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Abstract— Surface-enhanced laser desorption/ionization time-
of-flight mass spectrometry (SELDI or SELDI-TOF MS) has
yielded predictive protein profiles for a number of clinically
relevant diseases. Yet, rather than identifying specific proteins,
such studies have provided diagnostic information solely based
on “black box” predictors that look at differential patterns of
mass spectrometry peaks.

This paper analyzes the number of proteins that could be
represented by mass spectrometry peaks associated with corre-
sponding masses. It proposes and compares three models to fit the
probability density function (PDF) of such a distribution. These
include the gamma, Poisson, and negative binomial models.

The results yielded a nonuniform distribution of protein
masses- particularly apparent near masses where proteins in-
volved in somatic recombination are prevalent. This may be
useful to consider when using protein databases for protein
identification near such mass regions. In terms of PDF models,
the distribution surprisingly does not follow a simple Poisson
distribution of counts. Instead, it follows a negative binomial
distribution.

I. I NTRODUCTION

SELDI-based mass spectrometry is turning out to be one of
the high growth areas in proteomics research in recent years
[1]. Using statistical and signal processing techniques, early
studies [2], [3] were the first to predict pathological states
in their respective domains (e.g. ovarian cancer), solely using
serum proteins. However, SELDI studies are struggling with
actual protein identification, often providing no more than
a pattern-based predictor model. Purification, isolation, and
manual identification of proteins can take months. However,
new computational approaches may help to provide other
alternatives.

SELDI works by subjecting protein samples (within an
energy absorbing matrix) to a laser pulse. This ionizes the
proteins and sends them flying into a chamber. The mass-to-
charge ratio of the protein can be calculated from the time of
flight (i.e. the time it takes the protein to travel before hitting
the detector at the end of the compartment).

II. M ETHODS

Since the mass-to-charge ratio is known for SELDI mass spec
peaks, and most peaks represent univalent ions, one can use
the effective resolution of the mass spec to try to ascertain
the mass of the protein. The problem is that many proteins

have similar masses, so it is hard to uniquely identify a protein
based solely on mass (even assuming single ionic charge, z=1).

As a first step, this paper looks at the protein “mass
density”- namely the number of proteins that could theoret-
ically exist (based on a database) per given mass window
(e.g. 1 Dalton). In this paper, human proteins present in the
mass range of 700 - 12,000 Daltons (Da) are focused on. This
is the same range used in a recent high resolution (in terms
of dynamic range) SELDI mass spec instrument reported [4].
Even with an ideal intra-machine mass drift of approximately
100 ppm (parts per million), this aforementioned SELDI-based
instrument cannot be more accurate than +/-1.2 Da at 12000
Da. In that study, bins of 400 ppm were actually used for
analysis to accommodate inter- and intra-assay variance and
drift. Other constraints to mass spectrometry-based proteomics
include the probabilities associated with finding particular
peptides extracellularly- and within the appropriate tissue or
body fluid sampled.

To generate a human protein mass density plot, the Entrez
Protein database was searched for all human proteins with
molecular weight along the 700 - 12,000 Da mass range within
1 Da windows. This search included cleavage products of
proteins and protein precursors (based on annotation features)
for a more accurate picture of potential proteins that might be
found upon mass spectrometry.

As the Entrez Protein database contains redundant entries,
SeqHound [5] was used to determine the non-redundant entries
via remote Java Application Protocol Interface (API) calls
implemented in Matlab. Finally, each database sequence was
examined for similarity directly, further reducing the number
of non-redundant proteins.

It would be useful to be able to model the number of
proteins per mass unit for probabilistic calculations. Often,
the Poisson distribution is used to model situations involving
counts or arrivals during an interval of time. In this case, at
each mass unit,λ proteins are modeled as being expected to
‘arrive’ during this interval.

A second model explored is the negative binomial distri-
bution. It has been used modeling count data as well. For
example, one common application is modeling daily road
accidents at certain highway locations [6]. When parameter r
is not restricted in integer values, the more general expression



for the negative binomial distribution is (whereΓ(x) is the
gamma function) as shown in Equation (1):

f(x|r, p) =
Γ(r + x)

Γ(r)Γ(x + 1)
pr(1 − p)x (1)

Lastly, the gamma distribution, was examined as a model
for the PDF in question. The gamma distribution is useful in
measuring failure times and is a superset of the exponential
distribution since it allows for an additional dependence on
the “age” of the item. In this case, the failure times would be
the count of proteins that are confined to a certain mass before
the next mass window starts.

The above models assume independent, identically dis-
tributed (IID) counts of proteins per mass unit (not perfect
satisfied, as alluded to above). Each of the aforementioned
distributions’ parameters were then estimated via maximum
likelihood estimation (MLE).

III. R ESULTS

The number of non-redundant human proteins found in
Entrez within the 700-12,000 Da range (determined as de-
scribed above) was 36,024. Thus, it is expected that there
would be around 3 proteins per mass unit (Da). However,
while the average number of proteins per mass unit is 3.19,
the distribution across the mass range clearly shows a pattern,
rather than uniformity- with peaks at approximately 2,300 Da
and 11,600 Da among others.

Exploration of the first peak (2,300 Da) suggested the
commonality was in slightly different proteins dealing with T-
cell receptor beta/delta chains. For the second peak, different
forms of immunoglobulin heavy/light chain variable regions
were seen.

The resulting models for the PDF of the human protein
mass density are shown in Figure 1. The negative binomial
model (with MLE estimates of r=6.19 and p=0.660) was the
best fit by several measures. A Monte Carlo simulation of
the Wilcoxon rank sum test at the 5% significance level was
performed to test concordance of the models with the data.
The negative binomial distribution was the best fitting model.
It also had the best log likelihood score at: -2.39x104.

IV. D ISCUSSION ANDCONCLUSION

The nonuniformities noted for the human protein mass density
plot involved elements associated with somatic recombination.
Since immunology demands a great diversity of T-cell re-
ceptor chains and immunoglobulin variable regions, knowing
the masses where these molecules are concentrated could
potentially help in tuning protein identification algorithms as
well as yield insights into the relevant biology. In fact, T-
cell receptor loci and immunoglobulin loci both have gene
segments with variable regions that are rearranged by exactly
the same enzymes [7]. Yet, these regions are typically not seen
in isolated form extracellularly. Sequest, Mascot, ProFound,
and other applications (which depend on databases like NCBI-
nr [8] for accurate protein identifications) are all potentially
susceptible to such database biases.

Fig. 1. The probability density function of the data appears to follow a
negative binomial distribution.

The Poisson distribution, often used for count data, might
be expected to be a good model for the PDF of human protein
mass density. However, the Poisson model has only one pa-
rameter (λ) which is equal to the mean and variance. Yet, since
the variance is 4.82 (compared to 3.19 for mean), the Poisson
model is not a good fit in this case (see Figure 1). In such
cases, the negative binomial distribution can be used as it has
two parameters (p and r). As there can be high variances in this
scenario (analogous to daily accidents dependent on the day’s
weather conditions in the aforementioned highway study), a
negative binomial model is more suitable here compared to
Poisson.

By exploring statistical models for mapping mass spectrom-
etry peaks to actual proteins, the strengths and weaknesses of
existing technologies can be measured and new methodologies
explored for better protein identification.
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