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ABSTRACT. Objective. As more sensors are added to increas-
ingly technology-dependent operating rooms (OR), physi-
cians such as anesthesiologists must sift through an ever-
increasing number of patient parameters every few seconds as
part of their OR duties. To the extent these many parameters
are correlated and redundant, manually monitoring all of
them may not be an optimal physician strategy for assessing
patient state or predicting future changes to guide their
actions.Methods.The method is illustrated by application to
seventy-six anesthetized patients for which thirty-two funda-
mental and derived variables were recorded at 20-second
intervals. The Iterative Order and Noise estimation algorithm
(ION) estimated the noise on each parameter. The perform-
ance of principal components analysis (PCA) was improved
by normalizing the noise estimated by ION to unity. A linear
regression of the resulting seven high signal-to-noise ratio
principal components (PC’s) predicted tachycardia 140 seconds
in advance.Results. ION estimated the noise on each param-
eter with su⁄cient accuracy to increase the number of signi¢-
cant PC’s from two to seven, all of which had identi¢able
physiological correlates. The resulting receiver operating
characteristic (ROC) suggested that a 70 percent prediction
rate with 5 percent false alarms could be achieved. Conclu-
sions. This paper illustrates the use of ION to improve
signi¢cantly the performance of PCA in the e⁄cient repre-
sentation of patient state and in improving the performance
of linear predictors of clinically signi¢cant parameters.

KEY WORDS. Anaesthesiology, multivariate signals, biomedical
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INTRODUCTION

When time is critical, the ability to consolidate infor-
mation into an e¡ective patient model to support apt
decisions is crucial to patient care. Assimilating infor-
mation has become increasingly harder as the number
and frequency of patient sensor data available to physi-
cians continues to grow with more computer technol-
ogy and monitoring tools entering the operating room.
Previous studies have examined the optimization of
monitoring tools and variables employed for anesthesia
[1]. This paper illustrates the use of an e⁄cient new tool,
the Iterative Order and Noise estimation algorithm
(ION), for addressing this problem of e⁄cient, dynamic
patient state characterization and analysis. It does so in
the context of tachycardia prediction in patients anes-
thetized with des£urane and undergoing surgery.



Clinical Background

Many drugs a¡ect the central nervous system and pro-
duce general anesthesia ^ comprised of sleep, hypnosis,
analgesia, muscle relaxation, and loss of re£exes. One
drug in this class, des£urane, is commonly used during
surgery in the operating room.
One method for administering anesthetics, such as

des£urane, involves inhalation of the agent as a vapor.
In the case of des£urane, one speci¢c protocol is the
following [2]: 1) intravenous administration of an initial
anesthetic as well as muscle relaxant, propofol and
succinylcholine, 2) tracheal intubation (i.e., placement
of the breathing tube through the vocal cords via the
mouth), 3) setting of the des£urane vaporizer (which
transforms des£urane to the gaseous phase) to 18 per-
cent, 4) setting of the rate of super-oxygenated air to
1 L/min, 5) observing the concentration of des£urane in
the inspired and expired gas increases with each breath,
and 6) setting of the vaporizer to 9 percent once the
desired inspired and expired concentrations are achieved
(i.e., 8 percent and 6 percent, respectively).
Although des£urane is expensive to administer in an

open circuit where the patient breathes only fresh gas,
in a semi-closed or partial-rebreathing circuit (where
the patient re-breathes exhaled gases supplemented with
oxygen and new anesthetic), des£urane administration
is cost e⁄cient, e¡ective, and fast (due to its low blood/
gas solubility) [3]. Yet des£urane does present a few
issues related to tachycardia [4], which generally occur
during the period when inspired and expired concen-
trations rise. This initial period generally lasts less than
15 minutes.

This paper explores a method of characterizing patient
state in terms of seven numbers based on thirty-two
direct and indirectly measured parameters, and the use
of these seven in tachycardia prediction. For purposes of
this paper, tachycardia is de¢ned using the classical
de¢nition of a heart rate above 100 beats per minute
(BPM). Such a prediction, even 140 seconds in advance,
would usefully alert the clinician to the impending
tachycardia and facilitate its prevention, control, and
correction.

Developing a model

Since tachycardia is a variable derived directly from
heart rate, a black-box predictor of heart rate has greater
clinical utility than a Boolean (yes/no) predictor because
it would quantify when the tachycardia threshold is
being approached or dangerously exceeded. By moni-
toring this prediction as well as the subsidiary variables,

the clinician can take steps (e.g., reducing inspired con-
centration or administering other drugs) in order to
minimize the duration of tachycardia or even prevent
its onset.

METHODS

Strategy

The data used to test the proposed strategy for model-
ing patient state was collected at the Brigham and
Women’s Hospital at the Harvard Medical School in
Boston, Massachusetts. For the patients in this study,
the anesthesiologist adjusted the drug vaporizer setting
based on sensors that record and display patient state via
twenty-¢ve fundamental variables sampled every 20
seconds. Although such data recording is uncommon, it
can be performed using standard anesthesia monitoring
systems and was done during the routine course of
anesthesia administration (e.g., via Modulus 2 Anes-
thesia Delivery System with Central Display, Ohmeda,
Madison WI). The twenty-two fundamental (three of
the twenty-¢ve were not recorded) and ten derived
parameters used for this research are listed in Table 1.
These parameters generally focus on cardiovascular,
pulmonary, and anesthetic performance. Derived pa-
rameters include the presence of tachycardia or hyper-
tension (i.e., systolic blood pressure >140 mmHg or
diastolic blood pressure > 90 mmHg). Also, the rates
of change and historical information of the fundamen-
tal variables are captured via their time derivatives,
integrals, and means (seeTable 1).
Although one might reduce these original and de-

rived parameters to an optimal, condensed ensemble of
variables for clinical use, no validated physiological
model or reduced data set has gained wide acceptance.
In lieu of such models, linear regression can be used
to develop predictors for physiological parameters of
interest. The inputs to such a regression might include
the values of all the available variables, sampled at
several times in the past. If it is important to account for
nonlinearities, neural networks can be trained in similar
fashion. Unfortunately both of these techniques are
handicapped by the requirement for an adequate train-
ing set from which the statistics can be deduced. In
practice, trustworthy systematic medical data sets are
seldom available for cohorts of more than tens or
hundreds of patients. Moreover, economics and practi-
cal considerations often preclude collection of all the
relevant variables. For example, patients of substantially
di¡erent ages, medical conditions, and state of health
may be combined, and it may be uneconomic to tran-
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scribe certain elements of patient treatment into the
database being analyzed. As a result, the e¡ective noise
on each variable is often not just the sensor noise, but
also the relevance of that parameter to the problem at
hand; this relevance is seldom known accurately in

advance. Thus, when using such data sets to develop
predictors, it is important to estimate and ameliorate
the total noise on each parameter to the extent practical.
The method presented here involves ¢ve steps: 1) the

ION algorithm [5] is applied to the time history of
training data vectors to estimate the additive noise
present in each variable, 2) the resulting noise estimates
are used to normalize each variable so that the noise
variances of each are equal, 3) PCA is used to derive the
principal components of the normalized data set, 4) the
number of degrees of freedom in the data set deduced
by ION is the number of principal components that
survive; the remainder are discarded, and 5) the sur-
viving principal components, possibly supplemented
by a few parameters believed to be singularly impor-
tant, are used in a traditional linear regression to pro-
duce the desired predicted output. The ¢nal operator
outlined above (i.e. linear regression) can be replaced by
a neural network if the data set is su⁄ciently robust, and
the problem su⁄ciently nonlinear, to warrant it.
Due to the critical role of ION in this process, it is

useful to examine its operation. The ION algorithm
operates on m � n matrices X comprising m unordered
vectors X of dimension n. Each vector X is presumed to
be the sum of a linearly transformed stochastic signal
vector P of order p, and an independent noise vector,
G1=2!, of order n> p, as speci¢ed by Equation (1):

X ¼ AP þG1=2 ! ð1Þ

where A is the unknown mixing matrix, and P is
assumed to be a zero-mean Gaussian signal vector
having unity variance for all p non-zero variables. G is
the unknown diagonal noise covariance matrix. The
noise vector ! is Gaussian with zero mean and its
covariance matrix is the identity matrix of order n. The
algorithm estimates p, G, and the set of !’s based on a
single training matrix X. It does so by iteratively: 1)
normalizing the noise variances to unity, 2) estimating
p using a scree plot such as that in Figure 1, 3) normaliz-
ing the vectors X so that the estimated noise has unity
variance: X’ = XG�1=2 , 4) estimating G and A using p
and the Expectation-Maximization (EM) algorithm
[6], and 5) testing for convergence su⁄cient to termi-
nate the algorithm.

DESIGN

To demonstrate and test the proposed patient-state
characterization protocol, OR data for ninety patients
at the Brigham and Women’s Hospital were randomly
selected from all those who received des£urane during

Table 1. Fundamental and derived parameters

No. Parameter Units Description

1 SYS mmHg Systolic blood pressure

2 DIA mmHg Diastolic blood pressure

3 MAP mmHg Mean arterial blood pressure

4 PR BPM Heart/pulse rate

5 SpO2 % Oxygen saturation

6 CO2 I mmHg Inspired CO2

7 CO2 E mmHg Expired CO2

8 RR BPM Respiration rate

9 VE L Ventilation expired

10 VT mL Tidal volume

11 Pmax cmH2O Pressure max.

12 Pmin cmH2O Pressure min.

13 PPlat cmH2O Pressure plateau

14 I:E N/A Inspired: expired ratio

15 O2 I % O2 inspired

16 N2O % N2O concentration

17 Agt I % Agent inspired

18 Agt E % Agent expired

19 VT-sp N/A Tidal vol. #2

20 Vent-st N/A Ventilation state (mechanical
vs. non-mechanical)

21 iT-st N/A Monitor state (logging vs.
normal)

22 NIBPint N/A Non invasive blood pressure
interval

23 PR�shift�7 BPM HR 7 samples (2 min. 20 sec.)
in the future

24 DERIV�AGT % / sample Derivative of agent expired

25 INT�AGT %� sample Integral of agent expired

26 AVG�AGT % Average of agent expired all
samples

27 HI�HR N/A Tachycardia present

28 HI�BP N/A Hypertension present

29 HI�HR�BP N/A Tachycardia or hypertension
present

30 DERIV�SYS N/A Slope of systolic BP

31 DERIV�DIA N/A Slope of diastolic BP

32 DERIV�HR N/A Slope of HR
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the period July 1997 to July 2000 using the aforemen-
tioned induction protocol and anesthesia monitoring
equipment. For each patient, the parameters listed in
Table 1 were recorded every 20 seconds. Each patient
record was de¢ned to begin at that ¢rst time sample
when all sensors were connected and functioning.
Next, the time of initiation of induction by inhaled
des£urane was located, and samples were taken for the
following 15 minutes (45 samples at 3 per minute). This
initiation point was determined based on inspired agent
concentration values above zero. For less frequently
sampled data (which included non-invasive blood pres-
sure - NIBP), linear interpolation was used. If too many
consecutive points were missed for a given parameter,
the patient ¢le was rejected.

The target prediction interval, 140 seconds, was chosen
based on an anesthetic physiological model which in-
cluded response times for the breathing circuit, uptake

into the lungs, uptake into blood, and transfer of the
drug to the vessel rich group (which includes the brain
and other e¡ect sites where a change in heart rate is
observed). This process has been described in previous
works [7, 8, 9]. There are several consequences of this
process to the control design criteria. If this change is
predicted 140 seconds in advance, then it can be miti-
gated by aggressive control of inspired concentration.
The normal circuit time constant is otherwise Volume/
Flow = (6 L)/(1 L/min.) = 6 minutes, plus the alveolar
time constant of 0.5 minutes. Aggressive control can be
achieved by rapidly changing inspired concentration
using high fresh gas £ow to overcome the time delay
introduced by the breathing circuit in combination
with the low fresh gas £ow (normally used to conserve
anesthetic agent and cost during induction of anesthe-
sia). Another approach to averting the change in heart
rate involves administering other drugs.

Fig. 1. Scree plot of patient data set. Solid line refers to scree plot of data set processed without ION. Dashed line refers to scree plot of data set
processed with ION.

354 Journal of Clinical Monitoring and Computing Vol 17 No 6 2003



RESULTS

Patient State Characterization

Of the 90 patients selected, 76 had su⁄ciently complete
data records for analysis. The approach outlined in
Figure 2 was implemented. That is, the noise was
estimated using ION and PCA was then performed on
the noise-normalized data set. Figure 1 illustrates the

impact of using ION before performing PCA, where
the eigenvalues of the principal components are plotted
sequentially with and without ION-based noise nor-
malization. This presentation, often called a scree plot,
is a useful way to estimate the number of meaningful
degrees of freedom in a multivariate data set. Such plots
typically exhibit a sloped plateau that corresponds to
noise. If the data set is large and the noise is perfectly
normalized, this plateau becomes less sloped and more
nearly £at. Eigenvalues signi¢cantly above this plateau

Fig. 2. ION-based predictor setup.
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generally correspond to meaningful signal-to-noise ra-
tios. The scree plot in Figure 1 illustrates how use of
ION increased the number of degrees of freedom with
useful signal-to-noise ratios from two, for PCA per-
formed on a multivariate data set with uniform variance
and zero mean across all parameters, to seven when the
variables are noise-normalized using ION noise esti-
mates. Not only did ION permit seven meaningful
principal components to be extracted, but their signal-
to-noise ratios are substantially larger. For example, the
leading principal component with ION has an eigen-
value more than four orders of magnitude above the
noise £oor, whereas this ratio is scarcely one order of
magnitude without ION.
In order to reveal the contributions of the original 32

parameters to each principal component, the top three
parameter coe⁄cients for each PC were calculated. To
facilitate comparison, the weights were normalized to
yield unity variance for each parameter. The result is
presented in Table 2. The physiological signi¢cance of
these principal components can be discerned. The ¢rst
PC combines various blood pressure (BP) measure-
ments. Certain of these BP parameters are expected to
be grouped since the mean arterial BP is approximately
two-thirds of the diastolic BP plus one-third of systolic
BP. The second PC helps quantify the gas being admin-
istered and absorbed by the patient. Respiratory and
cardiovascular variables predominate in the third and
forth PC’s. Speci¢cally, the third PC contains respira-
tory and heart variables synchronized. That is, a higher
PC-based value results if respiration and heart rate both
decrease. A di¡erent situation is represented within the
forth PC; a higher PC-based value results when heart
rate decreases and respiration rate increases. Ventilation
of the patient is nicely quanti¢ed by the ¢fth PC
through tidal and expired volumes. The sixth PC in-
cludes interaction of ventilation variables and pulse rate
via the weighted coe⁄cients shown in Table 2. The
seventh PC re£ects a history of the change and total
drug absorbed by the patient through various record-
ings (integral, average, and derivative) of the expired
drug vapor.
These seven signi¢cant PC’s were plotted against

time (i.e. as PC-based time values) and compared with
heart rate to determine if tachycardia could be traced
by inspection to £uctuations in one or more of these
PC’s. In this case, the threshold ‘‘HR==100,’’ de¢ned as
tachycardia. It was visually evident that the fourth PC
was particularly relevant.

Tachycardia prediction

Two tachycardia predictors were developed. The ¢rst
used a linear predictor based on the seven dominant
principal components deduced from PCA of 32 param-
eters that had been noise-adjusted using ION. The
weights of any derived components with future infor-
mation (e.g. predicted heart rate) were eliminated to
prevent non-causal behavior. The second predictor was
based on heart rate history. The predictors were trained
on the ¢rst 80% of the 76 patient database (i.e., 61
patients), and these predictors were then tested on the
remaining 20% of the patient database. The history-

Table 2. Principal components of patient data set

Parameter
number

Name Value

PC#1: BP quanti¢cation

3 MAP 0.054095
2 DIA 0.052442
1 SYS 0.051436

PC#2: Gas quanti¢cation

17 Agt I 0.107807
18 Agt E 0.101020
20 Vent-st ^0.069209

PC#3: Respiratory-cardio synced

8 RR ^0.153017
9 VE ^0.095526
27 Tachycardia ^0.074475

PC#4: Respiratory-cardio unsynchronized

27 Tachycardia ^0.116201
29 Tachy or hypertension ^0.115300
8 RR 0.095465

PC#5: Ventilation quanti¢cation

10 VT 0.221765
9 VE 0.167392
19 VT-sp 0.160948

PC#6: Pulse rate ^ vent. volume interaction

4 PR ^0.168363
10 VT 0.121817
9 VE 0.114756

PC#7: Agent history quanti¢cation

25 Integral agt E 0.213944
26 Current avg of agt E 0.193742
24 Derivative agt E ^0.119401

356 Journal of Clinical Monitoring and Computing Vol 17 No 6 2003



based predictor computes a running average of heart
rate samples to make a prediction. The ION-based
predictor uses the aforementioned seven signi¢cant
PC’s. The addition of time shifted versions of these PC’s
was also implemented, but did not signi¢cantly im-
prove performance. Using the predictor on the test data
set yielded the results shown in Figure 3. The largest
residues occur when the heart rate is changing rapidly.
The root mean square discrepancies between the pre-
dicted and observed heart rates were 11.5 and 15.6 BPM
for the ION-based and the heart rate history-based
predictors, respectively. For PCA-only (i.e. without
using ION), it was 14.1.
Perhaps of greater clinical utility is an assessment of

how often tachycardia is predicted correctly. To charac-
terize this performance, Receiver Operating Character-
istic (ROC) curves were developed for the ION and
history-based predictors, as illustrated in Figure 4. Each
ROC relates the probability of tachycardia detection to
the probability of false alarm. Figure 4 shows how the
number of missed detections is reduced by roughly
10^25% through use of the ION-based method. For
example, the curve suggests that the probability of

tachycardia detection is 70 percent with as few as 5
percent false alarms. The probability of detection can be
boosted above 80 percent if one is willing to tolerate
15 percent false alarms.
These results are dependent in part on the heart rate

threshold used in de¢ning a tachycardia episode. Figure 5
illustrates several ROC curves for di¡erent de¢nitions
of tachycardia. Perhaps the best performance is achieved
for thresholds in the vicinity of 100 BPM (the classical
tachycardia de¢nition), although dropping the threshold
to 70 BPM permits seemingly perfect prediction. Care
must be taken, however, in interpreting these curves.
For example, predicting 70 BPM is easy since almost all
predictions are above this point, and forecasting tachy-
cardia continuously will yield a high detection rate and
few false alarms. Also, the 130 BPM case had limited
data for training.
As part of this study, the general incidence of tachy-

cardia and hypertension was explored. While it was
possible that some patients would exhibit one or the
other of these conditions based on the work by Muzi
referred to earlier (especially considering that little or no
opioid was administered during the course of surgery),

Fig. 3. ION-based predictor output for test data set.The heart rate (BPM) for the ION-Based Predictor Model is shown with 6’s.The actual
data set heart rates are shown with*’s.
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it was surprising to ¢nd that nearly all the patients
(97.4%) surveyed here exhibited either tachycardia,
hypertension, or both at some point during the ¢rst
hour of the operation. This high incidence rate suggests
that the ability to predict onset of tachycardia (as well as
hypertension) could be a useful clinical tool for patient
evaluation if one wanted to avert such episodes. It
should be noted that the patient population studied here
was a group of healthy patients undergoing general or
gynecologic surgery which was expected to result in no
postoperative pain because of the nature of the proce-
dure and the administration of local anesthesia. No
patient had a measurable adverse outcome of any kind.
Additionally, approximately 80 percent, 78 percent, and
58 percent of the patients exhibited tachycardia alone,
hypertension alone, or both, respectively (seeTable 3).

DISCUSSION AND CONCLUSIONS

ION-based PCA analysis of high-order multivariate
clinical data based on limited numbers of patients can
facilitate e⁄cient characterization and prediction of

patient state. This approach was illustrated in the con-
text of tachycardia prediction in anesthetized patients
inhaling des£urane. It is conjectured that incorpora-
tion of such software in multivariate patient monitor-
ing systems could provide clinically useful support to
physicians in the operating room or in other contexts.
Applying these methods to other medical databases and
applications would be a useful next step in developing
this approach to improving clinical practice in an increas-
ingly automated multivariate medical environment.

Fig. 4. ION-based heart rate predictor output for test data set- with operating point marked.The solid line refers to the ION-based predictor.
The dashed line refers to the history-based predictor.

Table 3. Tachycardia and hypertension incidence during ¢rst hour of
operation

Patient condition Percent
a¡ected

Tachycardia (HR> 100 BPM) 80.3%
Hypertension (systolic> 140 or

diastolic> 90 mmHg) 77.6%
Tachycardia or hypertension 97.4%
Both tachycardia and hypertension 57.9%
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