a function of the proto-contract and the auction results.
The actual execution of final contracts represented in CLP is the subject of
previous work [12].

3 Auction-Based Negotiation

Mechanisms for determining price and other terms of an exchange are called
auctions. Although the most familiar auction types resolve only price, it is
possible to define multidimensional generalizations that resolve multiple issues
at once. This can range from a simple approach of running independent one-
dimensional auctions, to more complicated approaches that directly manage
higher-order interactions among the parameters.

Auctions have proved a popular medium for Internet commerce.? Although
typical consumer-oriented online auctions support simple negotiation services,
business-to-business dynamic trade applications have begun to exhibit advanced
capabilities previously found in research systems. For example, some commer-
cial auction platforms support the configurability characteristic of the Michigan
Internet AuctionBot [23], and several integrate auctions with other commerce
facilities.?

Although multidimensional mechanisms are more complicated, and not yet
widely available, we expect that they will eventually provide an important
medium for automated negotiation. In particular, combinatorial auctions allow
bidders to express offers for combinations of goods, and determine an allocation
that attempts to maximize overall surplus. Combinatorial auctions have lately
received much attention from academic researchers [3, 8, 16, 19], and we are
aware of several efforts to deploy them commercially.

Multiattribute auctions allow specification of offers referring to multiple at-
tributes of a single good [5]. They have historically been employed in govern-
ment procurement [6], but are becoming more common in commercial auction
settings (though in current practice, the multiattribute tradeoffs are often han-
dled manually).

Whether a multiattribute auction, a combinatorial auction, or an array of
one- or zero-dimensional auctions? is appropriate depends on several factors.
Although a full discussion is beyond the scope of this paper, we observe that
these factors can bear on any of:

e The coherence of auction configurations. For example, if some attributes
are inseparable (say, size and color of a good), then it makes no sense to
treat them as separate goods in a combinatorial auction.

e The expected performance of auction configurations. For example, if pa-
rameters represent distinct and separable contract options, then they could
be handled either by separate or combined auctions. If the options are

2As of this writing, eBay alone has 6.9 million concurrently running auctions in 21 cate-
gories.

3Prominent examples include the auction facilities in IBM’s Websphere Commerce
Suite [13, 18], and Ariba’s auction products. The Ariba system adopts a design-for-
configurability approach similar to AuctionBot’s, and so we are confident that the methods
developed here could be applied there as well.

4 A zero-dimensional auction is one that determines only price. A one-dimensional auction
determines price and quantity.

considered by negotiating agents to be substitutable, then separate auc-
tions will likely work well [14]. If they are complementary, then combining
them may prove advantageous.

e The complezity of auction configurations, for both the mechanism infras-
tructure and participating agents.

In Sections 5.1 and 6 we give examples of the support that the current
ContractBot provides for reasoning about the above criteria and choosing among
alternative negotiation mechanisms.

4 Courteous Logic Programs

As noted above, we represent contracts and partial contracts as Courteous Logic
Programs [12]. CLPs extend ordinary LPs [4] with the capability to conveniently
express the relative priority of rules, and thus which will prevail in case of con-
flicts. For example, some rules may be overridden by other rules that are special-
case exceptions, more-recent updates, or from higher-authority sources. CLPs
facilitate specifying sets of rules by merging and updating and accumulation,
in a style closer (than ordinary LPs) to natural language descriptions. Priori-
ties are represented via a fact comparing rule labels: overrides(rulel,rule2)
means that rulel has higher priority than rule2. If rulel and rule2 conflict,
then rulel will win.

Example: Modification Lead-Time

The English description of a business-to-consumer draft contract communicated
from an airline (seller) to a traveler (buyer) might include a contract clause that
comprises the following two business rules. Described in English, the first rule
is:

Buyer can modify the departure time up until 14 days before
scheduled departure, if
- the buyer is a preferred customer.

The second rule is:

Buyer can modify the departure time of an item up until 2 days
before scheduled departure, if

- the modification is to postpone the departure, and

- the current flight is full.

The second rule has higher priority than the first, the rationale being that when
the current flight is full the airline has demand for extra seats.
These rules are straightforwardly represented in Courteous LPs, e.g., as:

<leadTimeRulel>
modificationNotice(7Buyer, 7Seller, 7Flight, 14days) <-
preferredCustomer0f (?Buyer, 7Seller).

<leadTimeRule2>

modificationNotice(?Buyer, ?Seller, ?Flight, 2days) <-
modificationType(?Flight, postpone) AND
flightIsFull(?Flight).

overrides(leadTimeRule2, leadTimeRulel).

Here the arrow (“<-”) indicates “if” and the “?” prefix indicates a logical
variable.

Courteous LPs have several virtues semantically and computationally. A
Courteous LP is guaranteed to have a consistent, as well as unique, set of con-
clusions. Priorities and merging behave intuitively. Execution (“inferencing”)
of courteous LPs is fast: only relatively low computational overhead is imposed
by the conflict handling.

Our work on representing contracts via Courteous LPs builds on prior work
at IBM representing business rules [12]. The implementation we are using is a
Java library called CommonRules available from IBM [1].

5 Auction Knowledge Base

In addition to instance-specific rules from the contract template, our configura-
tion process employs three sets of rules encoding background knowledge about
the space of possible negotiation mechanisms.

5.1 Auction Configuration

The Auction-Configuration ruleset defines the process of collecting all possible
attribute combinations for negotiable components, and generating auctions for
each point in this space. The specification is limited to ways of configuring
arrays of single-dimensional auctions, as our target auction platform currently
does not support multidimensional negotiation in individual auctions. With re-
spect to specification itself, handling the possibility of multidimensional auctions
introduces no conceptual difficulties.

Auction-Configuration works by generating valueTuple facts for every com-
bination of attribute values, noting which component each belongs to. For ex-
ample, if delivery is a negotiable component of the contract, and delivery can
have times of normal or rush (and no other features), then we would derive
valueTuple(delivery, [normall]) and valueTuple(delivery, [rush]). The
configuration ruleset then creates an auction for each of the value tuples, and
the parameters for those auctions inherit from the parameters for the parent
component.

In addition to determining the set of auctions for a particular component,
Auction-Configuration helps determine how to partition the negotiation into
components. For example, as part of the inference for determining priorities for
each of several possible components we compute a “user interest score” which

is the total number of users interested in the component, or zero if there is not
at least one buyer and one seller:

<m> userInterestScore(?Component, 7N) <-
numBuyers (7Component, ?NB) AND
numSellers(7Component, 7NS) AND
?N is 7NB + ?NS.
<high> userInterestScore(?Component, 0) <-
numSellers(7Component, 0).
<high> userInterestScore(?Component, 0) <-
numBuyers (?Component, 0).

Also included in Auction-Configuration are rules governing the priorities of
other rules. It is from these priority rules that we know, for example that the
rule labels in the excerpt above have priority such that setting a score to zero
when there are no buyers or sellers overrides setting the score to the sum of the
number of buyers and number of sellers (the rule label “m” refers to medium
or default priority which is less than “high”—this is implemented using the
overrides predicate discussed in Section 4). Conflict resolution in CLPs is
discussed in detail in previous work [11, 12].

5.2 Auction Space

The Awuction-Space ruleset provides basic knowledge about the parameteriza-
tion of the space of possible auction mechanisms, as well as default settings
for auction parameters and constraints among them. The parameterization is
motivated by that employed by the AuctionBot [23] and some extensions and
generalizations within that framework [24]. Default settings for parameters are
labelled as lowest priority rules so that parameters inferred based on specific
aspects of a negotiation will take precedence. For example, the following rules
specify that by default, generated auctions will have multiple buyers and one
seller, and that ties for winning bids will be broken by first-in/first-out.

<lowest> auction(multipleBuyers, true).
<lowest> auction(multipleSellers, false).
<lowest> auction(tiebreaking, fifo).

We also specify conditional default parameter settings. For example, if we
know that an auction has a single buyer then, by default, it should have multiple
sellers. (Note that conditional default settings have higher priority than other
default settings.)

<verylow> auction(?ID, multipleSellers, true) <-
auction(?ID, multipleBuyers, false).

Constraints are similar to conditional default settings except that they have
overriding priority. For example, if there is a bidding rule that says one must
beat the current quote, then this implies that the bid must meet the quote (i.e.,
a greater-than rule implies a greater-than-or-equal rule).

<highest> auction(?ID, meetQuote, true) <-
auction(?ID, beatQuote, true).

The negotiationType predicate is used in a contract to aggregate auction
parameters and specify how to negotiate particular components. Auction-Space
maps such directives to more specific auction features. Note that negotiation-
Types can entail other negotiationTypes but that the inference must propa-
gate conclusions to auction predicates eventually. For example, negotiation-
Type (continuous) implies, among other things, negotiationType (continu-
ousClears) which in turn implies auction(quoteMode,bid).

One particularly useful feature of Auction-Space is that it encodes several
well-known auction types. For example, specifying a negotiation type of “CDA”
is all that is necessary to infer all the characteristics of a Continuous Double
Auction [9]—chronological matching, continuous quotes (bid-ask) and clears,
double-sided, and discrete goods.

<m> auction(?ID, matchingFunction, earliestTime)
AND negotiationType(7ID, continuous)
AND negotiationType(7ID, double)
AND auction(?ID, divisible, false)
AND auction(?ID, quoteMode, bidAndAsk)
<- negotiationType(?ID, cda).

The conflict resolution that CLP provides is also useful here. For example,
it allows specifying that an “Amazon-style” auction is just like “eBay-style”
except that Amazon auctions do not close until ten minutes of inactivity have

5
passed.

<ebay> auction(?7ID, matchingFunction, mthPrice) AND
auction(?ID, multipleBuyers, true) AND
auction(?ID, multipleSellers, false) AND
negotiationType(?7ID, revealAll) AND

auction(?7ID, finalClearMode, fixed)
<- negotiationType(7ID, ebay).

negotiationType(7ID, ebay) <-
negotiationType(?7ID, amazon) .

<amazon> auction(?ID, finalClearMode, inactivity)
AND auction(?ID, finalClearInactivityInterval, 600)
<- negotiationType(7ID, amazon) .

overrides(amazon, ebay). /* Amazon rule is an
exception */

5Incidentally, this difference turns out to have a marked effect on agent strategies [17].

10

Standard
English
Ascending

.

eBay

:

Amazon
Auctions

Figure 2: An example of an inheritance hierarchy encoded in the Auction-Space
ruleset.

In our implementation we include additional rules for the case of the standard
English auction as a more general type, and include eBay as a special case. The
result is a three-level hierarchy, shown in Figure 2.

5.3 Auction Server Mapping

Based on functional auction parameters concluded from Auction-Space, we need
to produce a specification sufficient for generating auctions on a particular tar-
get auction server. AuctionBot-Mapping comprises rules for deriving Auction-
Bot specifications from the generalized and extended parameterization provided
by Auction-Space. Separating the server-specific ruleset allows for great flex-
ibility in inferring negotiation mechanisms, allows us to cope elegantly with
shortcomings in the AuctionBot parameterization, and facilitates connection of
ContractBot to alternative auction platforms.

5.4 Domain-specific Rules: Widget Example

Consider a simple contract involving only one component (a widget) with only
one attribute (quality) with two possible values (regular and deluxe).

component (widget) .
attribute(widget, quality).
possValue(quality, regular).
possValue(quality, deluxe).

The possible values are not tied to the widget component because in general
they might apply to more than one component in the contract. The following
general rule creates possValue/3 rules for each component based on the general
possValue/2 rules and the components that have been declared:

11

possValue(7Component, quality, 7Q) <-
component (?Component) AND possValue(quality, ?7Q).

Negotiating for a widget means determining multiple attributes (price, quan-
tity, and quality). Since the current AuctionBot supports only single-dimension-
al auctions (negotiating price and quantity), a configuration feasible for that
platform would have to comprise an array of single-dimensional auctions, one
for each point in attribute-value space. This places the burden on agents to co-
ordinate their bidding in auctions for related goods. For example, if they would
value either a regular or a deluxe widget and place bids for both, they assume
the risk of being stuck with redundant items. In a simultaneous ascending de-
sign, this situation of exclusive (extremely substitutable) goods is manageable
through straightforward bidding [14].

The following rule enumerates all the points in attribute-value space for all
components.® In this simple example, only two points will be enumerated, one
for each possible value of the single attribute of the single component, a widget:

valueTuple(7Component, [?Quality]) <-
possValue(7Component, quality, ?7Quality).

Note that “[?Quality]” represents a list with a single element (a variable
representing a value for the “quality” attribute). The above rule creates a
valueTuple/2 fact for every possible way to assign values to the attributes of
a component.

Next, we provide general information about the negotiation of widgets.
These facts are used by Auction-Space to generate the full set of auction param-
eters for widget auctions. (In this case, most of the parameters will use default
settings.)

negotiationType(widget, continuous).
negotiationType(widget, double).
negotiationType(widget, revealAll).

At this point, we have inferred the auction parameters for widgets and we
have enumerated the valueTuples for the auctions we need to create. We now
combine those steps to explicitly create the auctions and have each of them
inherit its parameters from those derived for widgets in general.

For every valueTuple, we infer a makeAuction/1 fact which takes a list
(thought of as an ID) and tells our prototype to create an actual auction. We
also infer a parent/2 fact for every valueTuple.” This tells us the component
that each auction belongs to.

6The rules for enumerating points in attribute-value space are generalized and included in
the background knowledge encoded in Auction-Configuration. This specific rule is presented
for illustration and would not actually be necessary in specifying a contract template with
ContractBot.

"Inferring the set of auctions from the valueTuples, as well as inheritance of parameters
from parent components, is done automatically in the Auction-Configuration ruleset. So the
remaining rules also would be unnecessary in a contract template with our implementation.

12

makeAuction([?Component, ?Values]) AND
parent ([?7Component ,?Values], ?Component)
<- valueTuple(?7Component, ?Values).

Finally, we specify the auction parameters for each created auction—simply
the parameters that we derived in general for the component that the auction
belongs to (its parent).

auction(?ID, 7Attr, ?Val) <-
parent (?ID, ?Component) AND
auction(?Component, 7Attr, 7Val).

When the inference concludes, there will be two auctions created, both for
widgets, one for regular and one for deluxe. For each auction, 27 distinct auction
parameters will be inferred via Auction-Space and AuctionBot-Mapping. Note
that since these auctions derived from the same parent component (widget),
their parameter values are identical.

Template:
[[component, [attr,value], ...], auction_param, value]

[[widget, [quality,regular]], description, "no description"]
[widget, [quality,regular]], finalclearinterval, 60]
[widget, [quality,regular]], finalclearmode, 6]

[widget, [quality,regular]], numsellers, 2]

[widget, [quality,regular]], quotemode, 1]

[widget, [quality,regular]], tiebreaking, 0]

[widget, [quality,regular]], type, 1]

[widget, [quality,regular]], url, "no_url"]

[widget, [quality,deluxe]], url, "no_url"]
[widget, [quality,deluxe]], goodunits, 1]
[widget, [quality,deluxe]], intclearmode, 1]
[widget, [quality,deluxe]], numbuyers, 2]
[widget, [quality,deluxel]], quoteincrement, 0]
[widget, [quality,deluxe]], quotepolicy, 3]

6 The TAC Domain

In July 2000 at the International Conference on Multiagent Systems, the Uni-
versity of Michigan hosted a trading agent competition (TAC), in which soft-

13

ware agents developed by participating teams competed in a challenging mar-
ket game [22].8 In TAC, agents aim to assemble travel packages for designated
clients, buying and selling travel resources through various types of auctions
implemented by the Michigan Internet AuctionBot. TAC features three basic
travel goods: flights (defined by day and destination—inbound or outbound),
hotels (defined by day and quality), and entertainment tickets (defined by day
and type of event). Each type of good is mediated by a different kind of auc-
tion. Flights sell at randomly fluctuating prices, dictated by a fixed-price seller.
Hotels are sold in a variant of an ascending English auction. Agents buy and
sell entertainment tickets in a continuous double auction, much like trading
securities in a stock exchange.

The TAC example contract template included with ContractBot is a ruleset
that generates the partitioning (among a space of possible partitionings) of a
travel package contract into the goods described above. It also generates, from a
high-level description in the contract template, the auction configurations used
in the competition. In Section 7 we demonstrate how alternative structures for
the negotiation can be derived, based on rules plausibly contributed by parties
interested in the negotiation.

6.1 Proto-Contract about Payments and Utilities

The first thing the TAC contract template specifies is a proto-contract. As de-
scribed in Section 2.3, the proto-contract is the subset of the contract template
that, when combined with the rules coming out of the negotiation mechanism,
forms the final, executable contract. A typical rule for a proto-contract (see
Section 2.3) that we have included in the TAC example is inferring the total
amount that a given agent owes another agent after the negotiation, by aggre-
gating transaction facts from completed auctions:

transact(7Agentl, 7Agent2, 7Component, 7AVList,
?Pay12, 7Qty).

pay(?Agentl, 7Agent2, 7Amt) <-
setof (7Payl12, transact(7Agentl, 7Agent2,
?Component, 7AVList,
7Pay12, 7Qty),
7Pay12List) AND
setof (7Pay21, transact(7Agent2, 7Agentl,
?Component, 7AVList,
?Pay21, ?7Qty),
?Pay21List) AND
sum(7Pay12List, 7Pay12Total) AND

8 A second TAC was held in 2001 at the ACM Conference on Electronic Commerce [21]. The
discussion below corresponds to the TAC-00 setup. There were some minor rule changes in
2001, but only incremental changes would be required for capturing TAC-01 in a ContractBot
specification.

14

sum(?7Pay21List, 7Pay21Total) AND
is(?Amt, 7Payl2Total - 7Pay21Total).

More specific to TAC, we include rules in the proto-contract to infer the
utility that a travel agent receives from its transactions, according to the defi-
nition of the TAC game.? As in the payment example, this is a straightforward
computation as a function of the transaction facts.

Following is a part of the utility calculation specifying that a client’s utility
is a function of whether it was able to procure a trip, its deviation from its
ideal travel dates, and its bonuses for staying in the nice hotel and seeing the
entertainment it wanted:

<high> clientUtility(?Client, 0) <-
feasibleTrip(7Client, false).
<m> clientUtility(?Client, ?U) <-
feasibleTrip(?7Client, true) AND
travelPenalty(?Client, ?TP) AND
hotelBonus(?Client, 7HB) AND
funBonus(7Client, 7FB) AND
?U is 1000 - 100 * ?TP + 7HB + ?7FB.

Note that although the complete ruleset for utility calculation is not given,
all of the above predicates can be inferred from transaction facts generated by
ContractBot as it monitors the auction results. The TAC example contract
template then includes rules to infer a travel agent’s utility in the competition
by summing the utilities of its clients and subtracting its expenses.

utility(?TravelAgent, 7U) <-
setof (7Client, client0f(?Client, 7TravelAgent),
?ClientList) AND
map(clientUtility, ?ClientLlist,
?ClientUtilities) AND
sum(?ClientUtilities, 7Revenue) AND
expenses (7TravelAgent, 7Expenses) AND
is(?U, 7Revenue - 7Expenses).

6.2 Possible Components and Attributes

The first thing the TAC contract template specifies after the proto-contract is
the possible values for the attributes of the goods. For example, the following
facts set the possible types of entertainment events:

possValue(entertainment, type, baseball).
possValue(entertainment, type, symphony) .
possValue(entertainment, type, theatre).

9 A utility calculation would probably not make sense in a proto-contract in the real world,
but in the TAC game, the utility is used externally to evaluate agents’ performance.

15

‘ flight Hhotel H entertnmt ‘ round-trip | | hotel cao Travel pkg
il o I ﬂ.lght block éu W _;l'_‘ '
& 28 9% . EcZ
E= E= 3 & & B BoE g E £

X w & =

N - - E

R =

@ ®) ©

Figure 3: Some alternative ways to structure the TAC negotiation: (a) the
actual TAC configuration, (b) bundling round-trip flights and blocks of hotel
rooms, and (c) bundling everything into a comprehensive travel package.

After specifying the domains for the attributes, there are several sections of
rules corresponding to possible components of the TAC domain. These give the
attributes of each of the components, as well as specify negotiation-level rules.
For example, the following rules specify that flights have two attributes—type
(inbound or outbound) and day.

attribute(flight, type).
attribute(flight, day).
possValue(flight, day, ?7Val) <-
possValue(day, ?Val).

Note that the possible values for flight types were enumerated in separate
rules. The possible values for flight days are inferred from the globally defined
day values, declared with possValue/2 predicates (similar to quality values for
widgets in Section 5.4).

Another possible component is the bundle of two flights into a round-trip.

attribute(roundflight, dayin).

attribute(roundflight, dayout).

<m> auction(roundflight, ?Param, ?7Val) <-
auction(flight, ?Param, 7Val).

Two attributes for roundf1light components are specified, and they inherit
their domains from the globally defined domain for possible days. The individual
auction parameters for round-trip flights are inherited from those inferred for
one-way flights.

Figure 3 illustrates some of the possible components specified in the TAC
contract template and the next section shows how ContractBot chooses between
these alternative configurations.

16

7 Alternative Negotiation Structures: TAC Ex-
ample

One of the most interesting features of ContractBot is its ability to reason about
alternative negotiation structures by stating relationships between the possible
components and incorporating rules from participating agents.

The example TAC Contract Template includes buyer, seller, and auctioneer
rules consistent with the basic TAC scenario. To illustrate the flexibility of Con-
tractBot, we specify buyer and seller preferences for auction structures beyond
those actually available in TAC. For instance, there are travel agents interested
in buying any of the atomic components, and who would also be interested in
buying various bundles, such as round trip flights and blocks of hotel rooms.
The travel agents are also interested in selling entertainment tickets as well as
buying them. The only other sellers are the airline, who is willing to sell only
one-way flights, and the hotels, who will sell rooms either individually or in
blocks. The auctioneer prefers fewer auctions and more users. It makes this
explicit by specifying a perAuctionCost and a perUserCredit. ContractBot
will choose a consistent set of components that minimizes

#users * perUserCredit — #auctions x perAuctionCost.

Although the hotel seller is willing to sell either blocks of hotels or indi-
vidual nights, having a high perAuctionCost leads to the structure shown
in Figure 3 (a). This is because the hotelblock component has more at-
tributes (firstnight and lastnight) than hotel (which has only one “night”
attribute), resulting in more auctions and therefore a higher cost. Section 5.1
discusses some of the component scoring rules that drive this inference. As de-
scribed in the widget example (Section 5.4), the Auction-Configuration ruleset
will infer multiple auctions for each good type, or component. In the TAC ex-
ample, assuming four days, there will be 4 %2 = 8 flight auctions—one for every
combination of day and type (inbound or outbound)—and similarly for hotels
which have two types (good or bad). Entertainment tickets have three types
(baseball, symphony, or theatre) and so 4 x 3 = 12 auctions are created.

Following is a sampling of the auctions that are created to support the
negotiation structure in the actual TAC game.

[flight, [day,mon], [type,in]]
[flight, [day,mon], [type,out]]
[flight, [day,tue], [type,in]]
[flight, [day,tue], [type,out]]
[hotel, [day,mon], [type,bad]]
[hotel, [day,mon], [type,good]]
[hotel, [day,tuel, [type,bad]]
[hotel, [day,tuel, [type,good]]
[entertainment, [day,mon], [type,baseball]]
[entertainment, [day,mon], [type, symphony]]

17

[entertainment, [day,mon], [type,theatre]]
[entertainment, [day,tue], [type,baseball]]
[entertainment, [day,tue], [type, symphony]]
[entertainment, [day,tue], [type,theatrel]

Note that the buyer/seller rules include several travelers who are interested
in buying complete travel packages (see Figure 3 (c)). This structure is not
inferred, however, because there are no agents willing to sell travel packages (as
well as the prohibitive perAuctionCost). By adding rules such as

seller (hypotheticalSeller,travelpackage) .
perAuctionCost(0) .

ContractBot will instead infer a single component with six attributes—arrive
(1-4), depart (2-5), hoteltype (good or bad), entlday, ent2day, ent3day (1-4 or
none)—and would require 392 auctions. 10

Without a perAuctionCost, the following rules are the minimal set neces-
sary to choose a bundling of flights into round trips, hotel rooms into contiguous
blocks, and entertainment into packages of three events.

buyer (travelerl, roundflight).
buyer (traveler2, hotelblock).
buyer (travelerl, entpackage).
seller(airlinel, roundflight).
seller (hotell, hotelblock).
seller(agent3, entpackage).

These rules will (trivially) infer the structure shown in Figure 3 (b). Vari-
ous other partitionings of the contract into bundles can be inferred similarly by
adding or removing potential buyers and sellers for the various possible com-
ponents and adjusting the cost of additional auctions and credit for additional
buyers and sellers.

8 Prototype Implementation

Figure 4 depicts the overall process of turning a contract template along with
rules from agents into a final contract, and then an executed deal. At the
heart of this process are the three sets of background knowledge discussed in
Section 5—Auction-Configuration, Auction-Space, and AuctionBot-Mapping.
ContractBot.clp wraps these rulebases together along with miscellaneous utili-
ties (util.clp) and Prolog (XSB) [2] queries that drive the inference.

The inference engine itself is actually written as a series of Perl scripts that
flow a set of input rules and the background knowledge through CLP and Pro-
log. The main ContractBot executable accepts arbitrary CLP rules (generally

10T,ess than the product of the domain sizes since infeasible packages—e.g., departure before
arrival—are not inferred.

18

contractBot.clp

auction-config.clp auction-space.clp auctionbot.clp util.clp XSB queries

::> Buyer/seller l st of auctons [reate-auctions |

preferences \ CLP/XSE with parameters
Contract Template / inference AuctionBot
+ possible / engi_ne list of auctiong L
|

components and
attributes

* negotiation-level |-

L auction-watcher
rules
* Proto-contract l transaction facts }47
b

- 4 CLP/XSB '
final contract | ——»| inference deal!
engine

Figure 4: How ContractBot uses its auction knowledge to turn a partial contract
into a complete, executable contract. The large arrows represent inputs and
outputs of the system. The final stage of executing a final contract is the
subject of previous work [12].

the contract template and buyer /seller rules) on standard input and combines
these rules with the background knowledge specified in contractBot.clp. This
conglomeration of CLP input is fed into the Courteous Compiler, a component
of IBM CommonRules which compiles CLP into ordinary Prolog. This Prolog
code is combined with the queries specified in contractBot.clp and fed into the
XSB Prolog engine.

It is these queries that generate the output that the following modules need
in order to interact with the AuctionBot. For example, to generate the list
of auctions to be created, contractBot.clp makes a query which writes a list to
standard output containing all the auction IDs for which there is a makeAuction
fact entailed by the knowledge base. These facts are generated by Auction-
Configuration for every point in attribute space for every component inferred.
Components, in turn, are inferred from the contract template and from rules
from agents.

The output of the Prolog queries amounts to a list of auctions and parameter
values for each auction. The list of auctions and parameter settings are fed to
the create-auctions module which connects to the AuctionBot via the Math-
ematica implementation of the AuctionBot Agent Communication Protocol'!
and creates the auctions. The list of auctions is also sent to the auction-watcher
module which monitors the specified auctions and composes the correspond-
ing transaction facts (see Sections 2.3 and 6) whenever a transaction occurs on
AuctionBot in an auction relevant to the contract. Finally, the transaction facts

IMathematica was chosen for its clean implementation of the protocol and its convenient
LISP-like handling of the auction and parameter lists.

19

are concatenated with the proto-contract from the original contract template to
form an executable contract which can itself be fed through an inference engine
to execute the terms of the deal [12].

9 Other Uses for Automatic Auction Genera-
tion

Given the infrastructure that we have created with this prototype, we see CLP
as an excellent interface for creating auctions—both for humans and for au-
tomated agents. As can be seen in the TAC Contract Template, instead of
explicitly specifying the 27 auction parameters that AuctionBot needs to create
an auction, many can be created with a single line and most of the rest with
just a few lines.

Often in our research, we need to create batches of auctions for running ex-
periments or simulations. To do this efficiently, we have used a tool which allows
the auction parameters to be specified in a text file. For a single auction, this file
is simply a list of parameters and values. For batches of auctions, the different
values for the parameters that are to be varied can be listed in the file explicitly.
A subset of our prototype can now be used as a powerful generalization of that
functionality. For the case of a fixed parameter file for a single auction, a CLP
file can at worst duplicate that functionality with the equivalent list of facts for
the parameter-value pairs. Using the additional knowledge in Auction-Space it
can do this much more succinctly, not to mention much more cleanly with the
parameterization implemented by Auction-Space. An additional advantage can
be had when creating a batch of auctions. We have created a small library to
support Perl scripts for creating batches of auctions. Below is a simple exam-
ple that could not be accomplished directly with our existing tools—creating a
batch of n auctions (with n specified on the command line) with each differing
only in the name of the auction.

require "auctionGenerator.pl"; # the simple perl library.

for($i = 1; $i <= $ARGV[1]; $i ++) {
beginAuction();
addRule("negotiationType(cda).");
addRule("negotiationType (revealAll).");
could also have the rules in a file and use:
addFile("filename.clp");
addParam('"name", "auction".$i);
endAuction();

20

10 Discussion and Future Work

ContractBot represents a comprehensive approach to automated contracting,
addressing the three fundamental stages of discovery, negotiation, and execution.
It employs a declarative contracting language to represent information pertinent
to all three stages. This enables the same information to be applied in multiple
stages, and bridges the stages by using the output of one stage to formulate
the problem of the next. We have shown the flexibility of this approach by
implementing a prototype and generating alternative negotiation structures for
a travel domain (TAC).

Our approach addresses several research questions regarding practical au-
tomation of the contracting process. First, how can we represent information
to allow automatic inference of negotiation structures? Second, how can we
automatically specify negotiations in a way that will closely drive a realistic
automated platform? Third, how can we use auction results to form a final
contract?

In our prototype, we use Courteous Logic Programs to represent (1) partial
contracts, (2) additional rules about the negotiation process from buyers and
sellers, (3) background knowledge about how to structure negotiation mech-
anisms and configure individual auctions, and (4) final, executable contracts.
Using rules in this language, from the contract template and from potential
buyers and sellers, we first infer the basic structure of the negotiation mecha-
nism by applying background knowledge encoded in Auction-Configuration. We
then use the Auction-Space knowledge base to infer a general set of parameters
for each of the auctions supporting the negotiation. The AuctionBot-Mapping
ruleset translates this into an operational specification for the Michigan Internet
AuctionBot. Finally, we combine rules generated by auction transactions with
rules in the proto-contract of the contract template, to form a final contract
which itself is executable using rule-based techniques.

Our prototype can generate sets of auctions corresponding to a multicom-
ponent, multiattribute negotiation, and supports reasoning about alternative
ways to decompose a contract into multiattribute components. In future work,
we would like to extend AuctionBot as well as our ontology in ContractBot
to support richer negotiation mechanisms. For example, having multiattribute
and combinatorial auctions will, for many domains, provide a more reasonable
alternative to the current approach of creating an array of auctions, one for
every combination of attribute values.

As we add additional negotiation mechanisms to AuctionBot, we will be
able to add more sophisticated background knowledge about how to optimally
structure a negotiation according to the criteria discussed in Section 3. To ex-
tend our ability to handle the execution phase of contracting, we will generalize
our knowledge representation to express Situated Courteous LPs. Situated logic
programs [10] use beliefs to drive procedural APIs.

One piece of future work outside of ContractBot itself will involve writing
agents that participate in the infrastructure we’ve developed. This is an ex-
tremely rich area for analyzing complex agent strategies since an agent using

21

ContractBot must not only know how to bid intelligently in a vast space of ne-
gotiation mechanisms, but also intelligently contribute rules to influence which
negotiation mechanism is chosen. Further issues for future work include mesh-
ing more closely with other aspects of contracts, e.g., transactions, payments,
negotiation and communication protocols [7, 15], and supplier selection [20].

Acknowledgments

This work was supported by IBM’s University Partnership Program while the
third author was at IBM. Hoi Chan of IBM played a key role in development
of CommonRules. We would also like to thank William Walsh, Terence Kelly,
David Parkes, Edmund Durfee, and William Birmingham for helpful discussions
and comments in earlier stages of this work. Research at the University of Michi-
gan was also supported in part by NSF grants IRI-9457624 and IIS-9988715.

References

[1] IBM CommonRules. http://www.research.ibm.com/rules/
commonrules-overview.html.

[2] The XSB Programming System. http://xsb.sourceforge.net/.

[3] Arne Andersson, Mattias Tenhunen, and Fredrik Ygge. Integer program-
ming for combinatorial auction winner determination. In Fourth Interna-
tional Conference on Multiagent Systems, pages 3946, Boston, 2000.

[4] Chitta Baral and Michael Gelfond. Logic programming and knowledge
representation. Journal of Logic Programming, 19,20:73—-148, 1994.

[5] Martin Bichler. The Future of e-Markets: Multidimensional Market Mech-
anisms. Cambridge University Press, 2001.

[6] Fernando Branco. The design of multidimensional auctions. RAND Journal
of Economics, 28:63-81, 1997.

[7] Asit Dan, D. Dias, T. Nguyen, M. Sachs, H. Shaikh, R. King, and S. Duri.
The coyote project: Framework for multi-party e-commerce. In Seventh
Delos Workshop on Electronic Commerce, Lecture Notes in Computer Sci-
ence, Vol. 1513. Springer-Verlag, 1998.

[8] Sven de Vries and Rakesh Vohra. Combinatorial auctions: A survey. IN-
FORMS Journal on Computing, to appear.

[9] Daniel Friedman and John Rust, editors. The Double Auction Market.
Addison-Wesley, 1993.

[10] Benjamin N. Grosof. Building Commercial Agents: An IBM Research
Perspective. In Proceedings of the Second International Conference and

22

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Exhibition on Practical Applications of Intelligent Agents and Multi-Agent
Technology (PAAM97), April 1997.

Benjamin N. Grosof. Prioritized conflict handling for logic programs. In Jan
Maluszynski, editor, Logic Programming: Proceedings of the International
Symposium (ILPS-97), pages 197-211, Cambridge, MA, USA, 1997. MIT
Press. Extended version available as IBM Research Report RC 20836 at
http://www.research.ibm.com.

Benjamin N. Grosof, Yannis Labrou, and Hoi Y. Chan. A declarative ap-
proach to business rules in contracts: Courteous logic programs in XML. In
ACM Conference on Electronic Commerce, pages 68-77, Denver, 1999. See
also IBM Research Reports RC 21472 (Compiling Prioritized Default Rules
Into Ordinary Logic Programs) and RC 21473 (DIPLOMAT: Compiling
Prioritized Default Rules Into Ordinary Logic Programs, for E-Commerce
Applications (extended abstract of Intelligent Systems Demonstration)) at
http://wuww.research.ibm.com.

Manoj Kumar and Stuart I. Feldman. Internet auctions. In Third USENIX
Workshop on FElectronic Commerce, pages 4960, Boston, 1998.

Paul Milgrom. Putting auction theory to work: The simultaneous ascending
auction. Journal of Political Economy, 108:245-272, 2000.

Naftaly H. Minsky and Victoria Ungureanu. A mechanism for establish-
ing policies for electronic commerce. In 18th International Conference on
Distributed Computing Systems (ICDCS), May 1998.

Noam Nisan. Bidding and allocation in combinatorial auctions. In Second
ACM Conference on Electronic Commerce, pages 1-12, Minneapolis, MN,
2000.

Alvin E. Roth and Axel Ockenfels. Last-minute bidding and the rules for
ending second-price auctions: Evidence from eBay and Amazon auctions
on the Internet. American Economic Review, to appear.

J. Sairamesh, R. Mohan, M. Kumar, L. Hasson, and C. Bender. A platform
for business-to-business sell-side, private exchanges and marketplaces. IBM
Systems Journal, to appear.

Tuomas Sandholm. Algorithm for optimal winner determination in combi-
natorial auctions. Artificial Intelligence, 135:1-54, 2002.

Pedro Szekely, Bob Neches, David P. Benjamin, Jinbo Chen, and Craig Milo
Rogers. Controlling supplier selection in an automated purchasing system.
In AAAI-99 Workshop on Artificial Intelligence in Electronic Commerce
(AIEC-99), Menlo Park, CA, USA, 1999.

Michael P. Wellman, Amy Greenwald, Peter Stone, and Peter R. Wurman.
The 2001 trading agent competition. Submitted for publication, 2002.

23

[22]

[23]

[24]

Michael P. Wellman, Peter R. Wurman, Kevin O’Malley, Roshan Bangera,
Shou-de Lin, Daniel Reeves, and William E. Walsh. Designing the market
game for a trading agent competition. IEEE Internet Computing, 5(2):43—
51, 2001.

Peter R. Wurman, Michael P. Wellman, and William E. Walsh. The Michi-
gan Internet AuctionBot: A configurable auction server for human and soft-
ware agents. In Second International Conference on Autonomous Agents,
pages 301-308, Minneapolis, 1998.

Peter R. Wurman, Michael P. Wellman, and William E. Walsh. A
parametrization of the auction design space. Games and Economic Be-
havior, 35, 2001.

24

