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Abstract 

During the era of the Human Genome Project [1], the emphasis was on sequencing and 
annotating individual genes. At that time, the number of estimated human genes was thought 
to be 100 thousand genes. Yet, as the human genome project draws to a close [2], recent work 
has decreased the estimate to between 20-25 thousand not far from the number of genes in a 
simple worm (i.e. C. elegans). Thus, the complex engineering of a human must be from other 
areas such as the interactions of the gene’s products, or proteins. Given this, the field of 
proteomics has quickly been drawn to center stage. While biologists seek to study proteins, 
methods have been rather primitive until recently. A sudden surge of engineering and other 
technical talent has led this field and associated research to grow dramatically in the last 
couple of years. 
In this chapter, the topic of proteomics is introduced to an engineering/technical audience with 
an emphasis on the robotics and intelligent systems technologies used in this field. These 
include issues in protein extraction, separation, and identification. The associated analysis 
algorithms and statistical learning methods are also discussed. Two case studies regarding the 
above topics are then explored. Lastly, the future direction of the field and its challenges are 
delineated. Clinical applications of proteomics such as cancer diagnosis and drug discovery 
are expounded upon as relevant. 
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I The Promise of Proteomics 

Proteins are essentially the small machines that allow an organism to function. “Proteomics,” 
a term introduced in the early 1990s, is a field concerned with determining the structure, 
expression, localization, interactions and cellular roles of all proteins within a particular 
organism or subset of one [3]. Yet, until recently, it was only possible to explore proteins and 
their function one at a time. Indeed, the key to proteomics is its intrinsic focus on 
parallelization and computational techniques to study myriad proteins at the same time. 

Proteomics is set to have a profound impact on clinical diagnosis and drug discovery. In 
fact, most drugs target and inhibit the functions of specific proteins. 

Proteomics has come a long way since the mid-1990s when protein networks were 
largely studied using 2-D gel electrophoresis (discussed later) [3]. Clinical proteomics is 
concerned with identifying protein networks and the intracellular interactions between 
proteins as applied to clinical aims [4]. The functioning of the human cell can be likened to 
the operation of a factory, as proteins are machines that process/deliver products and 
messages to other proteins via biochemical interactions. These messaging pathways or routes 
are essential for cellular function. As such, their malfunction can also be the cause or 
consequence of a disease process [4]. It is this notion that stimulated the application of 
proteomic technologies to: oncology [5], neurology [6], toxicology [7], immunology [8], and 
many other areas [9-11]. Later in the chapter, mass spectrometry methods and their 
proteomics applications will be outlined. With robust and high throughput features, these 
tools have enabled the resolution of thousands of proteins and peptide species in bodily fluids 
ranging from blood [12] to urine [13, 14]. Such technologies have advanced research in early 
cancer diagnosis as well as in Human Immunodeficiency Virus (HIV) inhibiting drugs 
[4, 15]. 

Proteomics can and does leverage some of the engineering and statistical methodology 
developed for functional genomics approaches [16]. However, challenges have arisen in this 
new field and customized solutions such as fabrication of chips for parallelization of 
experiments [17-24], robotics [25-31], and machine learning techniques for intelligent 
decision analysis [32-34] need to be engineered. Other challenges are completely new and 
proteome specific. For example, post-transitional modifications of proteins can be vital for 
cell function. In such cases, one to one correspondence does not exist between each protein 
and its encoding gene. This is significantly different from the relatively static nature of DNA. 
Since the post-translational modifications occur after the protein is created (based on the 
genetic blueprint), such modifications cannot be seen via traditional genomics approaches. 

The Human Genome Project has demonstrated that speed, cost, and precision are the 
underlying factors in any large scale biological endeavor and that technological hurdles can 
be overcome with novel engineering approaches. Higher throughput and sensitivity are 
requirements of technologies aiming to capture quality snapshots of cellular activity. It is with 
this aim that academia and industry are pushing ahead in the automating processes such as 
robotic sample preparation [35], alternative readouts for protein interactions [36-38], and 
microfluidics [39]. Current instrumentation is far from optimal, however, partly because 
manufacturers have not yet had the necessary lead time to build systems perfectly tailored to 
protein analysis [40]. 
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In addition to sensitivity and throughput considerations, there are many data analysis 
challenges inherent in representation and interpretation of experimental results. Methods 
aimed at meeting these problems are largely grouped under bioinformatics, a 
multidisciplinary discipline, absorbing methods in computer science, signal processing, 
statistical inference, and other engineering-related fields. Algorithms such as the Basic Local 
Alignment Search Tool (BLAST) [41] have been developed for automated protein 
identification. Yet, more intelligent decision making algorithms are needed to improve 
detection of post-transitional modifications in MS spectra, peptide mass fingerprinting, and 
electrophoresis image analysis. 

II Introduction to Molecular and Cellular Biology 

This section summarizes some of the core molecular and cellular biology concepts that 
underlie the study of proteomics [42, 43]. At the microscopic level all living species are 
composed of cells, each with differing complexities and functionalities. However, all cells, 
whether they are human or bacteria, share some common functional parts. Cells typically 
consist of an outer wrapper called the cell membrane, with a watery fluid inside called the 
cytoplasm. Cytoplasm is approximately 70 percent water; the other 30 percent is filled with 
proteins made by the cell, along with smaller molecules. At the center of the cell is the 
nucleus, a compartment that holds the master controller of the cell: deoxyribonucleic acid 
(DNA). DNA serves as the blueprint for proteins by encoding the genes that are used to create 
them. 

A DNA: A Blueprint for Proteins 

DNA guides the cell in its production of new proteins. The DNA in a cell can be thought of as 
encoded message. Rather than a binary (0 or 1) or alphanumeric (26 possibilities per letter) 
message, each ‘letter’ in the message is one of four different nucleotides, or bases. The four 
bases in DNA's alphabet are: adenine (A), cytosine (C), guanine (G) and thymine (T). Each 
message has built-in error detecting code via a redundant message that is encoded in parallel. 
That is, each base has a complimentary base, so as to form a pair bonded together at each 
‘letter’ position. Adenine and thymine always bond together as a pair, and cytosine and 
guanine bond together as a pair. The pairs link together like rungs in a ladder as shown in 
Figure 1. In this example, the top message is ACGTACC from left to right. Assuming no 
errors, the bottom ‘redundant’ sequence simply follows the aforementioned nucleotide pair 
bonding rules. 
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Figure 1. The DNA 

A gene is a section of DNA that acts as a template for the ultimate structure of a protein 
(see Figure 2). Consequently, the DNA can be thought of as a consisting of a sequence of 
genes that encode for all that an organism is made of. DNA in the human genome is arranged 
into 24 distinct chromosomes, physically separate molecules that range in length from about 
50 million to 250 million DNA base pairs. 

 

 

Figure 2. A Gene 

The human genome project has established all 3 billion of the base pairs in a typical 
human's DNA [44]. These base pairs are estimated to encode for 20,000 - 25,000 protein-
coding genes [2]. Genes, however, comprise only about 2% of the human genome [45]. The 
remainder consists of non-coding regions, whose functions may include providing 
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chromosomal structural integrity and regulating where, when, and in what quantity proteins 
are made. 

B Proteins: Molecular Machines 

A protein is any chain of amino acids. Amino acids are organic compounds containing an 
amino group (NH2) and a carboxyl group (COOH). Proteins are made of amino acids by 
stringing together as many as few hundred amino acids in a very specific and unique order. 

Figure 3 illustrates the chemical structure of two amino acids. It can be seen that the top 
portion of each one is the same, a common feature of all amino acids. The functional chain at 
the bottom (the circled H and CH3 in these two amino acids) is the variable region from one 
amino acid to another. 

 

Figure 3. Amino Acids 

The covalent linkage between two adjacent amino acids in a protein chain is called a 
peptide bond. For this reason, proteins can also be referred to as polypeptides. Regardless of 
the specific amino acids from which it’s made, the polypeptide has an amino (NH2) at one 
end and carboxyl group (COOH) at its other end. 

The chain of amino acids folds into a unique shape. The chemical makeup and shape of a 
protein allow it to participate in chemical reactions necessary for the cell’s sustenance. For 
example, the sugar maltose is made from two glucose molecules bonded together. The 
maltase protein is shaped in such a way that it can break the bond and free the two glucose 
molecules. 

Proteins can be broadly organized and categorized by their functions and structures, 
performing structural roles, handling metabolic chores, and participating in signaling 
pathways, to name a few. They can be thought of as being made of modular units 
(motifs/domains) that confer specific properties and functions. These are recognizable amino 
acid sequences that show similar properties or functions when they occur in a variety of 
proteins. The significance of motifs and domains for proteomics is that they represent the 
transformation of peptide sequence to protein functions. The cellular roles of proteins with 
unknown functions can be predicted by the occurrence of recognizable motifs within them. 
Said another way analytical proteomics can define sequence and sequence can define 
biological function [46]. It should be noted that approximately 40% of the human genome 
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encodes proteins with no known function [47]. Assigning functions to these proteins and their 
interactions is one of the challenge of proteomics [48]. 

C The Central Dogma: From DNA to RNA to Protein 

There are several steps that need to occur for the information encoded in DNA, made up of 
only four unique nucleotides, to be transformed into a protein, containing 20 unique amino 
acids. This process is part of what is known as the central dogma of molecular biology [49]. 

To create a protein (see Figure 4), the cell must first transcribe the gene in the DNA into 
messenger ribonucleic acid (mRNA). If DNA is like the permanent paper blueprint, then 
RNA is like the current day’s memo on how to implement it. In fact, DNA is inherently a 
more stable molecule than RNA. Thus, DNA is suitable for long-term storage while RNA is 
used for communicating quick messages regarding the cell’s current protein needs. The 
transcription is performed by a protein called RNA polymerase. RNA polymerase binds to the 
DNA strand at the so-called promoter site, unlinks the two strands of DNA and then makes a 
complementary copy of one of the DNA strands into a RNA strand. One additional 
complexity that can occur here is alternative splicing [42] in which variable segments of a 
gene’s message can be spliced together to form the ultimate messenger RNA. 

 

 

Figure 4. The Central Dogma: From Genes to Proteins 

In any case, the strand of messenger RNA then goes from the nucleus to a ribosome, a 
compartment within the cell that translates the RNA sequence to a protein. To generate the 
right amino acids, a ribosome takes the nucleotides in sets (referred to as a codons) of three to 
encode for each of the 20 amino acids. For every three base pairs in the original DNA 
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sequence, one amino acid is generated for creation of a protein. Because DNA consists of 
four different bases, and because there are three bases in a codon, there are 43 = 64 possible 
combinations for a codon. Yet, since there are only 20 possible amino acids, some 
redundancy exists in the codon codebook and several different codons can encode for the 
same amino acid. 

The result is that the codons are translated into a string of the amino acids that are strung 
together to form a long chain. When the last codon, the stop codon, is reached, the ribosome 
releases the chain to form the final protein. It quickly folds into its characteristic shape, floats 
free, and begins performing its function in the cell. 

Once translated, posttranslational modifications can alter protein. These changes are the 
finishing touches put on the protein to be able to perform its function and may occur at any 
time during the protein’s life cycle. One such posttranslational modification critical to cell 
regulation is phosphorylation, a process by which a phosphate group is added to the protein. 

Proteomics technologies are used to identify posttranslationally modified proteins, 
something that cannot be analyzed using genomics since these changes occur after the 
translation process. For example, one proteomics study on phosphorylation [50] has examined 
the effects of phosphotyrosine-containing proteins in lung cancer tissues. The 
phosphorylation of proteins in the lung tissue showed a high level of correlation with post-
surgery prognosis. They concluded that tyrosine phosphorylation of the proteins involved in 
regulating cell adhesion were correlated with the survival. This finding suggested that this 
phosphorylation may perturb cell-cell adhesion and activate tumor invasion. 

D From Genome to Proteome 

At the DNA level, each cell contains all the information necessary to make a complete human 
being. However not all genes are expressed in each cell. Genes that encode for proteins 
essential to basic cellular functions are expressed in virtually all cells, whereas those with 
highly specialized functions are expressed only in specific cell types. Every organism has one 
genome but many proteomes, thus the proteome in any cell represents some subset of all 
possible gene products. 

The recent completion of the human genome sequence has provided evidence that the 
human genome encodes between 20,000 and 25,000 genes as noted earlier. Interestingly, this 
is only about slightly larger than the approximately 19,000 genes contained in the worm 
(Caenorhabditis elegans) genome [51]. In view of the tremendous differences in the 
complexity of the human organism compared to the worm, the value of proteomic over 
genomic approaches becomes evident. That is, the complexity of the human organism must 
lie in the diversity of human proteins and their interactions rather than in the static human 
genome. 

Genomics focuses on the statistic structure of the DNA and aims to determine the DNA 
sequence of various organisms and differentiating between individual’s sequences. The next 
level of complexity is the area of functional genomics which deals with the amount of mRNA 
transcription in cells. Cells use alternative splicing to produce different transcripts from the 
same gene; this means that there isn’t a one to one relationship between the genome and the 
transcript. Although mRNA profiling through microarrays offers immense potential for the 
understanding of molecular changes that occur during biological processes including disease 
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progression, it does not capture mechanisms of regulation involving changes in cellular 
localization, sequestration by interaction partners, proteolysis and recycling. Studies in yeast 
have shown that there is a weak correlation between mRNA levels and protein expression. In 
fact, mRNA levels in some genes were the same value as others while the protein levels 
varied by more than 20-fold [52]. The level of any protein in a cell at any given time is 
controlled by a number of variables: 

 
• The rate of transcription of the gene 
• The efficiency of translation of mRNA into protein 
• The rate of degradation of the protein in the cell 
 
Proteomics is the next layer of analysis. 
Any protein, though a product of a single gene, may exist in multiple forms at any given 

time. Most proteins exist in several modified forms which affect protein structure and 
function. The status of the proteome within a cell reflects all the cell’s functions. The 
challenge of proteomics is detecting many relatively low abundant proteins that play a role 
beyond general cell upkeep and which may exist in multiple modified forms. In recent years, 
proteins with specific amino acid sequences, structures, functions, concentrations, and post-
transitional modifications have all been explored [53]. 

Proteomics encompasses four major applications. Mining is the process of identifying 
and cataloging as many proteins as possible directly rather than inferring them from gene 
expression. Protein expression profiling is the identification of protein abundance while the 
organism is in a specific state. This could be exposure to drug or a disease state. Protein-
protein network mapping is concerned with how proteins interact with each other within a 
cell. These interactions can be permanent or transient. Lastly protein modification studies 
strive to identify how and where proteins are modified. 

Even minute changes to proteins can cause major changes in function with pathological 
consequences. For example, a change in just one amino acid in one type of polypeptide chain 
can result in sickle cell anemia, a devastating hemolytic disease that often results in death as a 
result of abnormal red blood cell function and recurrent clotting episodes [54]. 

III Technologies & Automation in Proteomics 

The move towards robotics and automation in the life sciences has been underway for nearly 
20 years [55]. The growth of this research area is illustrated in Figure 5 below. Using the 
Medical Subject Heading (MeSH) database and the PubMed citation database [56-58], the 
number of annual research articles in were calculated within several topics as a proxy for 
research activity. These included: automation, robotics, and biomedical engineering-related 
fields. These were compared to all research articles that appeared in the index annually. For 
each subcategory, the y-axis is normalized to the number of articles published in 2003 within 
that subcategory (100%). Thus, the growth of the various fields can be compared to the 
overall growth of research papers during the decade 1993-2003. In particular, all of the 
technologies related to automation, robotics, and biomedical engineering-related fields grew 
at a similarly spectacular rate of approximately 3-5 fold, while the overall citation index only 
grew by around 1/3. The graph shows that this growth gives no sign of saturation. 
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Figure 5: Automation, Robotics, and Biomedical Engineering-Related Papers are growing at a much 
faster rate than the papers in all fields in the PubMed database. 

Researchers are looking to robotics to search entire proteomes for potential targets for 
treatment. Robotics can increase throughput, eliminate sample contamination, reduce human 
error, and perform repetitive processing. In particular, the high-throughput demands of the 
pharmaceutical industry for drug screening have resulted in an increased need for automotive 
approaches to supplant historically manual techniques. 

Automation has become common place in all stages of an assay from sample preparation 
(see Figure 6) to processing, analysis, and information management (see Figure 6). Bench-top 
automated liquid handling and sample dispensing systems are becoming widely available. 
Miniaturized pipetting robots, though expensive, save researchers money simply by using less 
(20 nanoliters) of the costly reagents used in biomedical research. Automated protein 
purification is now possible with microfabrication technology developed for semiconductor 
research in the form of “chips” with microscopic channels [55]. Small electric currents or 
vacuum-based pressure techniques can used to conduct the flow of fluids. Electrophoresis gel 
imaging, robotic gel cutting, and mass spectrometry sample plate loading are other examples 
of automation [59-61]. 

To extract useful information from terabytes of data gained during the automated process, 
information management systems specific to the life sciences have been created. Laboratory 
Information Management Systems (LIMS), as they are typically called, are designed to mirror 
the natural work flow of the laboratory, integrating manual and automated processes. For 
example, robotic platforms can track a sample and its accompanying data through various 
processes [55]. An example of LIMS is Nautilus, a proprietary software suite where data is 
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put into extensible markup language (XML) format, a standard in many industries for storing 
data structures [62]. 

 

 

Figure 6. Sample Preparation Robot 

Automation and robotics also have introduced some novel problems which have opened 
up new avenues for research [55]. Downtime for reconfiguration or replacements can 
significantly hinder throughput. Research from fault tolerant networks, redundant machinery, 
and/or parallelization can prove useful here [63-69]. Integration between machinery from 
various vendors is another issue in lab automation. A trade off exists between buying whole 
systems from one vendor (where individual components may not meet all specifications) 
versus for separate vendors (where intercomponent integration may be more difficult). 

A Analytical Polypeptide Separation 

Mass spectrometry has not been able to identify whole proteins solely based on their 
molecular masses. This is due to the fact that mass spectrometry measurement accuracy 
decreases as the protein mass increases, multiple proteins have similar masses, post-
transitional modifications complicate the assignment based on protein mass, and lastly, not all 
proteins are amenable to intact mass measurements [70]. More discussion of some of the 
statistical issues involved is presented in the next section. 

The essence of analytical protein identification centers around the following: most 
peptide sequences of approximately six or more amino acids are largely unique within the 
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proteome of an organism [46]. This will result in identifying a protein based on the 
identification of a hexapeptide (i.e. a peptide consisting of six amino acids). The confidence 
in this match is increased if multiple partial pieces of the entire protein can be matched. 

Thus, proteins can be identified via a multi-step process. First, they are cut into small 
pieces (i.e. small peptides) though a digestion process and these small pieces can then be 
identified via mass spectrometry (MS) to a high degree of accuracy (unlike the entire protein). 
A database can then identify which protein these small peptides originated from. 

Yet, even before the digestion process and mass spec analysis, a number of steps are 
needed to facilitate analysis. Proteins must be extracted from biological samples such as a 
piece of tissue or cultured cells. The next step is to separate the proteins contained within the 
tissue. The most popular protein separation methods are 2-D gel electrophoresis (e.g. sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis, or SDS-PAGE for short), preparative 
isoelectric focusing (IEF), and high performance liquid chromatography (HPLC). HPLC and 
MS (HPLC-MS) is a combination that has lent itself well to automation and it is thus 
expected that HPLC will likely dominate polypeptide separation in the long run (though 2-D 
SDS-PAGE is still prominent today [53] ). 

In 2-D SDS-PAGE, proteins are separated first by their isoelectric point followed by 
separation according to molecular weight. The result is the separation of proteins into spots 
on a gel containing sample proteins. The intensity of each spot is proportional to the protein 
abundance. The stained gel image can be analyzed using imaging analysis techniques and a 
section of the gel containing an isolated protein can be cut out for further analysis by other 
methods such as mass spectrometry. Two or more samples from differing cellular states 
(diseased and normal) can be compared to identify relevant proteins. 

Integrated systems for performing the above tasks are currently being made available. 
These systems include: robotic sample preparation, 2-D gel electrophoresis, gel extraction via 
precision robots, ionization labeling, and MS peptide fragments analysis. In these systems, 
data generated from all the instruments are represented in a user friendly graphical user 
interface (GUI) [71] for easy analysis. These systems are crucial to high throughput, in some 
instances increasing processing power by 5 fold [72]. A shortcoming in these systems stems 
from the fact that samples are typically treated in a homogenous fashion with no feedback 
control mechanism. For example, a lab technician doing a gel protein digestion can account 
for the spot intensity by adjusting the amount of protease (an enzyme used to cleave the 
protein into peptides) and re-suspension volume based on the sample. However, intelligent 
systems are not yet available to make such decisions [72]. 

Electrophoresis’s application is limited due to its small dynamic range and use of 
separated protein spots in the detection technique. It also leads to a lack of sensitivity for less 
abundant proteins. Using current 2-D methods it is only possible to detect about 3,000 protein 
spots on an 18 x 20 cm2 gel [73]. Yet, approximately 5,000-10,000 genes are expressed in a 
cell at any given time, resulting in the creation of at least 20,000-30,000 distinct proteins (due 
to alternative splicing and post-transitional modifications). 

Another drawback of the gel approach is limitations of imaging and quantification 
systems which have led many to use manual examination to verify the accuracy of detected 
spots. This necessary verification process is a major bottleneck in efforts to automate such 
proteomic methods. 

HPLC is a protein separation method most commonly used after protein digestion. In this 
approach, the proteins in a sample are primarily digested (cleaved into smaller peptides) using 
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a protease such as trypsin. The chromatography portion of this method involves a separation 
method typically based on one of the following attributes [46]: 

 
• Hydrophobicity: lacking attraction to water 
• Strong cation exchange: net positive charge 
• Strong anion exchange: net negative charge 
• Size separation: size/molecular weight 
• Special affinity: interaction with particular functional groups 
 
Multidimensional liquid chromatography, or tandem liquid chromatography (LC), is the 

process of running a sample through two or more steps of LC and then separating the peptides 
based on multiple attributes. This creates a more refined subset of the original mixture of 
peptides. Multidimensional LC coupled with tandem MS (LC-LC-MS/MS) is a method used 
in the analysis of complex mixtures of peptides. This method is commonly known by the 
acronym Multi-Dimensional Protein Identification Technique, or MudPIT for short [74]. 

A significant advantage of MudPIT is its lack of 2-D electrophoresis, a time consuming 
and limited method as previously mentioned. The use of tandem LC increases the number of 
peptides that can be identified from fairly complex mixtures. As an example, in an analysis of 
a yeast cell lysate [75], 749 unique peptides (composing a total of 189 unique pre-digested 
proteins) were identified in a single MudPIT experiment, considerably more than even a 
single phase LC-MS/MS experiment. The most important advantage of tandem LC is the 
wide dynamic range of proteins that can be identified, eliminating the limitations presented by 
SDS-PAGE [76]. There are a number of works [75] where the analysis of a protein complex 
by 2-D electrophoresis yielded less identifiable proteins than the MudPIT approach. The only 
current drawback of MudPIT is the lack of sufficient bio-computing algorithms and 
visualization methods available to render the terabytes of data generated in a comprehendible 
format for scientists to examine. If these issues are solved, methods involving tandem liquid 
chromatography followed by MS techniques are set to significantly increase throughput and 
may ultimately replace 2-D electrophoresis in the long term. 

B Protein Mass Spectrometry 

Mass spectrometry (MS) is turning out to be one of the high growth areas in proteomics 
research in recent years. As shown in Figure 7, the field of mass spec in general has grown 
over 2 ½ times over the past decade in terms of PubMed related publications measured as 
discussed in “Technologies & Automation in Proteomics” section. This compares to a 1/3 
increase in overall PubMed research article publications. Part of this growth is due to Mass 
spectrometry’s new applications in proteomic domains (as opposed to classical analytical 
chemistry-affiliated molecular studies) such as proteome mining, post-translational 
modifications, and protein-protein interactions. The immense amounts of data generated by 
MS based proteomics have paved the way for systematic identification of proteomes and 
intra-cellular dynamics. MS is also easily adaptable to high-throughput formats, a fact which 
has made it the method of choice for protein identification and characterization [73, 77]. An 
exhaustive review is not within the scope of this chapter, however the effort has been made to 
give an overview of the technology with biomedical applications of its use. 
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Figure 7: Mass spectrometry is growing at a much faster rate in terms of papers compared to the general 
PubMed database. 

There are three main components in any MS machine: the source, mass analyzer, and 
detector. The source produces ions from the biological sample, the mass analyzer processes 
the ions in mass-to-charge (m/z) ratio dependent manner, and finally the detector detects the 
ions resolved by the mass analyzer. Fundamentally, MS converts the sample mixture into 
ions, analyzes them, and estimates their corresponding mass-to-charge ratios. The digestion of 
protein samples into small peptides (as described in the previous section) results in proteins 
being cleaved or cut between predictable amino acid locations. A database search of the 
masses is then carried out to decide which protein the sample peptide originated from. The 
described process demands high sensitivity, resolution and accuracy [78]. Sensitivity is 
required to measure masses on the order of femtomole (10-15) quantities with high resolution 
to distinguish between ions of the same m/z values. 

Three prominent MS ionization methods used in proteomics are Electrospray Ionization 
(ESI), Matrix Assisted Laser Desorption/Ionization (MALDI) and Surface Enhanced Laser 
Desorption/Ionization (SELDI). In ESI mass spectrometry, a potential is applied to create a 
fine mist of charged droplets (including the dissolved peptide sample) that are subsequently 
dried and introduced into the mass analyzer. The solution used as input to the MS is often the 
output of HPLC (and includes digested proteins as well as the protease used to cleave them). 
In contrast to MALDI, ESI produces highly charged ions without fragmentation of the ions 
into the gas phase [73]. MALDI-MS is normally used to analyze relatively simple peptide 
mixtures, whereas integrated high performance liquid chromatography ESI systems (HPLC-
ESI) are preferred for the analysis of complex samples. 
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The first step in the MALDI ionization source is the addition of the sample to a chemical 
matrix. The matrix includes photon absorbing molecules with a specific amount of 
chromophore, sensitive to light at a specific wavelength. The mixture is then placed on a 
small slide and allowed to dry. The dried mixture is a crystal lattice containing the desired 
sample to be analyzed. The crystal is then struck with a laser beam. The matrix molecules 
absorb the energy emitted by the laser, causing their temperature to increase. This excess heat 
causes the sample peptide to transform into gas phase [79]. Each peptide tends to (generally) 
pick up a single proton, creating a positive ion. This is significant since the m/z ratio is thus 
precisely the mass (z=1). This is in contrast to ESI where a peptide sample can pick up tens of 
protons, causing various peptides with the same mass to have differing m/z ratios. In any 
case, the ion then enters the mass analyzer where their m/z ratio-dependent behavior possible 
to differentiate between peptides present in the sample (e.g. see Equation 1 and 
accompanying text). SELDI is similar to MALDI; the ionization into the gas phase via photon 
absorption from a laser source remains the same. They differ in that SELDI sample plate 
surfaces are designed to react with peptide molecules with particular properties. Consequently 
peptides with similar physical and chemical attributes are retained, increasing their chance of 
becoming ionized and providing another layer of filtering (and decreasing required spectrum 
bandwidth) which helps in the identification of the peptides by a database search [80] or in 
creating diagnostically useful proteomics profiles. 

SELDI has become increasingly popular since a landmark controversial study from the 
Liotta lab was first published in Lancet [81] involving diagnosis of ovarian cancer without 
actually identifying any proteins. As shown in Figure 7, the field of SELDI (indexed under 
MALDI in MeSH), measured in terms of papers, has grown very rapidly since being 
“introduced” as a category within MeSH in the 1990’s. The subset of MALDI/SELDI papers 
affiliated with proteomics has exhibited even faster growth. 

As alluded to earlier, MS is also a clinical tool and has been used in numerous disease 
studies [4, 15, 82]. In an HIV study [83], MALDI was used to identify a family of proteins 
contributing to the CD8 antiviral factor, an important element in the pathology of AIDS. 
SELDI technology has also been applied to serum for cancer detection. Using machine 
learning techniques, early studies [4, 35] were the first to predict pathological states in their 
respective domains, such as ovarian cancer and preleukemia, solely using serum proteins. 
Rather than identifying proteins, such early studies yielded accurate diagnostic information in 
their respective fields based on the overall pattern of protein expression. In the case of ovarian 
cancer, the importance of early diagnosis is apparent in the high five year survival rate (95%) 
of patients with cancer limited to the ovary compared to a 35-40% five year survival rate for 
late stage patients [4]. SELDI has also been used in diagnosis of neurological diseases such as 
Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, schizophrenia, and many 
others [82]. 

As with other processes in proteomics, MS sample preparation is undergoing automation 
and miniaturization. SELDI has been implemented to allow parallelization via multiple 
sample spots on arrays (see Figure 8). There are now “Lab on a CD” compact discs on which 
sample preparation procedures for peptide fingerprinting (or sequencing) by MALDI are 
miniaturized. A typical CD can prepare 96 protein samples simultaneously [71]. Systems are 
available that use robots to load a CD with reagents to purify proteins using micro-fabricated 
channels and centrifuge technology [55]. In the future, a fully automated high throughput 
protein analysis tool may be on a single chip. The Robot Automated Sample Preparation and 
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Analysis Pipeline for Proteomics (Raspap) system by Alterovitz, et.al. [35] successfully 
integrated hardware and software methods for SELDI-based proteomics analysis. The use of 
robotics and intelligent decision systems within this system will be discussed further in the 
‘Integration’ section. 

 

 

Figure 8. SELDI Array 

With respect to mass spec technology, there are four basic types of mass analyzers 
currently used in proteomics research. These are the ion trap, time-of-flight (TOF), 
quadrupole time-of-flight (Q-TOF), and Fourier transform (FT-MS) ion analyzers. They are 
very different in design and performance and each with its own advantages. They can be used 
alone or put together in tandem to take advantage of the unique strengths of each [77]. 

 

 

Figure 9. Steps Involved in tandem mass spectrometry 
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In the ion-trap analyzers, ions are first confined within a trap via electrically active 
electrodes on the top, bottom, and middle (via a ring electrode). The ion trap collects the ions 
for a certain time interval and then subjects them to MS or MS/MS analysis. Ion traps are 
robust, sensitive, and relatively inexpensive. They have produced a large percentage of the 
proteomics identification–related results reported in the literature [77]. The Fourier transform 
ion cyclotron resonance MS (FT-MS) is similar to an ion trap. This method however employs 
a magnetic field for detecting ions in the trap [84]. But in spite of the enormous potential in 
terms of measuring low abundance proteins, issues ranging from cost to operational 
complexity and low peptide-fragmentation efficiency have limited use of FT-MS instruments 
in proteomics research [79]. 

In TOF analyzers, time is measured for the gas-phase ions to travel from the ionization 
source to the detector, which is then related to the m/z ratio [85]. This analyzer is not as well 
suited for tandem MS (see below) and has the disadvantage of being dependent on sample 
quality for successful peptide identification [77]. A quadrupole mass analyzer is a variant of 
TOF that consists of four parallel metal rods that are arranged lengthwise. These can be 
manipulated to allow ions of a specific m/z ratio to pass between them for detection. The TOF 
analyzer is typically paired with MALDI (MALDI-TOF) or SELDI (SELDI-TOF) where as 
the quadrupole and Fourier transform methods use ESI sources. The equation governing TOF 
analyzers with some common values (e.g. for PBS II SELDI-TOF, Ciphergen, Fremont, CA) 
is shown below. 

 

 2
0

/ ( )m z a t t b
U

= − +  

 
Equation 1: Physics -based formula for mass-to-charge ratio 
Where: 
 

t = time of flight (µs) 
m = mass (Da) 
z = charge 
U = 20,000 Volts 
a = 0.272, b = 0, t0 = 0.0038 are constants 
 
An overview of tandem MS (MS/MS) is shown in Figure 9. First, peptide ions generated 

from an ESI source are separated based on the m/z ratio. In the second round, a single m/z is 
chosen and is subject to Collision Induced Dissociation (CID) [86]. This process induces 
fragmentation of the peptide into fragment ions, which are then analyzed on the basis of their 
m/z. The resultant tandem spectra of amino acid composition can be searched against protein 
databases to identify the protein [87]. Matches from at least three to six peptides derived from 
the same protein are typically required to positively identify a protein [88]. Tandem MS also 
provides information about the nature and location of peptide modifications. The extent and 
comprehensiveness of the available databases are extremely crucial as database-searching 
strategies can be applied only if the protein sequence exists in the database. Sequest, 
developed at the University of Washington [89], is the most widely used tool for searching 
protein databases [90]. Sequest, discussed further in the next section, is ideal for high-
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throughput proteomics as it automatically extracts and searches the MS/MS data against a 
protein database [91]. 

It must be mentioned that although MS is a sensitive method for identifying proteins, 
there are quantitative shortcomings [92]. The intensity of a peptide peak depends linearly on 
the concentration of the peptide. However, different peptides have different propensities for 
ionization. Thus, two peptides present in equal amounts may show substantially different 
intensities in the mass spectra. This problem has been addressed by modifying one of the 
sample types with a stable isotope (e.g. the cancer samples) while leaving the other 
unchanged (e.g. the control samples). This changes the molecular weight of the isotope-based 
samples, but not the mass spectrometer’s behavior in terms of the peak intensities. 
Quantitative differences are then determined directly as the difference in peak area between 
the two peptides in the mixed sample [53]. 

C Database Search Algorithms for MS and MS/MS Spectra 

Following MS or MS/MS processing, a database search can be carried out to try to identify 
proteins of interest. One such method, known as peptide mass fingerprinting, involves 
identification of a protein given peptide MS information. Protein identification with tandem 
MS (MS/MS) data and the Sequest algorithm is a second approach. 

Following application of analytical protein separation methods such as 2-D 
electrophoresis, digestion of the excised proteins, and MS (e.g. MALDI-TOF) on the 
resulting peptides, one obtains a set of m/z ratios of the peptides present in the sample. One 
goal in proteomics is to determine the protein identities with high certainty. The success of 
the identification process is dependent on the quality of MS data, the accuracy of the 
database, and the power of the search algorithm used [93]. 

In a typical identification algorithm, a database of known proteins is set up (e.g. using 
SWIS-Prot, OWL, and/or NCBInr). A protease is specified and used for virtual (i.e. in silico) 
protein digestion to yield a master peptide list with corresponding masses. Matches are made 
between peptide masses obtained from MS and the peptide master list. If several of these 
peptides uniquely match the same protein, then the unknown sample protein can be identified. 
The process is also applicable if there are multiple proteins. In that case, however, there is 
more room allowed for error and a scoring system is typically used to rank the fidelity of each 
match. Most scoring systems assign higher scores to those proteins with the greatest number 
of peptide matches. This tends to give bigger proteins a higher score, simply because they 
yield more peptides upon digestion [46]. Some probability based scoring algorithms have 
emerged [94]. One such algorithm is ProFound [95]. 

ProFound ranks protein candidates using a Bayesian-based algorithm, taking into account 
individual properties of proteins in the database as well as other information relevant to the 
experiment. The algorithm assumes that the candidate protein is contained in the database and 
that all the detected peptide ions come from the protein under consideration. A hit is a match 
between a measured mass and a calculated theoretical peptide mass given an accuracy range. 
The ranking is directly proportional to P(k | D,I), namely the probability for each hypothesis k 
given data D and background information I. This score is calculated as shown in Equation 2 
below. 
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Equation 2: ProFound Bayesian-based algorithm 
In Equation 2, the variables are defined as follows: 
 

K : hypothesis that: protein k is the protein being analyzed 
D : the experimental data 
I : available background information about the protein (species of origin, enzyme 

cleavage chemistry, approximate molecular mass, previous experiments, etc.) 
N : the theoretical number of peptides generated by fragmentation of protein k given a 

protease. 
r : the number of hits 
mmax - mmin : the range of measured peptide masses 
mi: the measured mass of the ith hit 
gi : the number of theoretical peptides that match mi 
mij : the calculated mass of the jth peptide in the ith hit 
σI : the standard deviation of the mass measurement at mass mi 
Fpattern: an empirical coefficient 
 
It has been shown that the above algorithm is superior in performance to its predecessors 

(which not employ such probabilistic reasoning) [95]. 
Peptides in the human body are composed of a chain of the 20 amino acids available in 

humans. These amino acids are represented by a letter in the literature and have various 
masses, see Table 1. 

Protein identification using tandem MS (MS/MS) experiments employs different 
algorithms, taking advantage of the second MS spectrum. A peptide is a sequence of amino 
acids and hence its mass is the equal to the sum of the masses of the amino acids that 
compose it. However, since the order of the amino acids is important in determining a 
peptide’s structure/function, permutations of a sequence of amino acids may yield different 
peptides with the same masses. In addition, some amino acids (e.g. isoleucine and leucine) or 
modified amino acids may have the equivalent masses (either due to identical masses or limits 
in a measuring instrument’s precision). In MS/MS, data peptides of a specific mass are 
selected and subject to collision induced dissociation, resulting in two sequences of amino 
acids referred to as fragments. As an example, GVAGNEGAL is a peptide which can be 
fragmented into GVAG and NEGAL ions. If all GVAGNEGAL peptides were fragmented 
into GVAG and NEGAL ions, it would not be possible to recover the peptide’s sequence. 
However various GVAGNEGAL peptides will break at different points along the sequence. 
This is crucial to MS/MS since then the fragments can be pieced together in the correct order. 
The resulting spectra can then be analyzed to obtain the sequence (see Figure 9). 
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Table 1: Amino acids and corresponding molecular weights 

Amino Acid Symbol Average molecular weight (da) 
Alanine A 71.0788 
Arginine R 156.1876 
Asparagine N 114.1039 
Aspartic Acid D 115.0886 
Cysteine C 103.1448 
Glutamine Q 128.1308 
Glutamic Acid E 129.1155 
Glycine G 57.0520 
Histidine H 137.1412 
Isoleucine I 113.1595 
Leucine L 113.1595 
Lysine K 128.1742 
Methionine M 131.1986 
Phenylalanine F 147.1766 
Proline P 97.1167 
Serine S 87.0782 
Threonine T 101.1051 
Tryptophan W 186.2133 
Tyrosine Y 163.1760 
Valine V 99.1326 

 
There are two approaches to resolving MS/MS spectra into a peptide sequence. The de 

novo method involves manual analysis by an experienced scientist using the above table to 
generate a predicted peptide sequence. Needless to say, this manual approach has not proven 
to be the best method for high throughput applications. The de novo method is usually 
followed by a search of a virtually digested protein database, similar to peptide mass 
fingerprinting, to identify the protein the peptide originated from. Algorithms have been 
developed to resolve MS/MS spectra into peptide sequences. The Sequest algorithm is the 
most commonly known for such analysis [96, 97]. A description of the algorithm follows. 

Sequest generates identifications using two pieces of information: the m/z ratio of the 
peptide before fragmentation (obtained from the first MS step) and the MS/MS spectrum. The 
m/z value of a peptide being analyzed with the peptide master list generated from a virtually 
digested protein database (as in peptide mass fingerprinting). A set of peptides within a 
specified mass range similar to the peptide m/z are chosen. These virtual peptides are 
processed to produce theoretical or model MS/MS spectra. The actual MS/MS spectrum is 
compared to the every model spectrum and a cross correlation score (XCorr) is given to each 
comparison. The XCorr value is dependent on the quality of the tandem mass spectrum and 
the quality of its fit to the model spectrum. Sequest creates a model MS/MS spectrum based 
on elementary knowledge of how peptides fragment in the collision induced dissociation 
process. The XCorr value generated during the analysis is not an absolute measure of spectral 
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quality and closeness of fit to the model spectrum. That is, the algorithm will identify the best 
matches between the model and actual spectra regardless of the quality of the fit. Thus, the 
same XCorr value for one peptide may not mirror a similar closeness of fit for another peptide 
with the same score. 

Scoring Algorithm for spectral analysis (SALSA) is a feature extraction algorithm 
designed to identify and score particular features in MS/MS spectra. SALSA aims at solving 
problems in identifying a subset of the sample proteins with specific characteristics. 
Examples of such scenarios are: the detection of peptides with a particular amino acid 
sequence (motifs) and the identification of protein modifications such as phosphorylation. 
More specifics regarding SALSA can be found in several other sources [98-100]. 

ProFound, Sequest and SALSA present the capability to rapidly render data into useful 
tangible information. These algorithms, when coupled with automated sample preparation and 
MS techniques such as HPLC-MS/MS, are enabling identification of hundreds of proteins. 

IV Statistical and Machine Learning Methods 

Statistical learning and data mining techniques make it possible to do automated data mining 
even as biological databases grow exponentially. Techniques such as artificial neural 
networks (ANN) [101], support vector machines (SVM) [102], genetic algorithms (GA) 
[103], and statistical regression techniques provide tools for supervised learning when 
training data is available (with appropriate class labels that help to ‘supervise’ the algorithm 
and guide its learning). When the class labels are not available (i.e. unsupervised learning), 
various clustering techniques can be used to find structure in the data. Numerous 
nonapplication-specific algorithms exist such as K-means clustering [104], principal 
component analysis (PCA) [105], pairwise hierarchical clustering [106], and Bayesian 
techniques [107]. 

Bayesian clustering algorithms have been used with success in both supervised and 
unsupervised learning. Examples of Bayesian strategies for genomic micorarray data include 
CAGED [108] and Botstein’s approach [109]. By using the ARPA approach as discussed in 
the ‘Integration’ section, data from proteomics can be studied in a similar fashion. One such 
work involves pathologic detection via a Naïve Bayesian Classifier based on SELDI data 
[35]. Here, the abundance of various biomarker peaks (proxies to protein abundance) is used 
to predict whether or not a patient has a particular pathological condition. In the following 
subsections, several of these methods will be described in more detail including Bayesian 
Learning, Support Vector Machines, and Principal Component Analysis. 

A Bayesian Methods 

Bayesian methodology facilitates inclusion of a priori information (e.g. from an expert) in 
order to facilitate inference on a dataset. It helps characterize the parameters’ conditional 
probability given a priori information by looking at the parameter vector as a probability 
distribution that can be conditioned upon. The classical example is the flipping of a coin. 
Whether an object landing on the ground is a fair coin or a magician’s biased coin can 
influence the probability that one expects heads to come up- before the coin is even tossed. 
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While classical statistics would glean this information from multiple tosses, a Bayesian 
approach would incorporate this information by calculating the prior density: 

P(parameter vector | a priori information) 
With limited examples, this approach would likely perform better than the classical 

statistical approach. As the number of examples increase, the Bayesian results often approach 
those of classical methods. In proteomics, the data is limited due to cost considerations and 
the novelty of the field. Thus, the Bayesian approach will be suitable to help capture the 
structure of the data with the limited number of available cases. 

Bayesian probabilistic assumptions and relationships can be visualized through graphical 
models (known as Bayesian Networks). A Bayesian Network is essentially a graphical 
representation of probabilistic dependencies. Let G={V, E} be a directed acyclic graph 
(DAG) with V representing vertices and E being a vector of edges. In such a graph, the 
vertices typically encode the variables and directed edges imply probabilistic dependence. 
These dependencies help reduce the number of terms in the joint probability and hence reduce 
the amount of computation needed for inference. 

A Naïve Bayesian Classifier (NBC), is shown in Figure 7. Here, the information encoded 
is that the attributes X1 to XN are conditionally independent given their mutually exclusive 
classes Y (MDS or Control). In other words, (X1…XN) are ⊥ | Y. In this case, there are N 
attributes- where N is the number of biomarker (or protein) peaks. 

 

Y

X1 XN. . .
 

Figure 10: Naïve Bayesian Classifier: Directed Graph with Conditional Independence Assumption 

Through application of Bayes’ Rule, marginalization, and conditional independence 
assumptions, Bayesian inference can be used to compute the posterior probability distribution 
of the class variable given a set of sample attributes, such as the posterior probability 
distribution of a sample being a tumor given that some proteins are present [110]. 

An advantage of the Bayesian approach is that it can be used to capture expert knowledge 
while at the same time incorporating data-based information. By taking into account accurate 
application-specific information and data dependencies, better clustering has been shown than 
through generic clustering algorithms [111, 112]. 
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B Support Vector Machines 

SVM has also been used for many medical applications including microarray-based gene 
classification [113] to blood maturation categorization [114]. Recently, SVM has been 
applied to bioinformatics and proteomics as well [35, 115-117]. 

SVM is a supervised learning technique that can be viewed as a Tikhonov Regularization 
problem with a hinge loss function. That is, it can be expressed as: 
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where the loss function is: ( , ( )) max[1 * ( ),0]L y f x y f x= − . Here H is the Hilbert space 
and K is the Reproducing Kernel Hilbert Space (RKHS) used to define the norm. C is the 
regularization constant. X represents the biomarker peak value(s). Y is the actual MDS 
diagnosis whereas f(x) is the predicted MDS status. 

To solve this regularization problem, one can rewrite it as a constrained quadratic 
programming problem with Lagrange multipliers: 
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with constraint y  is orthogonal to α  (i.e. 0Ty α = ) where: 
 

 0 1...i C i nα≤ ≤ =  
 
This can be solved using normal quadratic programming techniques (e.g. as implemented 

in Matlab). 

C Principal Component Analysis 

PCA has been used successfully previously to discover relevant components within medical 
datasets for analysis, clustering, and compression purposes[118]. In PCA, each principal 
component is an eigenvector consisting of weighted parameters (protein biomarker peaks in 
this case). The importance of a given principal component in terms of explaining the data 
variance is represented via eigenvalues which are determined as explained below. 

The principal components are found as follows. First, the covariance matrix (e.g. E) of 
the data matrix L is calculated. Next, the eigenvalues and eigenvectors of E are found. The 
eigenvectors are sorted (to form a matrix, Q) so that they are in descending order based on the 
eigenvalues. Next, the first n eigenvectors in Q (with largest eigenvalues) are selected based 
on a scree plot [105] to form matrix Z. A scree plot involves plotting the eigenvalues 
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magnitudes for each eigenvector and comparing the difference between them in order to 
select those above a noise baseline (a lower slope magnitude is typically prevalent at less 
significant components). Within each principal component, the eigenvlaue magnitudes are 
ranked and the corresponding biomarker peaks can then be determined. 

V Case Studies 

This section illustrates the concepts and notions of statistical analysis of proteomics data 
described in the previous section using some actual case studies. For more information on the 
models used, BAP (Bioinformatics Analysis Pipeline), and ARPA (Analysis and Robot 
Pipelined Automation) 2, please see 
http://www.chip.org/proteomics/pub/foris2004/index.html. 

A Challenges in Statistical Models for Mass Spectrometry 

While some of the fundamental physics of mass spectrometry technologies has been worked 
out, not all of details are known. For example, the models for the mechanism of ionization 
have not proved sufficient in predicting spectrums accurately (which influences the m/z 
ratio). Also, concentration cannot be used solely to predict the intensity of the associated 
peaks as numerous other variables are involved such as solution composition and mass spec 
behavior [119]. Yet, even if the intensity can be associated with one peptide mass, there are 
still challenges in associating this with a unique peptide. While MS/MS techniques typically 
use Sequest-like methods, SELDI/MALDI techniques cannot (due to the lack of the second 
MS signal information). As a result, mostly proteomic profiles have been reported via these 
techniques rather than an in-depth analysis of myriad proteins. 

The problem is that many proteins have similar masses, so it is hard to uniquely identify a 
protein based solely on mass (even assuming single ionic charge, z=1). Figure 11 plots 
proteins present per mass unit (Da) in the mass range of 700 - 12,000 Da, the same range used 
the most recent high resolution SELDI mass spec instrument in terms of dynamic range [120]. 
Even with an ideal intra-machine mass drift of approximately 100 ppm (parts per million), 
this SELDI-based instrument cannot be more accurate than +/-1.2 Daltons (Da) at 12000 Da. 
In the aforementioned study, bins of 400 ppm were used after analysis was done to estimate 
the best window to accommodate inter and intra assay variance and drift. Older generation 
instruments had margins of error two orders of magnitude higher than this. Other constraints 
to mass spectrometry-based proteomics include the probabilities associated with finding 
particular peptides extracellularly- and within the type of tissue or body fluid sampled. 

To generate the data visualized in Figure 11, Entrez was searched for all proteins with 
molecular weight within 1 Da windows along the 700 - 12,000 Da mass range. This search 
included cleavage products of proteins and protein precursors (based on annotation features) 
for a more accurate picture of potential proteins that might be found upon mass spec. This 
yielded 1,043,613 protein entries in this range, such that about 1/5 of all Entrez protein entries 
can be examined within this mass spec technology range. Since most SELDI studies have 
focused on human proteins, this subset was focused on next, yielding 46,843 protein entries, 
again around 1/5 of the total number of human entries. 
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Since the Entrez Protein database contains redundant entries, SeqHound [121] was used 
to determine the non-redundant entries via remote Java API (Application Protocol Interface) 
calls implemented in Matlab. This reduced the number of human proteins to 36,682. Finally, 
each database sequence was examined for similarity directly, further reducing the number of 
non-redundant proteins to 36,024. Thus, it is expected that there would be around 3 proteins 
per mass unit (Da) given the 700 - 12,000 Da range. While the average number of proteins 
per mass unit is 3.19, the distribution across the mass range clearly shows a pattern rather 
than uniformity- with peaks at approximately 2,300 Da and 11,600 Da among others. 

There are some unusually high counts and outliers at the point labeled ‘A’ in the Figure 
12. Exploration of these suggested the commonality was in slightly different proteins dealing 
with T-cell receptor beta/delta chains. For the points demarcated ‘B,’ different forms of 
immunoglobulin heavy/light chain variable regions were seen. Since immunology demands a 
great diversity of T-cell receptor chains and immunoglobulin variable regions, knowing the 
masses where these molecules are concentrated could potentially help in tuning protein 
identification algorithms as well as yield insights into the relevant biology. In fact, T-cell 
receptor loci and immunoglobulin loci both have gene segments with variable regions that are 
rearranged by exactly the same enzymes [122]. 
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Figure 11: The number of human proteins per mass unit for various masses is rarely unique 

It would be useful to be able to model the number of proteins per mass unit for 
probabilistic calculations. Often, the Poisson distribution is used to model situations involving 
counts or arrivals during an interval of time [123]. In this case, at each mass unit, an average 
number of proteins are expected to ‘arrive’ during this interval. However, the Poisson 
distribution has only one parameter (λ) which is equal to the mean and variance. Yet, since 
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the variance is 4.82 (compared to 3.19 for mean), the Poisson model is not a good fit in this 
case (see Figure 12). In such cases, the negative binomial distribution can be used as it has 
two parameters (p and r) [124] and is a superset of the Poisson distribution (approaches it in 
the limit r →∞ ). It has been used commonly in modeling count data as well. For example, 
one common application is modeling daily road accidents at certain highway locations [125]. 
As there can be high variances in this scenario (daily accidents dependent on the day’s 
weather conditions, etc), negative binomial models have been used instead of Poisson in such 
cases. The negative binomial distribution is commonly defined as: 
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Equation 3: Negative binomial distribution for r +∈  
However, when parameter r is not restricted in integer values, the more general expression 
becomes [124]: 
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The gamma function from above is defined as: 
 

 1

0

( ) x tx t e dt
∞

− −Γ = ∫  

 
The gamma distribution (not to be interchanged with the gamma function) is useful in 

measuring failure times and is a superset of the exponential distribution since it allows for an 
additional dependence on the ‘age’ of the item [123]. In this case, the failure times would be 
the count of proteins that are confined to a certain mass before the next mass window starts. 

The above models assume independent, identically distributed (IID) counts of proteins 
per mass unit (not perfectly satisfied as can be seen in Figure 11). Each of the aforementioned 
distributions’ parameters were then estimated via maximum likelihood estimation (MLE). 
The resulting models are shown in Figure 12. The negative binomial model (with MLE 
estimates of r=6.19 and p=0.660) was the best fit by several measures. A Monte Carlo 
simulation of the Wilcoxon rank sum test at the 5% significance level was performed to test 
concordance of the models with the data. The negative binomial distribution was the best 
fitting model. It also had the best log likelihood score at: -2.39x104. 
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Figure 12: The probability density function of the data appears to follow a negative binomial 
distribution 

B SELDI/ESI Proteomics Pipeline Automation and Integration 

One of the major challenges in bioinformatics in general is integration and analysis of high 
throughput/disparate data sources. Currently, automated systems have been built for SELDI 
and ESI separately. However, as discussed in the previous section, each mass spec technology 
has its own advantages. As costs decrease, biocomputing centers and labs are able to buy or 
share mass specs that use different technologies. In this section, we describe a new automated 
system ARPA 2 (Analysis and Robot Pipelined Automation) that extends Raspap’s [35] 
analysis to local ESI (currently implemented at Harvard Partners Center for Genetics and 
Genomics) and SELDI-type (as implemented in Raspap) data as well as remote Open 
Proteomic Database (OPD) data. In doing so, we will do first the machine learning-based 
analysis comparing head/neck versus cervical cancer, using ESI mass spec data from Mark 
Carlson [126]. The overall structure of ARPA 2 and its inputs is schematically shown in 
Figure 14 below. 

Cancers of the cervix, or the neck of the uterus, have a number of similarities to 
head/neck cancers. Like cervical cancers, head/neck cancers are often squamous cell 
carcinomas. They also share histology, epidemiologic, and exposure-related characteristics. 
For example, human papillomavirus (HPV) exposure plus smoking have been shown to work 
together as cofactors linked to both cancers [127]. Thus, it would be interesting to analyze the 
differences/similarities in the proteins found in both conditions. The dataset examined here 
included 22 samples, divided evenly between the two conditions. Human cell line SqCC 
(squamous carcinoma cells) were used to model head and neck cancer while SiHa human cell 
lines [128] were used to prototype cervical cancer. Cell lysate samples were run by the 
Carlson group on the Dexa XP Plus ESI-Ion Trap mass spec (Thermo Electron Corporation, 
Waltham, MA, USA) with further protocols and specifications available online [126, 129]. 
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Using the raw MS/MS data, we used the Sequest algorithm, as implemented in Bioworks 
(Thermo Electron Corporation) for sample protein identification and estimated peak area 
information per protein. We performed further processing on the generated CSV (comma 
separated value) file suitable for the BAP (Bioinformatics Analysis Pipeline) component of 
ARPA 2 (See Figure 13). 

 

 

Figure 13: Schematic showing how local SELDI, ESI, and remote OPD data can be integrated via 
common format for analysis 

The Sequest XCorr value was used for monitoring the intra- and inter-sample quality of 
the protein identifications. Using BAP, 70% of the data was reserved for training and the 
remainder for testing using the following models: k-nearest neighbor, support vector machine 
(SVM), and logistic regression. The k-nearest neighbor classifier performed best with an 
accuracy of 85.7%, specificity of 100%, and sensitivity of 75%. The root mean square error 
(RMSE) was 0.378. Optimizing for the k parameter led to k=1 as the best value. Essentially, 
the nearest training set point to each point in the test set was used in making the predictor. 
Since the dataset was small, this was likely the best since more complicated models with 
higher k values could lead to overfitting on the training set. 

Since the k-nearest neighbors algorithm can be black box in terms of explaining the 
rationale behind the decision process, the more intuitive decision table algorithm [130] was 
used to derive simple rules based on the protein peak levels. This is a similar type of approach 
taken previously, where a tree-based method was used to achieve higher predictive accuracy 
(85%) and specificity (80%) for preleukemia compared to previous work- while using just 
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five proteins (instead of hundreds) and three rules [115]. Here, this was done using a Java 
interface to Weka [131], something that can be done from BAP/Matlab via the integrated Java 
Virtual Machine (JVM). Creating the decision table using cross validation led to a set of just 
two rules (see Figure 14). Though sensitivity (72.7%) and specificity (63.6%) were lower 
than the original k-nearest neighbor method, it also only used two proteins instead of 430. 

 
If (GenBank_ID_4885431 < 33650000 peak area) and (GenBank_ID_7669492 > 279750000 
peak area), then declare ‘head/neck.’ 
Otherwise, declare ‘cervical.’ 

Figure 14: Decision table rules 

Interestingly, both of these proteins have been associated with cancers in the head/neck. 
Glyceraldehyde-3-phosphate dehydrogenase (GenBank ID [132]: 7669492), a 335 amino acid 
protein, has been linked to thymona, a cancer in the thymus of the neck. It has also been 
connected to apoptosis (cell death) in human breast cancer cell lines [133, 134]. Heat shock 
70kDa protein 1B (GenBank ID [132]: 4885431), a 641 amino acid protein, has been 
associated with nasopharyngeal carcinoma [135]. 

VI Conclusion 

In this chapter, the applications of robotics and intelligent decision systems within proteomic 
were introduced along with novel work to illustrate the research issues involved. The 
contribution of genomics in understanding proteomes is invaluable. However, the greatest 
complexity lies in the diversity of the full set of protein products and interactions after gene 
transcription is already complete. As the number of proteins being cataloged in databases 
continues to grows exponential (see Figure 15) while the estimates of the number of genes in 
humans and other organisms is actually declining [2], the opportunities for proteomics to 
make use of this information grows. As such, novel statistical and engineering-based methods 
will be needed to analyze this information. 
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Figure 15: While the number of genetic sequences in Entrez is starting to saturate, the proteins being 
cataloged in Entrez is still growing exponentially each year. 



Robotics, Automation, and Statistical Learning for Proteomics 245

Proteins’ abundance, miniature size, and dynamic nature have made them difficult to 
explore. On the other hand, these features also make proteins the perfect complex system for 
engineering-based analysis. Precision and throughput are key parameters for technologies 
addressing these issues. Accurate sensors and signal detection methods are needed to indicate 
protein abundance and interaction. High throughput robotic systems will significantly 
increase efficiency and reduce the potential for error in sample preparation and processing. 
Intelligent decision making systems for image analysis (e.g. for gels), feature extraction, and 
other machine learning techniques will reduce the burden on scientist in analyzing 
experimental results and make whole-organism proteome-based experiments a reality. 

As seen in the case studies, new research in proteomics needs to build on and leverage a 
technology’s strengths while at the same time integrating other data sources to make the best 
possible use of available information. Both engineering and scientific expertise are needed in 
evaluating the conclusions. For example, determining the validity and relevance of proteins 
requires biological expertise while the design of a protein chip or statistical algorithm requires 
a different technical background. Thus, making good use of information gleaned during such 
experiments requires innovative approaches ranging from constructing accurate cellular 
models to better experimental hypotheses. In this new era, proteomics is not just validating 
hypotheses, but also generating new ones. 

The immense clinical potential and promise of proteomics has also begun to burgeon in 
disease diagnosis, prognosis, and treatment. HIV, various neoplastic entities (i.e. cancer), 
immunological disorders, and many more pathological ailments are targets for clinical 
proteomics. In short, proteomics is set to change the way people view cellular function, 
disease, and humanity itself. 
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