
5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

The Production Logic Programs Approach:
KR Foundations for Semantic Rules on the Web

Presentation (1-hour) at
Semantic Web Seminar,

Stanford University Computer Science Dept.
Stanford, CA, USA, Mar. 29, 2006

Hosted by Prof. Michael Genesereth and Michael Kassoff

Prof. Benjamin Grosof
MIT Sloan School of Management
Information Technologies group
http://ebusiness.mit.edu/bgrosof

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Quickie Bio of Presenter Benjamin Grosof
• MIT Sloan professor since 2000
• 12 years at IBM T.J. Watson Research; 2 years at startups
• PhD Comp Sci, Stanford; BA Applied Math Econ/Mgmt, Harvard
• Semantic web services is main research area:

– Rules as core technology
– Business Applications, Implications, Strategy:

• e-contracting/supply-chain; finance; trust; …
– Overall knowledge representation, e-commerce, intelligent agents

• Co-Founder, Rule Markup Language Initiative – the leading emerging
standards body in semantic web rules (http://www.ruleml.org)

• Area Editor, Semantic Web Services Initiative – which coordinates world-wide SWS
research and early standards (http://www.swsi.org)

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Resources for More Info
• On author’s website (http://ebusiness.mit.edu/bgrosof), see especially:

1. ISWC-2005 Rules Tutorial slideset (half-day conference tutorial, 200+
detailed slides)
• …/#ISWC2005RulesTutorial
• “Semantic Web Rules with Ontologies, and their E-Service Applications”

– A. Core technology: knowledge representation languages, theory, and
techniques; standards design

– B. Tools: rule inference engines, translators between rule
systems/languages, ontology integration

– C. Applications in E-Services: semantic mediation and ontology
translation, e-contracting, trust policies, financial reporting

• Business value analysis, market roadmapping

2. Production Logic Programs paper & info
• …/#ProductionLogicPrograms (or just …/#PLP)

Also:
– Recent talks (including this one soon), not just papers
– SweetRules toolset (http://sweetrules.projects.semwebcentral.org)

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Outline
• Introduction

– Commercial Rule Systems, Standards, Semantic Web, Services,
Business Applications, Business Value

• Semantic Interoperability Challenges
– Production LP Approach to KR

• Production LP KR Extension/Feature
• + Default Negation (Negation As Failure) Feature
• + Courteous Feature; + Other Features
• Semantic Translation of Production Rules ↔ PLP
• SweetRules implementation, translation ↔ Jess
• + Ontologies: Description LP; OO default inheritance

– FOL (beyond DLP) via hypermonotonic reasoning
• Conclusions and Future Work

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Talk Mode: the MIT Firehose

Shortened from a 90-minute talk
⇒ Some skimmed

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Next Generation Web

Semantic Web Services

Semantic Web techniques Web Services techniques

First Generation
Web

XML
Two interwoven aspects:
Program: Web Services
Data: Semantic Web

Automated
Knowledge Bases

Rules (RuleML)

Ontologies (OWL)

Databases (SQL,
XQuery, RDF)

API’s on Web
(WSDL, SOAP)

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

2005 W3C Semantic Web “Stack”: Standardization Steps

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Semantic Web Services
• Convergence of Semantic Web and Web Services
• Consensus definition and conceptualization still forming
• Semantic (Web Services):

– Knowledge-based service descriptions, deals
• Discovery/search, invocation, negotiation, selection,

composition, execution, monitoring, verification
• Advantage: reuse of knowledge across app’s, these tasks

– Integrated knowledge
• (Semantic Web) Services: e.g., infrastructural

– Knowledge/info/DB integration
– Inferencing and translation

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

• E.g., in OO app’s, DB’s, workflows.
• “CCI” = Currently Commercially (most) Important

1. Relational databases (RDBMS), SQL: Views, queries, facts are all rules.
• XQuery, SPARQL emerging. SQL99 even has recursive rules.

2. Production rules (OPS5 and CLIPS heritage): e.g.,
– Fair Isaac, ILOG, Haley, etc.

3. Event-Condition-Action rules (loose family similar to PR), cf.:
– business process automation / workflow tools.
– active databases; publish-subscribe

4. Prolog. “logic programs” as a full programming language.
• “Pure” Prolog – declarative LP subset, has no cuts or external procedure

calls, does backward inferencing in declarative LP
5. (Lesser: other knowledge-based systems, and things hard to classify or further

from declarative such as some “business rule” systems.)

Flavors/Families of Rules Commercially
Most Important today in E-Business

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

• Grand-daddy: OPS5 research system at CMU in ’70’s
• NOT declarative
• CLIPS system: open PR system done by US govt ~ a decade ago
• CLIPS syntax: used with tweaks by many current PR systems
• Have incremental/dynamic/updating capabilities
• PR reengineered in ’90’s to be fine-grain embedded in C++/Java etc.

programming language, with access to those external objects
• OMG PRR standards effort since late 2003
• Full PR systems often also have scripting and a kind of backward-

inferencing capability; for semantically interoperable web rules that
has not been the focus (at least initially).

Production Rules (PR): History

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

• Loose family; no consensus/standard detailed
formulation/abstraction

• Fairly similar to Production Rules: forward, Conditions,
Actions
– NOT declarative

• Plus there’s the “Event” notion (see next slide)
• More focus than PR on incremental inferencing and

specialized optimizations around “Events”

• Many database systems have ECA capabilites, e.g., for
transactional triggers or pub-sub.

• In ’90’s became used widely for loose coupled business
process automation / workflow / integration / orchestration

Event-Condition-Action Rules (ECA): History

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

• “Event” is a kind of premise info update, and a kind of control
trigger for incremental inferencing
– This conflates declarative and procedural aspects! Challenge ;-)
– Often not precisely described, for given ECA system/language

• “Event” part of a rule body is a kind of condition, and control
“port”

• Often there’s “complex event processing” with specialized
treatment
– E.g., event sublanguage and special processors for

generating/testing events
• History of event updates/info-states is often important

• Other flavors of rules can also do events and incremental
inferencing, to varying degrees

Events in ECA Rules

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Our Research Aspects/Questions
about the Semantic Web

• Core technologies: Requirements, concepts,
theory, algorithms, standards?
– Rules in combination with ontologies;

probabilistic, decision-/game-theoretic

• Business applications and implications: concepts,
requirements analysis, techniques, scenarios,
prototypes; strategies, business models, market-
level evolution?
– End-to-end e-contracting, finance, trust; …

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Some Answers to:
“Why does SW Matter to Business?”

• 1. “Death. Taxes. Integration.” - They’re always with us.

• 2. “Business processes require communication
between organizations / applications.” - Data and
programs cross org./app. boundaries, both intra- and inter- enterprise.

• 3. “It’s the automated knowledge economy, stupid!”
- The world is moving towards a knowledge economy. And it’s
moving towards deeper and broader automation of business processes.
The first step is automating the use of structured knowledge.
– Theme: reuse of knowledge across multiple tasks/app’s/org’s

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Strategic Business Foci in our SW Research

• Knowledge-based Services Engineering: intra- and inter- enterprise

• Target “killer app” known for 30 years: do better job of EDI

• Challenges:
– Ease of development, deployment ↑
– Reuse of knowledge ↑
– ⇒ life cycle costs ↓ , agility ↑

• Starting with: Policies
– Using recent theory breakthroughs in semantic rules
– E.g., for end-to-end contracting and authorization (incl. security)

• Starting with: EAI as well as B2B

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

SWS and Rules Summary
** SWS Tasks Form 2 Distinct Clusters,

each with associated Central Kind of Service-description
Knowledge and Main KR

1. Security/Trust, Monitoring, Contracts,
Advertising/Discovery, Ontology-mapping Mediation
• Central Kind of Knowledge: Policies
• Main KR: Nonmon LP (rules + ontologies)

2. Composition, Verification, Enactment
• Central Kind of Knowledge: Process Models
• Main KR: FOL (axioms + ontologies)

• + Nonmon LP for ramifications (e.g., cf. Golog)
• Thus RuleML & SWSF specify both Rules, FOL

– Fundamental KR Challenge: “Bridging” Nonmon LP with FOL
• SWSF experimental approach based on hypermon. [Grosof & Martin]

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

SW Rules: Use Cases from our research
• Contracts/negotiation, advertising/discovery

– E-procurement, E-selling
– Pricing, terms & conditions, supplier qualification, …

• Monitoring:
– Exception handling, e.g., of contract violations

• Late delivery, refunds, cancellation, notifications
– Notifications, personal messaging, and other workflow

• Trust Policies: authorization, confidentiality & privacy, security,
access control
– E.g., financial services, health care

• Extensive analysis of business case/value

• Semantic mediation: rule-based ontology translation, context-
based information integration

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Semantic Rules News
News recently:
• Fundamental theory and technique breakthroughs, e.g.:

– Declarative logic programs (LP) basis for interoperability, then
webized RuleML standards design (2001-)

– Courteous LP prioritized defaults, robust modular merging
– Description LP ontology integration
– Production LP interoperability+semantics for production rules,

declarative procedural attachments for actions and queries
– SweetRules V2 open source toolset platform (2004-)

• Large US, EU research projects (DAML, WSMO) focus
on rules (DARPA Agent Markup Language; Web Service Mediation Ontology)

• RuleML standards design gets large mindshare for its
technical approach

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Semantic Rules News (cont.’d)
News recently:
• W3C forms Rule Interchange Format WG, full standards effort, after

holding a Workshop (Dec. 2005)
• OMG forms standards efforts on production rules, rule management
• Semantic Web Services Framework design (2005) focuses on rules
• Rule-based Policy area heats up in web services, semantic web, incl.

at Oasis. Oasis forms Semantic Execution Env. standards effort (2005).
• Semantic web rules workshop series becomes full research conference

(RuleML-2005) colocated with ISWC
• Gartner etc. reports on rules sector

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Advantages of Standardized SW Rules for
Policies, e.g., Authorization/Security

• Easier Integration: with rest of business policies and applications,
business partners, mergers & acquisitions
– Enterprise integration, B2B

• Familiarity, training
• Easier to understand and modify by humansChange management
• Quality and Transparency of implementation in enforcement

– Provable guarantees of behavior of implementation
• Reduced Vendor Lock-in
• Expressive power

– Principled handling of conflict, negation, priorities

• ⇒ Agility, change management ↑

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

• Reduced system dev./maint./training costs
• Better/faster/cheaper policy admin.
• Interoperability, flexibility and re-use benefits
• Greater visibility into enterprise policy implementation ⇒

better compliance
• Centralized ownership and improved governance by Senior

Management
• Rich, expressive policy management language allows

better conflict handling in policy-driven decisions
• Strategic agility, incl. wrt business model

Advantages of SW Rules, cont’d:
Loci of Business Value
in Policy Management

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Outline
• Introduction

– Commercial Rule Systems, Standards, Semantic Web, Services,
Business Applications, Business Value

• Semantic Interoperability Challenges
– Production LP Approach to KR

• Production LP KR Extension/Feature
• + Default Negation (Negation As Failure) Feature
• + Courteous Feature; + Other Features
• Semantic Translation of Production Rules ↔ PLP
• SweetRules implementation, translation ↔ Jess
• + Ontologies: Description LP; OO default inheritance

– FOL (beyond DLP) via hypermonotonic reasoning
• Conclusions and Future Work

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Semantic Rules: Differences from Rules in
the 1980’s / Expert Systems Era

• Get the KR right (knowledge representation)
– More mature research understanding
– Semantics independent of algorithm/implementation
– Cleaner; avoid general programming/scripting language capabilities
– Highly scaleable performance; better algorithms; choice from interoperability
– Highly modular wrt updating; use prioritization
– Highly dynamic, scaleable rulebase authoring: distributed, integration, partnering

• Leverage Web, esp. XML
– Interoperable syntax
– Merge knowledge bases

• Embeddable
– Into mainstream software development environments (Java, C++, C#); not its own

programming language/system (cf. Prolog)

• Knowledge Sharing: intra- or inter- enterprise
• Broader set of Applications

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

New Fundamental Rule KR Theory
that enables Key Technical Requirements for SWS

In 1985-94:
• Prolog interoperable with relational DB; LP extends core-SQL [many]

• Richer logical connectives, quantifiers [Lloyd & Topor]

• “Well Founded” Semantics for Negation-As-Failure [Van Gelder et al; Przmusinski]

• Hilog quasi-higher order expressiveness, meta-syntax flexibility [Kifer et al.]

• Frame syntax cf. F-Logic [Kifer et al.]

In 1995-2004:
• Courteous LP: prioritized conflict handling [Grosof]

– Robust, tractable, modular merging & updating
• Situated LP: hook rules up to services [Grosof]

• Description LP: combine Description Logic ontologies [Grosof et al.]

• Courteous Inheritance: combine OO default ontologies [Grosof et al.]

• Production Rules as LP: interoperate [Grosof et al.]

– Declarative LP as interoperable core between commercial families [Grosof et al.]

• Hypermonotonic Reasoning: combine with FOL [Grosof (in-progress)]

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Concept of Knowledge Representation (KR)

• A knowledge representation S is defined as a triple
(LP, LC, |=), where:
– LP is a formal language of sets of premises (i.e., premise expressions)

– LC is a formal language of sets of conclusions (i.e., conclusion expressions)

– |= is the entailment relation.

• Conc(P,S) stands for the set of conclusions
that are entailed in KR S by a set of premises P

• We assume here that |= is a functional relation.

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Example of Entailment: Mortality
• In First-Order Logic (FOL) KR:

– Let P be the premises:
– ∀?X. human(?X) ⇒ mortal(?X).
– human(Socrates).
–
– In FOL, P entails (among others) the conclusion:

• mortal(Socrates).

– Notation:
• “∀” means “for all”.
• “?” Prefixes a logical variable.

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Example of Entailment: Discounting
• In the Courteous Logic Programs KR (e.g., RuleML):

Let P be the premises:
– {loyald} discount(?cust, RamadaHotel, 10percent)

← memberOf(?cust, AAA).
– {seniord} discount(?cust, RamadaHotel, 25percent)

← age(?cust, ?x) and greaterThan(?x, 64).
– overrides(seniord, loyald).
– ⊥ ← discount(?c, ?h, ?y) and discount(?c, ?h, ?z) | (?y ≠ ?z).
– memberOf(Faisal, AAA).
– age(Faisal, 72).

– In this KR, P entails (among others) the conclusion:
discount(Faisal, RamadaHotel, 25percent).

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Example of Discounting, cont.’d

In the more general Production Logic Programs KR:
Suppose one adds the rule:

– @emailCouponAd(?cust, RamadaHotel, ?x)
← discount(?cust, RamadaHotel, ?x).

Then P entails the action (i.e., sanctions a call to an
attached procedure):

@emailCouponAd(Faisal, RamadaHotel, 25percent).

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

KR: What’s the Game?
Desiderata

• Expressiveness: what can be said
– useful, natural, complex enough

• Syntax: encoding data format -- e.g., in XML
– easy enough to edit and communicate, by computers and by humans

• Semantics: principles of sanctioned inference, independent of reasoning algorithms:
– clear, useful, natural, and understandable enough

• Computational Tractability (esp. worst-case): scale up in a manner qualitatively similar
to relational databases: computation cycles go up as a polynomial function of input size

• Reasoning algorithms (compute the entailed conclusions):
– sound (correct), complete, efficient, clear, and simple enough to engineer

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

History of Declarative LP
• Developed as a theoretical abstraction of RDBMS and pure Prolog

• Negation well understood by ’94 (not well understood before ’84)

• A number of expressive extensions in the last two decades
• Lots of algorithmic insights, expertise, good implementations

– E.g., XSB; Flora-2, SweetRules on top of XSB

• For function-free case, similar tractability to RDBMS/SQL. (vs. FOL intractable.)

• Cannot do “reasoning by cases”, i.e., draw disjunctive conclusions and then chain
on them in branched fashion. This is essential to the attractive computational
complexity. E.g., not good for general constraint solving a la complex scheduling.

• Conclusions are essentially (reducible to) ground literals.

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Declarative Logic Programs KR
• Basic case: Definite Horn function-free equality-

free LP. Tractable. Same as core SQL but with no
limitation to backward direction of inferencing.

• A number of extensions -- and restrictions …
– thus an extensible family forming a lattice.
– “LP” can mean the family or a member of it
– “foo LP” can mean a sublattice or member of it

• Datatypes
• Logical functions. Loses tractability.
• Default negation (scoped), a.k.a. Negation-As-

Failure

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Declarative Logic Programs KR II
• Courteous LP: prioritized conflict handling; strong

negation too. Defeasible Logic similar.
– Guarantees consistent set of conclusions; wrt mutex’s

(mutual exclusion integrity constraints)
– Reducible to (default) negation

• Production LP (generalizes Situated LP): procedural
attachments for side-effectful actions and tests/queries.
– Enables interoperability with Production Rules and

similar ECA.
– Built-ins as simple case: for arithmetic, string, etc.

comparisons/operations
• Frame syntax cf. F-Logic
• Hilog cf. F-Logic: “meta-linguistic”/”reflection”

capability

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Declarative Logic Programs KR III
• Lloyd-Topor enhanced logical connectives and quantifiers

– Reducible to (default) negation
• Skolemization, e.g., for existentials, RDF blank-nodes
• Reification: kind of quotation: belief formula becomes logical term
• Explicit equality: in heads of rules; with background special axioms
• Integrity constraints: reporting vs. inconsistency-generating

• A few other things too

• See SWSL report for a fairly good overview (it omits procedural
attachments, however!)

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Outline
• Introduction

– Commercial Rule Systems, Standards, Semantic Web, Services,
Business Applications, Business Value

• Semantic Interoperability Challenges
– Production LP Approach to KR

• Production LP KR Extension/Feature
• + Default Negation (Negation As Failure) Feature
• + Courteous Feature; + Other Features
• Semantic Translation of Production Rules ↔ PLP
• SweetRules implementation, translation ↔ Jess
• + Ontologies: Description LP; OO default inheritance

– FOL (beyond DLP) via hypermonotonic reasoning
• Conclusions and Future Work

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Production Logic Programs KR
Extension / Feature: Overview

• Extension Relative to Horn LP
– Combines orthogonally with LP extensions for default negation

(Normal), Courteous, Lloyd-Topor, Frame syntax, Hilog, and
several other LP extensions.

• Introduces test and action expressions into the language.
• Declarative approach to procedural attachments.

– Reformulates our previous Situated extension of LP.
• That has separate sensor and effector statements that associate an aproc with

a predicate.
• Captures heart of production rules (PR) and event-condition-action

rules (ECA).
– We’ve used PLP KR to provide the first declarative semantics for PR (and

ECA): a large fragment of their expressiveness.

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Production LP Feature Syntax I
• Additional language entity: Attached Procedure (aproc)
• Two kinds of aproc’s:

– Sensor, a.k.a. test
• E.g., @PhoneNumberOf(?person,?num)

– Effector, a.k.a. action
• E.g., @ChargeCreditCard(?cardnum,?payee,?amt,?time)

• Aproc’s can appear in lieu of predicates to form situated
atoms: sensor atoms or effector atoms.
– Appear in premise rules, queries, or conclusions.

• Sensor atoms (tests) appear only in rule body (or query)
• Effector atoms (actions) appear only in rule head (or

conclusion)

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Production LP Feature Syntax II
• Additional language statement type:

– Binding Restriction (br) statement:
= Pragma that specifies restrictions on binding patterns for a sensor
aproc – wrt bindings available when it’s called

• E.g, bindreq @PhoneNumberOf (BOUND,FREE).
– There may be multiple br statements for the same sensor aproc.

• E.g., also: bindreq @PhoneNumberOf (FREE,BOUND).
– Special cases: all-bound, all-free.
– If no br statements for a sensor, then it’s all-bound.

• Concept of whether a PLP is “br-safe”, i.e., satisfies all the binding
restriction statements.
– Can be statically checked, tractably.

• Analyze each rule body wrt bindings supplied by its atoms, starting with the
non-sensor atoms.

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Production LP Feature Semantics I
• Actions are sanctioned as part of the overall conclusions.

– More precisely: a (possibly empty) bag of (ground) actions.
• “situated” entailment/inferencing; “inferencing+action”

• Sensors read a single initial state of the external environment
• A bag of actions specifies a transition to a new state of the external

environment
– Each satisfying instance of a rule body triggers a head action

instance

• External here means external to the pure-belief language.
– Can view as external to an ideal entailment engine and its internal

state
• Concept of an episode of entailment/inferencing. Can view as:

– Sensing and pure-belief entailment in the initial state
– Effecting immediately after that

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

PLP Feature Semantics -- Comments
• Thus there’s discipline in the use of attached procedures:

– Sensors are side-effect-free.
– Effectors are engine-safe: do not affect the engine state

and behavior, nor the premises.
– Sensors and effectors are snapshot: sequence and time of

call do not matter.
– Side-effect-ful aproc calls do not appear in the body

• Unlike Prolog, which does permit them and thus has control-
strategy-dependent side-effects (in the general, impure case).

• KR stays declarative
– control-strategy-independent notion of semantics

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Example of Entailment: Discounting
• In the Courteous Logic Programs KR (e.g., RuleML):

Let P be the premises:
– {loyald} discount(?cust, RamadaHotel, 10percent)

← memberOf(?cust, AAA).
– {seniord} discount(?cust, RamadaHotel, 25percent)

← age(?cust, ?x) and greaterThan(?x, 64).
– overrides(seniord, loyald).
– ⊥ ← discount(?c, ?h, ?y) and discount(?c, ?h, ?z) | (?y ≠ ?z).
– memberOf(Faisal, AAA).
– age(Faisal, 72).

– In this KR, P entails (among others) the conclusion:
discount(Faisal, RamadaHotel, 25percent).

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Example of Discounting, cont.’d

In the more general Production Logic Programs KR:
Suppose one adds the rule:

– @emailCouponAd(?cust, RamadaHotel, ?x)
← discount(?cust, RamadaHotel, ?x).

Then P entails the action (i.e., sanctions a call to an
attached procedure):

@emailCouponAd(Faisal, RamadaHotel, 25percent).

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Outline
• Introduction

– Commercial Rule Systems, Standards, Semantic Web, Services,
Business Applications, Business Value

• Semantic Interoperability Challenges
– Production LP Approach to KR

• Production LP KR Extension/Feature
• + Default Negation (Negation As Failure) Feature
• + Courteous Feature; + Other Features
• Semantic Translation of Production Rules ↔ PLP
• SweetRules implementation, translation ↔ Jess
• + Ontologies: Description LP; OO default inheritance

– FOL (beyond DLP) via hypermonotonic reasoning
• Conclusions and Future Work

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

• Updating in relational databases
– more recent fact overrides less recent fact

• Static rule ordering in Prolog
– rule earlier in file overrides rule later in file

• Dynamic rule ordering in production rule systems (OPS5)
– “meta-”rules can specify agenda of rule-firing sequence

• Event-Condition-Action rule systems rule ordering
– often static or dynamic, in manner above

• Exceptions in default inheritance in object-oriented/frame systems
– subclass’s property value overrides superclass’s property value,

e.g., method redefinitions
• All lack Declarative KR Semantics

Ubiquity of Priorities
in Commercially Important Rules -- and Ontologies

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

The currently most important for Semantic Web are:
1. Courteous LP

• KR extension to Ordinary LP
• In RuleML, since 2001
• Commercially implemented and applied

– IBM CommonRules, since 1999
2. Defeasible Logic

• Closely related to Courteous LP
– Less general wrt typical patterns of prioritized conflict handling

needed in e-business applications
– In progress: theoretical unification with Courteous LP

Semantical KR Approaches to Prioritized LP

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Courteous LP: the What
• Updating/merging of rule sets: is crucial, often generates conflict.
• Courteous LP’s feature prioritized handling of conflicts.
• Specify scope of conflict via a set of pairwise mutual exclusion constraints.

– E.g., ⊥ ← discount(?product,5%) ∧ discount(?product,10%) .

– E.g., ⊥ ← loyalCustomer(?c,?s) ∧ premiereCustomer(?c,?s) .
– Permit classical-negation of atoms: ¬p means p has truth value false

• implicitly, ⊥ ← p ∧ ¬p for every atom p.

• Priorities between rules: partially-ordered.
– Represent priorities via reserved predicate that compares rule labels:

• overrides(rule1,rule2) means rule1 is higher-priority than rule2.
• Each rule optionally has a rule label whose form is a functional term.
• overrides can be reasoned about, just like any other predicate.

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Priorities are available and useful
• Priority information is naturally available and useful. E.g.,

– recency: higher priority for more recent updates.
– specificity: higher priority for more specific cases (e.g., exceptional cases,

sub-cases, inheritance).
– authority: higher priority for more authoritative sources (e.g., legal

regulations, organizational imperatives).
– reliability: higher priority for more reliable sources (e.g., security

certificates, via-delegation, assumptions, observational data).
– closed world: lowest priority for catch-cases.

• Many practical rule systems employ priorities of some kind, often implicit. E.g.,
– rule sequencing in Prolog and production rules.

• Courteous LP subsumes this as special case (totally-ordered priorities), plus
enables: merging, more flexible & principled treatment.

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Courteous LP: Advantages
• Facilitate updating and merging, modularity and locality in

specification.
• Expressive: classical negation, mutual exclusions, partially-ordered

prioritization, reasoning to infer prioritization.
• Guarantee consistent, unique set of conclusions.

– Mutual exclusion is enforced. E.g., never conclude discount is both 5%
and that it is 10%, nor conclude both p and ¬p.

• Scaleable & Efficient: low computational overhead beyond ordinary LP’s.
– Tractable given reasonable restrictions (VB Datalog):

• extra cost is equivalent to increasing v to (v+2) in Ordinary LP, worst-case.
– By contrast, more expressive prioritized rule representations (e.g., Prioritized

Default Logic) add NP-hard overhead.
• Modular software engineering:

– via courteous compiler: CLP → OLP.
• A radical innovation. Add-on to variety of OLP rule systems. O(n3).

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

EECOMS Example of Conflicting Rules:
Ordering Lead Time

• Vendor’s rules that prescribe how buyer must place or modify an
order:

• A) 14 days ahead if the buyer is a qualified customer.
• B) 30 days ahead if the ordered item is a minor part.
• C) 2 days ahead if the ordered item’s item-type is backlogged at the

vendor, the order is a modification to reduce the quantity of the item,
and the buyer is a qualified customer.

• Suppose more than one of the above applies to the current order?
Conflict!

• Helpful Approach: precedence between the rules. Often only partial
order of precedence is justified. E.g., C > A.

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Courteous LP’s:
Ordering Lead Time Example

• <leadTimeRule1> orderModificationNotice(?Order,14days)
• ← preferredCustomerOf(?Buyer,?Seller) ∧
• purchaseOrder(?Order,?Buyer,?Seller) .
• <leadTimeRule2> orderModificationNotice(?Order,30days)
• ← minorPart(?Buyer,?Seller,?Order) ∧
• purchaseOrder(?Order,?Buyer,?Seller) .
• <leadTimeRule3> orderModificationNotice(?Order,2days)
• ← preferredCustomerOf(?Buyer,?Seller) ∧
• orderModificationType(?Order,reduce) ∧
• orderItemIsInBacklog(?Order) ∧
• purchaseOrder(?Order,?Buyer,?Seller) .
• overrides(leadTimeRule3 , leadTimeRule1) .
• (⊥ ← orderModificationNotice(?Order,?X) ∧
• orderModificationNotice(?Order,?Y)) ← (?X ≠?Y) .

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Set of Unrefuted Candidates for p1,...,pk:
Team for p1, ..., Team for pk

Run Rules for p1,...,pk

Set of Candidates for p1,...,pk:
Team for p1, ..., Team for pk

Prioritized Refutation

Skepticism

Conclude Winning Side if any: at most one of {p1,...,pk}

Conclusions from opposition-locales previous to this opposition-locale {p1,...,pk}

Courteous LP Semantics: Prioritized argumentation in an opposition-locale.

(Each pi is a ground classical literal. k ≥ 2.)

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Courteous feature: compileable, tractable

compiler

courteous

ordinary (“vanilla”)
(Sit.) OLP representation

mutex priorities
>

representation

≡ equivalent

semantically

Courteous

(Sit.) Courteous LP.

*

* classical negation too

Tractable
compilation:

O(n^3), often linear

Preserves ontology.
Plus extra predicates for

- phases of prioritized argumentation (refutation, skepticism)

- classical negations

Tractable inference: e.g., worst-case

when no logical functions (“Datalog”)

& bounded v = |var’s per rule|

is equivalent to OLP with v → (v+2)

Sit. = Situated

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Summary:
Courteous (Situated) LP’s as Core KR

• Key Observations about Declarative OLP:
– captures common core among commercially important rule systems.
– is expressive, tractable, familiar.
– advantages compared to classical logic / ANSI-draft KIF:

• + + logical non-monotonicity, negation-as-failure.
• − − disjunctive conclusions.
• + + tractable.
• + + procedural attachments: Situated LP’s.

• Cleverness of Courteous extension to the OLP representation:
– prioritized conflict handling → modularity in specification. And consistency.
– courteous compiler → modularity in software engineering.
– mutex’s & conflict locales → keep tractability. (Compiler is O(n^3).)

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Courteous Compiler

• Transformer compiles a courteous LP into an ordinary LP.
• A radically innovative approach in rules representation.
• “Compiles away” conflict, as modular add-on to rule

system X’s
– inferencing
– specification

• Enables courteous features to be added to, or implemented
in, a variety of rule systems.

• Tractable: O(n^3). Incremental.

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Courteous LP’s:
Keys to Tractability

• Overall: mutex’s & conflict locales → keep tractability.
• LP’s: disallow disjunctive conclusions, essentially. Classical allows ⇒ NP-hard.

• LP’s: disallow contraposition (= {¬a ←. , a ← b ∧ c.} ⇒ (¬b ∨ ¬c)}) which
requires disjunctive conclusions. “Directional”. Classical allows ⇒ NP-hard.

• Highly expressive prioritized rule representations (e.g., Prioritized Default Logic,
Prioritized Circumscription) allow minimal conflict sets of arbitrary size
⇒ NP-hard overhead for conflict handling.

• Courteous conflict handling involves essentially only pairwise conflicts, i.e.,
minimal conflict sets of size 2. (Current work: possibly generalize to size k.)
– Novelty: generalize to pairwise mutex’s beyond ⊥ ← p ∧ ¬p, e.g., partial-

functional, thus avoid need for contraposition and larger conflict sets.
• Courteous conflict handling is local within an opposition locale: a set of rules

whose heads oppose each other through mutex’s. Refutation and Skepticism are
applied within each locale.

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Outline
• Introduction

– Commercial Rule Systems, Standards, Semantic Web, Services,
Business Applications, Business Value

• Semantic Interoperability Challenges
– Production LP Approach to KR

• Production LP KR Extension/Feature
• + Default Negation (Negation As Failure) Feature
• + Courteous Feature; + Other Features
• Semantic Translation of Production Rules ↔ PLP
• SweetRules implementation, translation ↔ Jess
• + Ontologies: Description LP; OO default inheritance

– FOL (beyond DLP) via hypermonotonic reasoning
• Conclusions and Future Work

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

SweetRules Overview
• Concept and Architecture: Open Source Tools Platform for SW

Rules and RuleML. http://sweetrules.projects.semwebcentral.org (2004-)
• Multi-institutional collaboration led by MIT Sloan, with 12+ other co.’s / univ.’s

• Capabilities:
– Translation and interoperability between heterogeneous rule systems

(forward- and backward-chaining) and their rule languages/representations of the most
commercially important flavors (relational database / Prolog and production
rules / event-condition-action)

– Inferencing including via translation between rule systems
– Authoring, Analysis, and testing of rulebases
– Open, lightweight, extensible, pluggable architecture overall
– Merge knowledge bases

• Combine rules with ontologies, incl. OWL, OO default inheritance
– Focus on kinds of rule systems that are commercially important

• E.g., Jess production rules, XSB Prolog, IBM Common Rules, HP Jena, …
– Highly scaleable performance by piggybacking on mature commercial

implementations (e.g., Jess, XSB)
– Automatically composes translators, inference engines

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

SweetRules V2.0 Fundamental KR

• Fundamental KR: Situated Courteous Logic
Programs (SCLP) KR = Knowledge Representation

– Horn
– + Negation-As-Failure (NAF) = Ordinary LP
– + Courteous prioritized conflict handling

• overrides relation on rule labels, classical negation, mutex
integrity constraints

– + Situated sensing & effecting
• Invoke external procedural attachments
• Sensing = tests/queries; e.g., built-ins
• Effecting = side-effectful actions, triggered by conclusions

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

SweetRules V2.0 Translators Graph

RuleML
(SCLP)

CommonRules

KIF (FOL -subset)

Courteous
Compiler

XSB (bkw. OLP)

Smodels (fwd. OLP)

Process Handbook
(OO/frame def.-inh)

(fwd. SCLP)

OWL (-DLP)
Jena-2

(fwd. Horn LP)

Jess/CLIPS
(prodn. ≡ fwd. SOLP)

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

SweetRules Inferencing Capabilities Today:
Overview

• Inferencing engines in RuleML/SWRL via
translation:

– Indirect inferencing:
1. translate to another rule system, e.g., {XSB,

Jess, CommonRules, or Jena}
2. run inferencing in that system’s engine
3. translate back

– Can use composite translators

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

OPTIONAL: SweetRules V2.0 New Inferencing Engines

RuleML
(SCLP)

CommonRules

KIF (FOL -subset)

Courteous
Compiler

XSB (bkw. OLP)

Smodels (fwd. OLP)

Process Handbook
(OO/frame def.-inh)

(fwd. SCLP)

OWL (-DLP)
Jena-2

(fwd. Horn LP)

Jess/CLIPS
(prodn. ≡ fwd. SOLP)

↑fwd. SCLP & bkw. CLP
↑fwd. SCLP

↑+ SWRL built-ins

Key: ↑ =
SweetRules
raises power

#4

#3

#1

#5

#2

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Novel NAF Capability in Production Rules I
• Newly Supports Correct Negation-As-Failure in

Production Rules
– Problem: Jess does not correctly implement Negation-

As-Failure
• Conjecture: this problem is shared by all current

production rule systems (OPS5-heritage family, based on Rete)
– Currently investigating this conjecture.

– Solution: We have developed two new techniques with
associated KR proof/model theory
• Stratified case of NAF: declare stratification-based

salience in the production rules, when translating from
RuleML

– Is implemented in SweetRules V2.0 (SweetJess component). Works
correctly in all initial phase tests. More testing is in progress.

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Novel NAF Capability in Production Rules II

• General non-stratified case of NAF: new
bottom-up algorithm for well founded
semantics of OLP

– Currently detailed algorithm has been designed and is
being implemented.

• Observation on Additional Value-add: This eliminates the
need for agenda meta-rules hacking to get NAF right in
production rules, which is frequent in existing production
rule applications (and is part of training/methodology)
– Interesting Question: How big a percentage of overall agenda meta-rules in

typical applications are thus eliminated? Most?

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

More Novel Capabilities
• Newly Uses Courteous Compiler to support Courteous feature

(prioritized conflict handling) even in systems that don’t directly
support it, as long as they support negation-as-failure
– E.g., in XSB Prolog, Jess, Smodels
– Uses Native Open-Source Courteous Compiler (CC) or CC from

IBM CommonRules
• New Include-a-KB mechanism, similar to owl:imports Has

Include-a-KB mechanism, similar to owl:imports (prelim.
RuleML V0.9)
– Include a remote KB that is translatable to RuleML

• Uses New Action Launcher component to support Situated
effecting feature (actions triggered by conclusions) even in systems
that don’t directly support it. Facts input, actions output.
– E.g., in SweetXSB forward inferencing

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Novel KB Merging of Rules + Ontologies

• Combine:
– Multiple SCLP RuleML (/ SWRL) rulebases

• Or any knowledge base that is translatable into RuleML
– Heterogeneous kinds of rules

• E.g., originally XSB rules + Jess facts
• These get translated and union’d into a single RuleML rulebase (possibly

virtual)
– OWL ontologies

• Translate Description Logic Programs (DLP) subset of OWL into RuleML
• Hybrid reasoning via DLP-fusion, i.e., LP inferencing after translate

– OO/Frame ontologies with default inheritance
• E.g., Process Handbook ontologies
• … which get translated to (S)CLP rules

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Contradictory conflict is
contained locally,

indeed tamed to aid
modularity.

⇒

⇒

Contradictory conflict
is globally contagious,
invalidates all results.

Knowledge integration
tackling the 5 D’s

(diversity, distributedness,
disagreement, dynamism, &
delay) is labor-intensive,

slow, costly.

Knowledge integration
is highly automated,

faster, cheaper.

BEFORE AFTER

Objectives for Integrating Distributed SW Rules and Ontologies,
Motivating SweetRules and its underlying theory+standards

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Outline
• Introduction

– Commercial Rule Systems, Standards, Semantic Web, Services,
Business Applications, Business Value

• Semantic Interoperability Challenges
– Production LP Approach to KR

• Production LP KR Extension/Feature
• + Default Negation (Negation As Failure) Feature
• + Courteous Feature; + Other Features
• Semantic Translation of Production Rules ↔ PLP
• SweetRules implementation, translation ↔ Jess
• + Ontologies: Description LP; OO default inheritance

– FOL (beyond DLP) via hypermonotonic reasoning
• Conclusions and Future Work

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

“Ontology” More General than OWL

• “ontology” in general sense = definitional knowledge [sense from
AI and philosophy]

– Could be in any KR, e.g., FOL, LP, or probabilistic

• Important kinds of ontologies:
– Taxonomies: vocabulary and basic class hierarchy
– Description Logic
– Object oriented with default inheritance, e.g., C++/Java/C#

class-hierarchy frameworks with overriding or cancellation of
inheritance

– Database schemas
– XML schemas
– UML aspects
– Axiomatizations in FOL of time, space, processes

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Aspiration: Unifying FOL and Nonmon LP

• A challenge, a holy grail:
– Wouldn’t it be nice to have a single Knowledge

Representation (KR) that unifies all of FOL and
nonmon LP?

– … or at least more of FOL and nonmon LP?

• Physics analogy: “A unified field theory for Semantic Web KR”

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Venn Diagram: Expressive Overlaps among KR’s

Description
Logic

Horn Logic
Programs

First-Order
Logic

Description
Logic

Programs

Logic
Programs

(Negation As
Failure)

(Procedural
Attachments)

NB: Nonmon LP,
including Courteous,

relies on NAF as
fundamental

underlying KR
expressive
mechanism

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Motivations I: Some Potential Uses for
Unifying FOL and Nonmon LP KR’s for Rules+Ontologies

• Tightly integrate full OWL ontologies (OWL-DL and OWL-Full)
with nonmon LP rules. Increase expressiveness of DLP to all of OWL.
– Semantics; algorithms; ensure consistency

• Cope robustly with conflict between ontologies, e.g., merging OWL
ontologies from many sources

• Permit FOL for ontologies beyond DL/OWL
– E.g., process models cf. NIST’s PSL standard and Semantic Web Services

Initiative’s SWSL emerging standards proposal (http://www.swsi.org)
– E.g., ECOIN work on equational ontologies and context integration

(http://context2.mit.edu/coin)

• Integrate nonmon frame/OO ontologies with mon DL/FOL ontologies

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Motivations II: Some Potential Uses for
Unifying FOL and Nonmon LP KR’s for Rules+Ontologies

• Integrate SWSL’s 2 “wings”:
– LP rules language & service-concept ontologies for contracts,

policies, ads, mappings, etc. (SCAMP tasks)
– FOL language & service-concept ontologies for process model,

synthesizing composition, verification, etc. (e.g., cf. PSL)
• Actually also desire default reasoning to minimize ramifications

in reasoning about actions (e.g., cf. Golog)

• Unify the KR foundation of the Semantic Web
– Represent all the current* major pieces:

• Rules, ontologies, databases, RDF, queries
• Semantic Web Services service descriptions

– Overcome what has been a major hang-up for Joint Committee and
Semantic Web Services Initiative efforts on SW standards design.

(*NB: SW in future should also include probabilistic/statistical KR.)

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Hypermonotonic Reasoning: Overview

• Definition: A KR S is “hyper”monotonic relative to
FOL when S is nonmonotonic and S is sound but
incomplete relative to FOL.
– Premises (conclusions) of S are *viewable as premises

(conclusions) of FOL.
– Generalization: *Under a mapping T from

premises/conclusions of S to premises/conclusions of
FOL.

• The hypermon KR’s entailed conclusions can be viewed as
always unobjectionable, i.e., sanctioned, by FOL which
provides a background “reference” semantics for the
premises in the hypermon KR.

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Hypermon: Discussion of Definition
• The spirit of conflict handling is a good match to the hypermon

concept.
– When P is inconsistent according to FOL, then it’s arguably

often quite desirable that S is incomplete wrt FOL, since FOL
produces a global meltdown in which all sentences are entailed.

– Even if P is consistent according to FOL, then it’s “not so bad”
that S is incomplete. In practical inferencing over FOL, since
that is computationally and/or algorithmically complex,
incompleteness is often acceptable. I.e., many practical FOL tools are
(in general) incomplete.

• The hypermon KR can be viewed as a semantically
characterized class of incomplete FOL reasoning tools.

• Analogy: jumping through hyperspace (similar to “hyper”text)
– Overcomes the apparent barrier/limitation of how inconsistency behaves

(global fragilility/propagation) in classical logic. “Tunnels through a
wormhole” to a consistent, typically contentful, set of conclusions (with
localized propagation scope for unresolved conflicts).

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Nonmon LP as Hypermon
Caveat: The following results are in preliminary and summary form.

• Obs.: OLP is unsound wrt FOL, if NAF is mapped to classical
negation. I.e., Closed World is required as an extra assumption,
essentially. Thus OLP is not (directly) hypermon.

• Theorem: NAF-free Courteous LP (“CLP2”) is hypermon.
– (Some other nonmon KR’s are too.)

• Theorem: NAF-ful Courteous LP, and thus Ordinary LP, is
hypermon under a simple mapping T1:
– Replace every NAF’d atom ~p(t) by fp(t), where fp is a new predicate.
– Add the two rules:

a. fp(t) ← .
b. ¬fp(t) ← p(t).

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Nonmon LP as Hypermon, cont.’d

• Theorem: CLP is always consistent from the viewpoint of FOL. (I.e.,
it has a consistent set of conclusions.)

• Can thus view conflictful merging/updating in CLP2 as sound,
consistent, and incomplete from FOL viewpoint.

• The fundamental KR relationships can be used in more ways too:
– Import FOL axioms (e.g., ontologies) to become (nonmon) LP rules,

mutex’s
• As LP premises

– E.g., as initial rules or as dynamically sensed facts

– Export (nonmon) LP conclusions as facts to become FOL axioms
• An early usage: provide KR semantic analysis of Rei as CLP

rules conservatively extending (non-Horn-expressible) DL.

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Nonmon LP as Hypermon wrt FOL, cont.’d yet more

• Provides path to formally define and investigate:
– Merging of LP KB’s with FOL KB’s, in terms of

conclusions or premises, when conflict is absent or
present.

• Further Results in Development, e.g.:
– Special cases when (nonmon) LP is consistent, or its updates

are monotonic, wrt a given FOL or LP sub-
theory/background-theory.
• E.g., ∃x.q(x) in FOL is consistent with CLP in which

all rules with q in head mention q positively. E.g., Rei
rules consistent with the ontologies it uses.

– Identify, tweak, extend, design hypermon KR’s

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Hypermon Application in SWSF: Translate
FOL Ontologies to Courteous LP

• SWSF defines Core Service Ontologies in FOL (not DL).
– E.g., PSL which is fairly general-form FOL

• Challenge: want an LP version of these ontologies
• Experimental approach based on hypermonotonic reasoning

[Grosof] was used to create this version in SWSF 1.0, including for
all of PSL Core & Outer Core. Maps general FOL to Courteous LP.

– Automatable, algorithmic technique, initially performed
manually in SWSF 1.0 [Grosof & Martin]:

1. Skolemize. This produces clausal-form FOL (skolem normal form).
2. Map each clause into the “omnidirectional set” of LP rules

(L1 or L2 or … or Lk)
⇒⇒

L1 :- neg L2 and … and neg Lk.
L2 :- neg L1 and neg L3 and … and neg Lk.
…
Lk :- neg L1 and neg L2 and … and neg Lk-1.

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Hypermon Application #2 in Progress:
Provide Semantics for Rei

• Rei 2.0 policy language [Kagal et al. 2004]:
– prioritized default policy rules for authorization
– on top of OWL ontologies
– Aimed at Semantic Web and SWS…
– …BUT: Lacks KR semantics!

• Approach to providing semantics, in current work [Grosof & Kagal]:
1. Represent policy rules via Courteous LP

– Including “meta-policies” and “meta-meta-policies”: represent them as reasoning
about prioritization

2. Hypermonotonic reasoning to integrate the KR semantics of: the
policy rules + the ontologies
– Exploit Rei’s restriction that:

• OWL-defined predicates appear only in bodies of policy rules
– Analyze composite semantics in terms of conservative extension

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Venn Diagram: Expressive Overlaps among KR’s

Description
Logic

Horn Logic
Programs

First-Order
Logic

Description
Logic

Programs

Logic
Programs

(Negation As
Failure)

(Procedural
Attachments)

NB: Nonmon LP,
including Courteous,

relies on NAF as
fundamental

underlying KR
expressive
mechanism

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Motivations I: Some Potential Uses for
Unifying FOL and Nonmon LP KR’s for Rules+Ontologies

• Tightly integrate full OWL ontologies (OWL-DL and OWL-Full)
with nonmon LP rules. Increase expressiveness of DLP to all of OWL.
– Semantics; algorithms; ensure consistency

• Cope robustly with conflict between ontologies, e.g., merging OWL
ontologies from many sources

• Permit FOL for ontologies beyond DL/OWL
– E.g., process models cf. NIST’s PSL standard and Semantic Web Services

Initiative’s SWSL emerging standards proposal (http://www.swsi.org)
– E.g., ECOIN work on equational ontologies and context integration

(http://context2.mit.edu/coin)

• Integrate nonmon frame/OO ontologies with mon DL/FOL ontologies

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Motivations II: Some Potential Uses for
Unifying FOL and Nonmon LP KR’s for Rules+Ontologies

• Integrate SWSL’s 2 “wings”:
– LP rules language & service-concept ontologies for contracts,

policies, ads, mappings, etc. (SCAMP tasks)
– FOL language & service-concept ontologies for process model,

synthesizing composition, verification, etc. (e.g., cf. PSL)
• Actually also desire default reasoning to minimize ramifications

in reasoning about actions (e.g., cf. Golog)

• Unify the KR foundation of the Semantic Web
– Represent all the current* major pieces:

• Rules, ontologies, databases, RDF, queries
• Semantic Web Services service descriptions

– Overcome what has been a major hang-up for Joint Committee and
Semantic Web Services Initiative efforts on SW standards design.

(*NB: SW in future should also include probabilistic/statistical KR.)

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Outline
• Introduction

– Commercial Rule Systems, Standards, Semantic Web, Services,
Business Applications, Business Value

• Semantic Interoperability Challenges
– Production LP Approach to KR

• Production LP KR Extension/Feature
• + Default Negation (Negation As Failure) Feature
• + Courteous Feature; + Other Features
• Semantic Translation of Production Rules ↔ PLP
• SweetRules implementation, translation ↔ Jess
• + Ontologies: Description LP; OO default inheritance

– FOL (beyond DLP) via hypermonotonic reasoning
• Conclusions and Future Work

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Impacts: Translation of LP/RuleML
↔ Production Rules

• Part of what’s now called Production LP
• Uses Situated LP for actions and tests

– Situated LP an extension feature for LP,
adopted by RuleML

• A focus in SW rules R&D community; many
implementing translation of LP → Jess

• Underpins agenda/optimism/energy in W3C RIF
that production rule vendors join the SW

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Some Technical Directions for Research
• Incremental Reasoning: Events, Updates
• LP KR other extensions:

– Existentials via skolemization
– Combine Hilog higher-order features reducible to first-order; OWL-Full, RDF-Full
– Equality: user-defined, nonmonotonic
– Reification

• Hypermonotonicity: analysis of LP, merging; new KR’s incl. disjunctive
• Probabilistic, decision-theoretic, game-theoretic; Inductive, learning, data mining
• Constraints: satisfaction, optimization

• Trust policies for firewalls, confidentiality, security, privacy, access control
• E-Contracting end-to-end reuse, power: incl. business process monitoring
• Policy Ontology, Services Ontologies, Relationship to C++/Java/C# Inheritance
• Web Services “Policy Management”, “Contracts”
• Add semantics to existing standards: XBRL, XACML, ebXML, RosettaNet, EDI
• Biomedical: patient records privacy and workflow, drug discovery, treatment safety

tracking
• Marketing, intelligence, supply chain, financial reporting, travel
• Business Value Analysis, Strategy, Roadmapping

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

OPTIONAL SLIDES
BEGIN

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

EECOMS Example of SCM Policy Rules:
Ordering Lead Time

• Vendor’s rules that prescribe how buyer must place or modify an
order:

• A) 14 days ahead if the buyer is a qualified customer.
• B) 30 days ahead if the ordered item is a minor part.
• C) 2 days ahead if the ordered item’s item-type is backlogged at the

vendor, the order is a modification to reduce the quantity of the item,
and the buyer is a qualified customer.

• Suppose more than one of the above applies to the current order?
Conflict!

• Helpful Approach: precedence between the rules. Often only partial
order of precedence is justified. E.g., C > A.

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Courteous LP’s:
Ordering Lead Time Example

{leadTimeRule1} orderModificationNotice(?Order,14days)
← preferredCustomerOf(?Buyer,?Seller) ∧

purchaseOrder(?Order,?Buyer,?Seller) .
{leadTimeRule2} orderModificationNotice(?Order,30days)

← minorPart(?Buyer,?Seller,?Order) ∧
purchaseOrder(?Order,?Buyer,?Seller) .

{leadTimeRule3} orderModificationNotice(?Order,2days)
← preferredCustomerOf(?Buyer,?Seller) ∧

orderModificationType(?Order,reduce) ∧
orderItemIsInBacklog(?Order) ∧
purchaseOrder(?Order,?Buyer,?Seller) .

overrides(leadTimeRule3 , leadTimeRule1) .
⊥ ← orderModificationNotice(?Order,?X) ∧

orderModificationNotice(?Order,?Y) | (?X ≠?Y) .

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

End-to-End E-Contracting Tasks
• Discovery, advertising, matchmaking

– Search, sourcing, qualification/credit checking
• Negotiation, bargaining, auctions, selection, forming

agreements, committing
– Hypothetical reasoning, what-if’ing, valuation

• Performance/execution of agreement
– Delivery, payment, shipping, receiving, notification

• Problem Resolution, Monitoring
– Exception handling

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

SweetDeal Approach:
Rule-based Contracts for E-commerce

• Rules as way to specify (part of) business processes,
policies, products: as (part of) contract terms.

• Complete or partial contract.
– As default rules. Update, e.g., in negotiation.

• Rules provide high level of conceptual abstraction.
– easier for non-programmers to understand, specify,

dynamically modify & merge. E.g.,
– by multiple authors, cross-enterprise, cross-application.

• Executable. Integrate with other rule-based business
processes.

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Contract Rules
during Negotiation

Buyer, e.g.,
manufacturer

Seller, e.g.,
supplier of parts

Business
Logic

Business
Logic

Rules RulesContract Rules
Interchange

e.g., OPS5 e.g., Prolog
As part of XML

documents

Contracting parties NEGOTIATE via shared rules.

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Examples of Contract Provisions
Well-Represented by Rules
in Automated Deal Making

• Product descriptions
– Product catalogs: properties, conditional on other properties.

• Pricing dependent upon: delivery-date, quantity, group memberships,
umbrella contract provisions

• Terms & conditions: refund/cancellation timelines/deposits,
lateness/quality penalties, ordering lead time, shipping, creditworthiness,
biz-partner qualification, service provisions

• Trust
– Creditworthiness, authorization, required signatures

• Buyer Requirements (RFQ, RFP) wrt the above
• Seller Capabilities (Sourcing, Qualification) wrt the above

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Exchange of Rules Content
during Negotiation: example

Buyer, e.g.,
manufacturer

Seller, e.g.,
supplier of parts

Req. For Proposal

Proposal

Purchase Order

Ack. Deal

Counter-Proposal

Final Offer

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Example: E-Contract
Proposal from supplierCo to manufCo

• …
{usualPrice} price(per_unit, ?PO, $60) ←

• purchaseOrder(?PO, supplierCo, ?AnyBuyer) ∧
• quantity_ordered(?PO, ?Q) ∧ (?Q ≥ 5) ∧ (?Q ≤ 1000) ∧
• shipping_date(?PO, ?D) ∧ (?D ≥ 24Apr00) ∧ (?D ≤ 12May00).
• {volumeDiscount} price(per_unit, ?PO, $51) ←
• purchaseOrder(?PO, supplierCo, ?AnyBuyer) ∧
• quantity_ordered(?PO, ?Q) ∧ (?Q ≥ 100) ∧ (?Q ≤ 1000) ∧
• shipping_date(?PO, ?D) ∧ (?D ≥ 28Apr00) ∧ (?D ≤ 12May00) .

overrides(volumeDiscount , usualPrice) .

• ⊥ ← price(per_unit, ?PO, ?X) ∧ price(per_unit, ?PO, ?Y) GIVEN (?X ≠ ?Y).
• ...

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Negotiation Ex. Doc. Rules:
Counter-Proposal from manufCo to supplierCo

• …
{usualPrice} price(per_unit, ?PO, $60) ← ...

• {volumeDiscount} price(per_unit, ?PO, $51) ←
• purchaseOrder(?PO, supplierCo, ?AnyBuyer) ∧
• quantity_ordered(?PO, ?Q) ∧ (?Q ≥ 5) ∧ (?Q ≤ 1000) ∧
• shipping_date(?PO, ?D) ∧ (?D ≥ 28Apr00) ∧ (?D ≤ 12May00) .

overrides(volumeDiscount , usualPrice) .

• ⊥ ← price(per_unit, ?PO, ?X) ∧ price(per_unit, ?PO, ?Y) GIVEN (?X ≠ ?Y).

• {aSpecialDeal} price(per_unit, ?PO, $48) ←
• purchaseOrder(?PO, supplierCo, manufCo) ∧
• quantity_ordered(?PO, ?Q) ∧ (?Q ≥ 400) ∧ (?Q ≤ 1000) ∧
• shipping_date(?PO, ?D) ∧ (?D ≥ 02May00) ∧ (?D ≤ 12May00) .
• overrides(aSpecialDeal, volumeDiscount) .
• overrides(aSpecialDeal , usualPrice) .
• ...

Simply

added
rules!

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Negotiation Example --

XML Encoding of Rules in RuleML
• <rulebase>
• <imp>
• <rlab>usualPrice</_rlab>
• <head>
• <atom>
• <opr><rel>price</rel></_opr>
• <ind>per_unit</ind>
• <var>PO</var>
• <ind>$60</ind>
• </atom>
• </head>
• <body> … (see next page) </_body>
• </imp>
• …
• </rulebase>

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

What Can Be Done with the Rules in contracting,
& negotiation, based on our SweetDeal approach to rule representation

• Communicate: with deep shared semantics
– via RuleML, inter-operable with same sanctioned inferences
– ⇔ heterogeneous rule/DB systems / rule-based applications (“agents”)

• Execute contract provisions:
– infer; ebiz actions; authorize; ...

• Modify easily: contingent provisions
– default rules; modularity; exceptions, overriding

• Reason about the contract/proposal
– hypotheticals, test, evaluate; tractably
– (also need “solo” decision making/support by each agent)

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Example of Entailment: Sunday Stroll
• In Bayesian Probability KR:

– Let P be the premises:
• prob(rainySunday) = 0.4.
• prob(funSunday | rainySunday) = 0.3.
• prob(funSunday | ¬rainySunday) = 0.9.

–
– In this KR, P entails (among others) the conclusion:

• prob(funSunday) = 0.66.

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

Outline
• Introduction

– Commercial Rule Systems, Standards, Semantic Web, Services,
Business Applications, Business Value

• Semantic Interoperability Challenges
– Production LP Approach to KR

• Production LP KR Extension/Feature
• + Default Negation (Negation As Failure) Feature
• + Courteous Feature; + Other Features
• Semantic Translation of Production Rules ↔ PLP
• SweetRules implementation, translation ↔ Jess
• + Ontologies: Description LP; OO default inheritance

– FOL (beyond DLP) via hypermonotonic reasoning
• Conclusions and Future Work

5/25/2006 Copyright 2006 by Benjamin Grosof. All Rights Reserved

OPTIONAL SLIDES
END

