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1. INTRODUCTION

Research in proteomics involves studying the structure,
expression, localization, interactions, and cellular roles of
all proteins within a particular organism or subcomponent
thereof (1). Researchers coined the term “proteomics” in
the early 1990s (2) to describe a new approach to studying
proteins, focusing on high-throughput analyses and on
breadth rather than depth. Proteomics researchers aim to
use experimental techniques that trade accuracy for vo-
lume in order to build up a complete picture of the function
of large groups of proteins. Key research in the field
focuses on the development of new high-throughput tech-
niques and the computational machinery needed to ana-
lyze the data those techniques produce.

Proteomics has the potential to dramatically impact
medicine. Scientists at the National Institutes of Health
made headlines when they announced in 2002 that they
could diagnose ovarian cancer using mass spectrometry-
based proteomics (1). The pharmaceutical industry is also
heavily involved in proteomic research. As most drugs
target and inhibit the functions of specific proteins, drug
discovery benefits greatly from proteomic assays that
permit the identification or quantification of many pro-
teins simultaneously.

As of this writing (2005), proteomics is growing the way
genomics grew in the 1990s, when a series of sequencing
projects created an ocean of genome sequences for re-
searchers to analyze. In addition, the number of those
genetic sequences in Entrez (a database of molecular
biology-related information) is starting to saturate,
whereas the number of proteins being cataloged in Entrez
is still growing exponentially each year. This growth
suggests that increasingly advanced techniques will be
needed to deal with ever-larger proteomic datasets.

Although much of the engineering and statistical
methodology developed for functional genomics (3) can
be recycled for use in proteomics, the field has no shortage
of interdisciplinary problems amenable to attack by re-
searches ranging from electrical engineers to biophysi-
cists. A few of the open problems include the fabrication of
effective, accurate protein arrays (instruments to measure
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protein expression; see the section of the same name
below) (4), design and construction of robots to automate
repetitive tasks (5), and novel machine learning techni-
ques for data analysis (6).

2. PROTEOMICS: MOLECULAR AND CELLULAR BIOLOGY
FOUNDATIONS

This section summarizes some core molecular and cellular
biology concepts that underlie the study of proteomics (7).
Proteins are the biochemical machines responsible for life.
Proteins read, copy, and organize the genetic code stored
in DNA, digest nutrients, attack pathogens, and direct
growth. Protein-based signals enable cells in a multicel-
lular organism to communicate; structural proteins hold
that organism together. Many open research problems in
modern biology and medicine are, fundamentally, ques-
tions about the functions of proteins.

A protein is a chain of linked amino acids, the precise
ordering of which determines its structure and function.
Amino acids are biomolecules with four invariant compo-
nents: a central carbon atom, to which the other compo-
nents are bound; a hydrogen atom; an amino group (NHy);
and a carboxyl group (COOH). A variable component,
called the R group, determines the type of each amino
acid (the hydrogen atom below the carbon is the R group in
Fig. 1). There are 20 standard R groups (for the 20 amino
acids) and several additional variants. In a protein, the
amino group of each amino acid is linked to the carboxyl
group of the next amino acid, forming a chain. Some
proteins have a few tens of amino acids, others, such as
huntigtin, responsible for Huntington’s disease, are com-
posed of thousands.

Proteins can be categorized by shared functions, struc-
tures, or subsequences. Common functions include hand-
ling metabolic chores, providing structural support, and
participating in signaling pathways, to name a few. The
common structures o-helix (a twisted chain of amino acids)
and f-sheet (a plane made of adjacent chains of amino
acids) are often observed as components of larger struc-
tures. Common (well-conserved over the course of evolu-
tion) subsequences are regularly used to track evolution of
organisms. Conserved sequences and the structures to
which they give rise can be thought of as being made of
modular units (called “motifs” or “domains”) that confer
specific properties and functions. Some motifs are well
preserved across millions of years of evolution, through
many different organisms. Many examples of preserved
functions may be found in Gene Ontology, a controlled
vocabulary of common functions (http:/ /www.geneontolo-
gy.org). Branden and Tooze’s Introduction to Protein

Figure 1. Examples of amino acid and protein structure.

Wiley Encyclopedia of Biomedical Engineering, Copyright © 2006 John Wiley & Sons, Inc.



2 PROTEOMICS

Structure (8) contains many examples of highly conserved
structures.

Approximately 40% of the human genome encodes
proteins with no known function (9). Assigning functions
to these proteins and their interactions is one challenge of
proteomics.

Proteins are created in a two-step process. First, DNA
is transcribed into RNA. Then, the RNA is translated into
protein. Both transcription and translation are copying
processes; neither involves changing the DNA or RNA
template for the copying. This process, in which informa-
tion flows from DNA to RNA to protein, is called the
“central dogma” of molecular biology. Any time after it is
translated, a protein may be altered by a variety of
posttranslational modifications. The study of these mod-
ifications is another major component of proteomics.

Nearly every cell in an organism contains a copy of that
organism’s complete genome, but each cell expresses
(synthesizes proteins from) only a subset of that genome.
Genes that encode proteins essential to basic cellular
functions are expressed in nearly all cells, whereas those
with highly specialized functions are expressed only in
certain cell types. (Some proteins found in liver cells would
never be expressed in the brain, for instance.) These
subsets of expressed proteins may be called proteomes.
Although every organism has one genome, a multicellular
organism may have many proteomes.

Analysis of the most recent version of the human
genome suggests that humans have between 20,000 and
25,000 genes—only slightly larger than the approximately
19,000 genes in the genome of the worm Caenorhabditis
elegans (10). This suggests that the vast difference in
complexity between humans and worms cannot be ex-
plained merely by the fact that humans have more genes.
Proteomics may provide one means of explaining that gap,
by showing how the interactions between proteins give
rise to human complexity.

3. PROTEOMICS: METHODS AND TECHNOLOGIES

3.1. Overview of Proteomic Technologies

The workhorse of proteomics is the mass spectrometer, an
instrument used to count and measure the mass-to-charge
ratios of ions (charged particles). The following sections
discuss how proteomics researchers inject proteins into a
mass spectrometer, how they are measured inside the
instrument, and how one can use the gigabytes of data
produced by the instrument to identify, sequence, and
quantify proteins.

Mass spectrometry (MS) is not the only analytical
method in proteomics. After the sections on MS is a section
on protein array analysis, which is another technology
used to identify and quantify (but not sequence) many
proteins simultaneously. Further sections discuss protein
databases and the discovery of protein—protein interac-
tions using laboratory techniques such as yeast two-
hybrid analysis and computational techniques such as
data mining of the literature.

3.2. Approaches to Mass Spectrometry-Based Proteomics

Research in mass spectrometry has grown rapidly in
recent years. The field of mass spectrometry in general
has grown over 2.5 times over the past decade in terms of
PubMed-related publications measured as discussed be-
low. This compares with a one-third increase in overall
PubMed research article publications. Part of this growth
is due to mass spectrometry’s new applications in proteo-
mic domains (as opposed to classic analytical chemistry-
affiliated molecular studies) such as proteome mining,
post-translational modifications (PTMs), and protein—pro-
tein interactions. The immense amounts of data generated
by mass spectrometry-based proteomics have paved the
way for systematic identification of proteomes and intra-
cellular dynamics. Mass spectrometry is also easily adap-
table to high-throughput formats, a fact that has made it
the method of choice for protein identification and char-
acterization (11). Although an exhaustive review is beyond
the scope of this article, the following will give an overview
of the relevant technology and biomedical applications
within the context of this section.

There are three main components in any mass spectro-
meter: the ion source, the mass analyzer, and the detector.
The source produces ions from the biological sample, the
mass analyzer resolves the ions [in a mass-to-charge (m/z)
ratio-dependent manner], and the detector detects the
ions resolved by the mass analyzer. From an ion’s point
of view, mass spectrometry converts a sample into ions,
groups those ions by mass-to-charge ratio, and measures
the intensity of each collection of ions with a common m/z
ratio.

The most straightforward use of mass spectrometry in
proteomics would be to ionize a mixture of proteins, spray
it into a mass spectrometer, and use the mass-to-charge
ratios to identify and quantify every protein in it. This
approach, called “top-down” proteomics, is not without its
proponents, as modern instruments are becoming increas-
ingly accurate with the large masses involved in top-down
experiments (12,13). If every protein had a unique mass
and mass spectrometers were absolutely accurate, then
one would need no other methods. However, in contem-
porary mass spectrometers, measurement accuracy de-
creases as the absolute mass increases, making accurate
identification of large proteins difficult. Many different
proteins may have masses within the margin of error for
these measurements. PTMs, discussed above, further
muddy the water—many PTMs change the mass of a
protein but do not change its sequence. An active area of
research involves looking at the statistical issues involved
in top-down protein identification.

An alternative approach is “bottom-up” or “shotgun”
proteomics, in which proteins are chopped into peptides
(short sequences of amino acids) before identification, a
process called “digestion.” Bottom-up proteomics has three
major advantages over the top-down approach. First, as
mass spectrometers are more accurate for smaller masses,
they are better at resolving small peptides rather than
large proteins. Second, the bottom-up approach also
greatly reduces the chance that PTMs will trip up the
identification process: If enough peptides are unmodified,



the protein can be identified, regardless of how many
modifications were made to the other peptides. Finally,
in tandem mass spectrometry (in which select ions are
broken into fragment ions and the fragments are sent for
another round of mass spectrometry), the bottom-up
approach yields easier-to-analyze fragment spectra be-
cause peptides have fewer components to break apart
than do intact proteins.

In the bottom-up approach, the peptides are sprayed
into the mass spectrometer and their m/z ratios are
measured. Trypsin, the protease most commonly used to
digest protein samples into peptides, cleaves proteins at
very predictable amino acid locations. If one knows the
genome sequence of the organism that provided the
protein sample (which is the case for most model organ-
isms used in biological research), one can calculate the
mass of all possible fragments from all of the proteins in
the organism. In the process of peptide mass fingerprint-
ing (PMF), the unknown protein of interest is cut into
peptides by an enzyme such as trypsin. The absolute mass
of these peptides is measured with a mass spectrometer.
Using software, these masses are then compared with the
theoretical masses of peptides coming from that organism.
This process demands high sensitivity, resolution, and
accuracy (14). Sensitivity is required to measure masses
on the order of femtomole (10~ '%) quantities with high
resolution to distinguish between ions of similar m/z
values. Although some peptide sequences of approxi-
mately six or more amino acids in length would have
unique masses within the proteome of an organism, using
additional peptide fragments can improve confidence in
the identification (15); in other words, a protein from
which several peptides were identified is more likely to
be present than one that had only one successful “hit.”

Although mass spectrometry is a sensitive method for
identifying proteins, it is more difficult to use mass
spectrometry to accurately quantify proteins (16). The
intensity of a peptide peak depends linearly on the con-
centration of the peptide. However, different peptides have
different propensities for ionization. Thus, two peptides
present in equal amounts may show substantially differ-
ent intensities in the mass spectra. This problem has been
addressed by modifying one of the sample types with a
stable isotope (e.g., the experimental samples) while leav-
ing the other unchanged (e.g., the control samples). This
modification changes the molecular weight of the isotope-
based samples relative to controls, but not the mass
spectrometer’s behavior in terms of the peak intensities.
Quantitative differences in proteins are then determined
directly as the difference in peak area between the two
peptides in the mixed samples (i.e., control and cancer)
(17). A well-illustrated overview of the techniques of mass-
spectrometry-based proteomics can be found in the refer-
ence section of this article (18).

3.3. Analytical Polypeptide Separation (2-D SDS-PAGE and
HPLC)

Most biological samples (serum, blood, urine, and cell
lysates, to name a few) cannot be sprayed directly into a
mass spectrometer. First, biological samples often contain
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a considerable amount of non-protein material, which
must be removed. Centrifugation is a common means of
removing the largest non-protein components (for in-
stance, the cell debris left over in a cell lysate). Many
samples need further processing to remove salts and other
small-molecule contaminants.

The resulting pure-protein mixtures are also often too
complex for direct analysis with a mass spectrometer; if
they were analyzed all at once, the sheer quantity of
proteins would overload the detector. Proteomics re-
searchers avoid this problem by separating proteins in
advance according to their physical or chemical proper-
ties.

Popular protein separation methods include two-di-
mensional (2-D) gel electrophoresis (e.g., sodium dodecyl
sulfate-polyacrylamide gel electrophoresis, or SDS-PAGE,
for short), preparative isoelectric focusing (IEF), and high-
performance liquid chromatography (HPLC). HPLC and
mass spectrometry (HPLC-MS) is a combination that has
lent itself well to automation, and it is thus expected that
HPLC will likely dominate polypeptide separation in the
long run (although 2-D SDS-PAGE is still prominent today
7).

In 2-D SDS-PAGE, proteins are loaded onto a gel and
subjected to an electric field. The chemical properties of
the gel prompt the proteins to separate in one dimension
by their isoelectric point (i.e., the pH where protein has
zero net charge) and in the other dimension by their
molecular weight. The result is the separation of proteins
into spots on a gel containing sample proteins. The
intensity of each spot is proportional to the protein
abundance. The stained gel image can be analyzed using
imaging analysis techniques, and a section of the gel
containing an isolated protein can be cut out for further
analysis by other methods such as mass spectrometry. A
practical application of this method would be to compare
samples from differing cellular states (diseased and nor-
mal). This comparison can give scientists insight as to
which proteins differentiate the two states and should be
further investigated. SDS-PAGE has some major short-
comings. Generally, if a protein mixture is to be character-
ized in an SDS gel by MS, it requires some partial
purification to reduce complexity before analysis. Despite
significant technical improvements, protein separations
patterns are often not reproducible. Also, SDS gels per-
form poorly in detecting low abundance proteins.

Integrated systems for performing 2-D SDS-PAGE are
entering the marketplace. Contemporary systems include
facilities for robotic sample preparation, 2-D gel electro-
phoresis, gel extraction via precision robots, ionization
labeling, and mass spectrometry peptide fragments ana-
lysis. In these systems, data generated from all instru-
ments are presented with using a graphical user interface.
These systems are useful for high-throughput analysis,
contributing to significant increases in processing power
(19). There are major shortcomings, however, in such
systems. An example is the homogenous treatment of
samples with no feedback control mechanism. For in-
stance, a laboratory technician doing a gel protein diges-
tion would match the amount of protease (an enzyme used
to cleave the protein into peptides) used to digest a spot on
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the gel to the amount of protein in the spot by observing
the spot’s intensity directly with the naked eye. Intelligent
systems capable of such adjustments have not yet reached
the market (19).

In bottom-up proteomics, 2-D SDS-PAGE is commonly
used before protein digestion. By contrast, HPLC is com-
monly used to separate the peptides resulting from a
digestion (in which proteins are chopped into smaller
pieces with a protease such as trypsin). HPLC involves
pumping the peptides through a chromatography system
that gradually releases them over a time interval (typi-
cally in the range of an hour) depending on their physical
or chemical characteristics. Some characteristics used
include

* Hydrophobicity: lacking attraction to water
» Strong cation exchange: net positive charge
» Strong anion exchange: net negative charge
 Size separation: size/molecular weight

e Special affinity: interaction with particular func-
tional groups

Multidimensional liquid chromatography systems, also
known as tandem liquid chromatography (LC/LC) sys-
tems, pump a sample through two or more steps of LC to
separate the peptides based on multiple attributes. Multi-
dimensional L.C coupled with tandem mass spectrometry
(LC-LC-MS/MS) is used in the analysis of very complex
mixtures of peptides, in which the additional LC step
reduces the number of peptides entering the mass spectro-
metry at the same time. This method is commonly known
by the acronym Multi-Dimensional Protein Identification
Technique, or MudPIT (20).

LC is not without its challenges however. A major
limitation of HPLC is that one cannot generally achieve
the chromatographic resolution provided by some other
forms of chromatography such as gas chromatography.
Also, HPLC is not readily interfaced with a mass spectro-
meter because the liquid phase presents problems with
the high vacuum required for mass spectral analysis.
However, progress has been made in this area and LC-
MS has become a vital tool in many proteomic labora-
tories.

3.4. lonization Methods

Three prominent mass spectrometry ionization methods
used in proteomics are Electrospray Ionization (ESI),
Matrix Assisted Laser Desorption and Ionization
(MALDI), and Surface-Enhanced Laser Desorption and
Tonization (SELDI). In ESI mass spectrometry, a potential
is applied to create a fine mist of charged droplets (includ-
ing the dissolved peptide sample) that are subsequently
dried and sprayed into the mass analyzer. The mist is
often the output of an HPLC and includes digested
proteins as well as the protease used to cleave them. In
contrast to MALDI, ESI produces highly charged ions
without fragmentation of the ions into the gas phase
(21). MALDI mass spectrometry is normally used to
analyze relatively simple peptide mixtures, whereas inte-

grated HPLC ESI systems (HPLC-ESI) are preferred for
the analysis of complex samples.

The first step in the MALDI ionization source is the
addition of the sample to a chemical matrix. The matrix
includes photon absorbing molecules with a specific
amount of chromophore, sensitive to light at a specific
wavelength. The mixture is then placed on a small slide
and allowed to dry. The dried mixture is a crystal lattice
containing the desired sample to be analyzed. The crystal
is then struck with a laser beam. The matrix molecules
absorb the energy emitted by the laser, causing their
temperature to increase. This excess heat causes the
sample peptide to transform into gas phase (22). Each
peptide tends to (generally) pick up a single proton,
creating a positive ion. This is significant because the m/
z ratio is thus precisely the mass (Z=1). This is in
contrast to ESI where a peptide sample can pick up tens
of protons, causing various peptides with the same mass to
have differing m/z ratios. In any case, the ion then enters
the mass analyzer where their m/z ratio-dependent beha-
vior possible to differentiate between peptides present in
the sample (e.g., see Equation 1). SELDI is similar to
MALDI; the ionization into the gas phase via photon
absorption from a laser source remains the same. They
differ in that SELDI sample plate surfaces are designed to
react with peptide molecules with particular properties.
Consequently, peptides with select physical and chemical
attributes are retained, increasing their chance of becom-
ing ionized and providing another layer of filtering (and
decreasing required spectrum bandwidth), which helps in
the identification of the peptides by a database search (23)
or in creating diagnostically useful proteomics profiles.

SELDI has become increasingly popular since a study
from Liotta et al. was first published in Lancet (24,25)
involving diagnosis of ovarian cancer without actually
identifying any proteins. As shown in Fig. 2, the field of
SELDI (indexed under MALDI in MeSH), measured in
terms of papers, has grown very rapidly since being
“introduced” as a category within MeSH in the 1990s.
The subset of MALDI/SELDI papers affiliated with pro-
teomics has exhibited even faster growth.

As alluded to earlier, mass spectrometry is also a
clinical tool and has been used in numerous disease
studies (25-27). In an HIV study (28), MALDI was used
to identify a family of proteins contributing to the CD8
antiviral factor, an important element in the pathology of
AIDS. SELDI technology has also been applied to serum
for cancer detection. Using machine learning techniques,
recent studies (25,29) predicted pathological states in
their respective domains, such as ovarian cancer and
preleukemia, solely using serum proteins. Rather than
identifying proteins, such early studies yielded accurate
diagnostic information based on the overall pattern of
protein expression. In the case of ovarian cancer, the
importance of early diagnosis is apparent in the high 5-
year survival rate (95%) of patients with cancer limited to
the ovary compared with the low 35-40% 5-year survival
rate for late-stage patients (25). SELDI has also been used
in diagnosis of neurological diseases such as Alzheimer’s
disease, Parkinson’s disease, multiple sclerosis, schizo-
phrenia, and many others (27).
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3.5. Mass Analyzers

Three basic types of mass analyzers are currently used in
proteomics research: the ion trap, time-of-flight (TOF),
quadrupole time-of-flight (Q-TOF), and Fourier transform
(FT-MS) ion analyzers. Each is different in design and
performance, and each has its advantages. They can be
used alone or arranged in tandem to take advantage of the
unique strengths of each in tandem mass spectrometry
(11).

In the ion-trap analyzers, ions are first confined within
a trap via electrically active electrodes on the top, bottom,
and middle (via a ring electrode). The ion trap collects the
ions for a certain time interval and then subjects them to
mass spectrometry or tandem mass spectrometry (MS/
MS) analysis. Ion traps are robust, sensitive, and rela-
tively inexpensive. They have produced a large percentage
of the proteomics identification-related results reported in
the literature (11). The FT-MS is similar to an ion trap, but
it employs a magnetic field for detecting ions in the trap
(30). FT-MS instruments have high resolution and are
excellent for measuring low abundance proteins as well as
complex peptide mixtures. This is because the supercon-
ducting magnet has a stability of resolving few peptides
among a billion. Quadrupole and TOF instruments can at
best deliver a 1 per 10,000 resolution. However, current
models of FT-MS (owing, among other factors, to their
need for a cryogenically cooled superconducting magnet)
are extremely expensive and operationally complex. This,
coupled with their low-peptide-fragmentation efficiency,
has limited the use of FT-MS in proteomics research (22).
TOF analyzers (Fig. 3) measure the time the gas-phase

2002 2003

Figure 2. Mass spectrometry is growing at a
much faster rate in terms of papers compared
with the general PubMed database.

ions take to travel from the ionization source to the
detector, which is used to calculate to the m/z ratio (31).
TOF analyzers are not well suited for MS/MS (see below)
and have the disadvantage of being dependent on sample
quality for successful peptide identification (11). A quad-
rupole mass analyzer is a variant of TOF that consists of
four parallel metal rods that are arranged lengthwise.
These can be manipulated to allow ions of a specific m/z
ratio to pass between them for detection. The TOF analy-
zer is typically paired with MALDI (MALDI-TOF) or
SELDI (SELDI-TOF), whereas the quadrupole and Four-
ier transform methods use ESI sources. The equation
governing TOF analyzers with some common values
(e.g., for PBS IT SELDI-TOF, Ciphergen, Fremont, CA) is
shown below:

M2 _ ot — to) +b. 1)

where:

t = time of flight (us)

m = mass (Da)

z = charge (C)

U = voltage (e.g., 20,000V)

a, b, ¢ model constants (e.g., a=0.272, b=0,
to=0.0038).

An overview of tandem MS (MS/MS) is shown in Fig. 4.
First, peptide ions generated from an ESI source are
separated based on their m/z ratios. In the second round,
a single m/z is chosen and is subject to collision-induced
dissociation (CID)—the ions of that m/z are bombarded
with a charged gas, which causes them to fragment (32).
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The fragments are then scanned with the mass spectro-
meter. The resultant tandem spectra of amino acid com-
position can be searched against protein databases to
identify the protein (33). Matches from at least two
peptides derived from the same protein are typically
required to positively identify a protein (34), with each
additional match adding confidence to the identification.
Computational analysis of MS/MS spectra can also pro-
vide information about the nature and location of peptide
modifications (35). The extent and comprehensiveness of

Figure 4. Steps involved in tandem mass spec-

trometry.

the available databases are extremely crucial as database-
searching strategies can be applied only if the protein
sequence exists in the database. Sequest, developed at the
University of Washington, is the most widely used tool for
searching protein databases (36). Sequest, which is dis-
cussed further in the next section, is well suited for high-
throughput proteomics as it automatically extracts and
searches the MS/MS data against a protein database (37).
Other database-search tools include the newer Mascot,
published by Matrix Science and available for use on the



Web, and the open-source OMSSA, published by the
National Center for Biotechnology Information.

3.6. Identification of Proteins from MS and MS/MS Data

With the output of an MS or MS/MS run in hand, one may
employ a variety of methods to try to identify the proteins
in the sample injected into the mass spectrometry instru-
ment. Popular approaches include peptide mass finger-
printing (searching databases for the masses of peptides),
MS/MS database searching (searching databases of theo-
retical MS/MS spectra, as does Sequest), and sequence tag
searching [partial sequences (“tags”) are derived from MS/
MS spectra and used to query sequence databases].

In a peptide mass fingerprinting approach, a protease
is applied in silico (in other words, virtually) to all entries
in a protein database (e.g., Swiss-Prot, OWL, or NCBInr)
to yield a list of peptides with corresponding theoretical
masses. Matches are made between observed peptide
masses obtained from MS and the theoretical masses
from the database. If several of these peptides uniquely
match the same protein, then the unknown sample pro-
tein can be identified. If there are multiple proteins in the
sample (as there often are), a scoring system is typically
used to rank the fidelity of each match. Most scoring
systems assign higher scores to those proteins with the
greatest number of peptide matches. This tends to give
bigger proteins a higher score, simply because they yield
more peptides upon digestion (15). Some probability-based
scoring systems have emerged (38); one such algorithm is
ProFound (39).

De novo sequencing involves measuring the distances
between peaks in the MS/MS spectrum of a fragmented
peptide, looking for distances that correspond to the mass
of a single amino acid (most amino acids have distinctly
sized masses; see Table 1), and chaining these together to
form a partial sequence. GutenTag is a well-known pro-
gram that implements this approach; experienced scien-
tists can sequence spectra by hand (albeit more slowly)
(40).

A peptide is a sequence of amino acids, and hence its
mass is the equal to the sum of the masses of the amino
acids that compose it. As the order of the amino acids is
important in determining a peptide’s structure/function,
permutations of a sequence of amino acids may yield
different peptides with the same masses. Some amino
acids (e.g., isoleucine and leucine) or modified amino acids
may have the equivalent masses (either due to identical
masses or limits in a measuring instrument’s precision).
In MS/MS, the peptides of a specific m/z are selected and
subject to CID, which breaks them into fragments. The
fragmentation process primarily gives rise to cleavage
products that break along peptide bonds. Because of this
simplicity in fragmentation, it is possible to use the
observed fragment masses to match with a database of
predicted masses for one of many given peptide sequences.
As an example, the peptide GVAGNEGAL might be frag-
mented into GVAG and NEGAL. If all GVAGNEGAL
peptides were fragmented into GVAG and NEGAL ions,
it would not be possible to recover the peptide’s sequence.
However, various GVAGNEGAL peptides will break at
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Table 1. Amino Acids and Corresponding Molecular
Weights

Amino Acid Symbol  Average Molecular Weight (Da)
Alanine A

71.0788
Arginine R

156.1876
Asparagine N

114.1039
Aspartic acid D

115.0886
Cysteine C

103.1448
Glutamine Q

128.1308
Glutamic acid E

129.1155
Glycine G

57.0520
Histidine H

137.1412
Isoleucine I

113.1595
Leucine L

113.1595
Lysine K

128.1742
Methionine M

131.1986
Phenylalanine F

147.1766
Proline P

97.1167
Serine S

87.0782
Threonine T

101.1051
Tryptophan w

186.2133
Tyrosine Y

163.1760
Valine \Y

99.1326

different points along the sequence. The spectra of the
fragments (in which the fragments become peaks) can
then be analyzed to obtain the sequence by looking for the
aforementioned gaps between peaks that are the same
size as an amino acid and using them to reconstruct a
partial sequence tag. The de novo method is usually
followed by a search of an in silico digested protein
database, similar to PMF, to identify the protein the
peptide originated from.

A third approach to determining the sequences of
peptides is to use MS/MS data to search databases of
synthetic peptide digests. Sequest (41) and Mascot
(http:/ / www.matrixscience.com) are two widely used pro-
grams that employ this approach. Sequest’s approach
generates identifications using two pieces of information:
the m/z ratio of the peptide before fragmentation (obtained
from the first mass spectrometry step) and the MS/MS
spectrum. Sequest looks up the m/z value of each peptide
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being analyzed in a master list of peptides generated from
a computationally digested protein database, as in peptide
mass fingerprinting. Unlike PMF, Sequest’s approach
determines the peptide’s identity by comparing the theo-
retical MS/MS spectrum of each peptide in the list with
the observed MS/MS spectrum. (Sequest creates the the-
oretical MS/MS spectra from these peptides with a model
of how peptides fragment in the CID process.) Sequest
assigns a cross-correlation score (XCorr) to each theore-
tical peptide; the XCorr is used to select the best match.

3.7. Protein Arrays

Mass spectrometry is not the only high-throughput means
of identifying the proteins present in a sample: Protein
arrays provide an alternative approach. A prototypical
protein array consists of a set of probes bound to a surface.
Protein is applied to the surface and then washed away, so
that the proteins that did not stick to any probes are
removed. A variety of probes might be used—antibodies
(to test for the presence or abundance of proteins), other
proteins (to assess interactions), or drugs, other small
molecules, DNA, RNA, and substrates for enzymes (to
test binding). A single array might contain thousands of
probes.

Compared with traditional methods of surveying pro-
tein binding and interactions, protein arrays are highly
parallel and are often miniaturized. Their advantages
include speed, high sensitivity, economical reagent usage,
and abundance of data generated per experiment.

Array technology was first developed as a tool for high-
throughput gene expression analysis. By combining small
sample volumes and the ability to generate massive
amounts of data in a single experiment, gene expression
arrays have vastly accelerated the search for functional
effects of single nucleotide polymorphisms (SNSPs) and
modified gene expression in normal and diseased states.
Much interesting science has come from the study of gene
expression arrays. However, many array studies operate
under the assumption that changes in mRNA levels
ultimately correlate to changes in encoded protein levels.
This assumption is in many cases incorrect (42)—gene
expression analysis is no substitute for protein expression
analysis. (As biochemical changes in the cell are generally
correlated with the actions of protein, scientists tend to be
more interested in the latter than the former.) Gene
expression arrays also cannot provide information on

Capture molecules Adding sample mixture

S —

O/
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protein PTMs, something that a properly designed protein
array could do.

Protein arrays are typically built by immobilizing
proteins (or other probes, such as small molecules) on
surfaces such as glass, membranes, micro-liter wells, mass
spectrometer plates, and beads (or other particles). A
schematic for differential protein expression profiling
with a fluorescence detection system is shown in Fig. 5.
The surface chemistry of the array is designed to immo-
bilize the surface molecules. The target proteins are
exposed to binding molecules on the array. A detection
system is then used to indicate the abundance of the
target proteins. (One method might involve fluorescently
labeling the target proteins and scanning the array for
fluorescence after washing away an unbound protein.)
Depending on the experimental design, some software
(and even some hardware) in a protein array experiment
can be adapted from machinery for DNA arrays.

Protein analyte-antibody binding may be detected di-
rectly or via a secondary antibody in a sandwich assay
(Fig. 6). Direct labeling can be used for comparing distinct
samples using different fluorophores. The differences in
the target protein concentrations (within each capture
spot) can be then detected via wavelength fluorescence
analysis (43). (This is similar to a common method with
DNA microarrays: The control and experimental sample
are labeled with different fluorescent colors. Both are
applied to the array, and the excess is washed off; the
relative color of each probe is assessed to see which sample
bound more strongly.) Sandwich immunoassays are the
method of choice (providing high specificity/sensitivity) for
low-abundance proteins (femtomolar range (44)) when
antibodies for the protein are available (Fig. 7). This
method can also be used for the detection of protein
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Figure 6. Capturing proteins.
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Figure 5. Protein array detection system.
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modifications. Cross-reactivity is an important issue for
this technology. Although antibodies are conceptualized as
being highly specific, unpredictable cross-reactions are
possible. Thus, the usefulness of individual reagents
depends on the relative level of cross-reaction and specific
reaction. The use of sandwich assays, in which antibody
pairs are used to bind and detect proteins, is one solution
to this issue. This adds specificity because it is unlikely
that both members of the sandwich will exhibit the same
cross-reactivity. In summary, the factors required from
such detection methods involve optimal sensitivity and
specificity, with low background noise to give a high
signal-to-noise ratio.

3.8. Yeast Two-Hybrid

Yeast two-hybrid (Y2H) is a molecular genetic technique
that is commonly used for high-throughput mapping of
potential protein—protein interactions. In its simplest
form, the transcription of a reporter gene (e.g., f-galacto-
sidase) is to signal that a (prey) protein has attached to a
second, bait, protein. To accomplish this, a multidomain
transcriptional activator of this reporter gene (e.g., Gal4)
is used. Hybrid proteins are produced in which the bait is
attached to one of these domains (i.e., DNA-binding
domain), whereas the other is attached to the second
domain (i.e., activating domain). If the bait and prey
proteins bind, then the transcriptional activator can func-
tion, and this results in transcription of the reporter
protein (which can then be measured). In this way, multi-
ple bait proteins can be screened against a large array of
prey proteins to find out which ones bind.

There are many related engineering issues in Y2H.
The technology allows for high-throughput instrumenta-
tion design and analysis. Improving the quality of the
interaction measurement is another area of research.
There are currently many false-positives and false-nega-
tives. In fact, studies have estimated 50-90% are false-
positives (45). “Sticky proteins” may also bind to many
proteins without being biologically relevant. Technology
limitations may lead to the misfolding of proteins, which
then fail to interact (46).

3.9. Proteomic Databases

Extensive information on proteins gathered both from
proteomics experiments and from experiments in the
pre-proteomics era is available from public online data-
bases. One can roughly categorize the major databases of
interest to proteomics researchers as those containing
sequence data, structure data, interaction data, mass
spectrometry data, and the integration of the aforemen-
tioned data.

This section introduces the general content of each
database type and refers to the most popular databases
of each category. It should be noted that there are few
globally accepted standards for database structure and
implementation. Would-be database integrators often run
into the perennial problem with biological databases:
extensive redundancy and the lack of a common naming
system to help match records and remove redundancy.

3.9.1. Protein Sequence Databases. At their core, most
protein sequence databases contain the amino acid se-
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quence of identified proteins. Some databases also include
identification tags and references to a related journal
article. Entrez and Swiss-Prot are among the most popu-
lar sequence databases.

Entrez (47) is a molecular sequence retrieval system
developed at the National Center for Biotechnology In-
formation (NCBI). Entrez Protein, a protein sequence
database, is just a small subunit of the Entrez system.
Entrez also provides access to biomedical literature, nu-
cleotide sequence databases, three-dimensional (3-D) mo-
lecular structures, complete genome assemblies, OMIM
(Online Mendelian Inheritance in Man, a database of
genetic diseases), and many other resources.

Swiss-Prot (48), another popular protein sequence da-
tabase, was established in 1986 through collaborative
efforts of the Swiss Institute for Bioinformatics (SIB)
and the European Bioinformatics Institute (EBI). The
Swiss-Prot system relies on the translations of DNA
sequences from the EMBL Nucleotide Sequence Database.
EMBL is a comprehensive database of DNA and RNA
sequences collected from the scientific literature, patent
applications, and submissions directly from researchers/
sequencing groups. TrEMBL is a computer-annotated
supplement of Swiss-Prot that contains translations of
EMBL nucleotide sequence entries (before being inte-
grated into Swiss-Prot). Swiss-Prot is known for a mini-
mal level of redundancy and a high level of integration
with other databases.

3.9.2. Protein Structure Databases. Protein structure
databases contain 3-D structural (e.g., secondary and/or
tertiary) information. One of the best known is the Protein
Data Bank (PDB) (49), an international repository of
experimentally determined 3-D structures of biological
macromolecules. The repository includes atomic coordi-
nates (typically determined using X-ray crystallography, a
highly accurate means of determining protein structure),
bibliographic citations, secondary structure information,
crystallographic structure, and nuclear magnetic reso-
nance (NMR) experimental data.

3.9.3. Protein Interaction. Many databases collect lists
of protein—protein interactions. The Database of Interact-
ing Proteins (DIP) (50) is a database of pairs that are
known to interact (e.g., two amino acid chains that bind to
each other). DIP contains the name and the PIR/SWIS-
SPROT/NCBI/EMBL unique identifier for each protein
and any available information about the interaction.
This may include the region involved in the interaction,
the dissociation constant, and the experimental methods
used to study the interaction.

BIND (51) is an another major interaction database. It
has three classifications for molecular associations: mole-
cules that associate with each other to form interactions,
molecular complexes, and pathways. Complexes are func-
tional combinations of two or more molecules, capable of
performing a specific function. Pathways are a sequence of
temporal events (interactions) that occur within cells. In
BIND, complexes and pathways are represented by mole-
cular complex objects and pathway records, respectively,

both of which are formed by linkage of two or more
interaction records.

The KEGG database (52) integrates data on molecular
interaction networks in biological processes as well as
chemical compounds and reactions. Metacyc/Ecocyc (53) is
another database that collates metabolic and other reg-
ulatory pathway information.

A recent new development in proteomics databases is
the Proteomics Standards Initiative (PSI) standard (54).
This initiative aims to define community standards for
data representation in proteomics. PSI is taking steps to
standardize mass spectrometry and protein—protein inter-
action data. The PSI-MI (molecular interactions) format
is a data exchange format for protein—protein interactions.
Although that initiative seeks to standardize the structure
of databases, the actual content is left ambiguous. Also,
data in its fields can vary somewhat across databases: In
databases supporting the PSI-MI format, the proteins
may be referenced by different identifiers ranging from
Uniprot identifiers, NCBI GI numbers, Ensembl identi-
fiers, and the International Protein Index (IPI). In addi-
tion, virtually no database contains all fields in the PSI-
MI specification.

Still more interaction databases have been drawn from
literature mining. In a literature-mining approach, text
processing software is applied to a large database of
biomedical literature (the NCBI's PubMed abstracts, for
instance) to glean protein—protein interactions described
in the text. One recent approach combined text-mining
with some of the experimentally derived databases de-
scribed above (55).

3.9.4. Mass Spectrometry Databases. There are a few
nascent public mass spectrometry databases at this time.
The Open Proteomic Database (OPD) (56) and Peptide
Atlas Repository are two such examples. The OPD, at the
University of Texas-Austin, is roughly a collection of
1,200,000 spectra representing experiments from four
different organisms. The Peptide Atlas Repository (Insti-
tute for System Biology) contains the same type of data,
with additional quantitative filtering methods applied to
the received data.

3.9.5. Integration Databases. SeqHound (57) and Alias-
Server (58) are well-known examples of integration data-
bases, which combine data from multiple sources.
SeqHound combines sequence and structural information
with additional annotation data on the biomolecules in its
catalog. AliasServer provides a cross-reference service
that links the many different identifiers used by different
databases to refer to the same biomolecules. Both Seg-
Hound and AliasServer provide an application program-
mer interface (API) to aid the creation of computer
programs that access the databases over the Internet.

4. MODELING PROTEIN NETWORKS AND INTERACTIONS

Mass spectrometry, protein arrays (59), and the yeast two-
hybrid technique (60) can produce reams of raw protein—



protein interaction data. Making sense of these data is a
major computational challenge in proteomics.

A natural representation for a collection of protein—
protein interactions is a graph. By way of review, a graph
G consists of a nonempty set of vertices V and a set of
edges E that potentially link vertices together. G=(V,E)
where E={(u,v)| u,v € V}. A graph may be directed or
undirected. A directed graph is one in which each edge has
a direction (in other words, an edge from a to b is distinct
from an edge from b to a). Conversely, in an undirected
graph, an edge from a to b is the same as an edge from b to
a. The edges may also have associated numeric values,
typically called weights. (In a graph of cities and roads
between them, for instance, edge weights might corre-
spond to the speed limits on the roads.) The degree of a
vertex in a network is defined as the total number of
incoming and outgoing edges. Vertexes with high degree
are often called “hubs.” The degree distribution P(k) gives
the probability that a selected vertex has exactly £ such
edges. The statistics of P(k) can be used to characterize a
graph, as discussed below.

Graphs appear frequently in the analysis of complex
systems. Elsewhere in biology, the genes in a regulatory
network and the metabolic chemicals in a cell are often
modeled as graphs. Maps of computers on the Internet,
transistors on a silicon chip, and people in social groups
(61) are also well suited to graph representations. The
theory of complex networks (62), originating in the mathe-
matics and physics community, has become increasingly
popular as a means of analyzing protein interaction net-
works.

If we consider the proteins to be a vertex set Vand their
interactions to be an edge set E, we can model protein—
protein interactions as a graph. Protein networks are
often represented as undirected graphs where a connect-
ing edge signifies a binding between two proteins.

Analysis of networks typically starts with classification
of the network architecture; protein networks are no
exception. Three common mathematical models for net-
work architecture include random networks, scale-free
networks, and hierarchical networks (63) (Fig. 7). In the
random network model, it is assumed that a fixed number
of nodes are connected to each other at random. The
vertices in random networks have Poisson degree distri-
butions. Most nodes have roughly the same number of
edges. The average path length ¢ ~ In N, where N is the
total number of vertices.

Random network Scale free network with two hubs

Hierarchial network
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Scale-free networks, by contrast, have a power-law
degree distribution. In scale-free networks, the probability
that a node has % links is P(k) ~ k=7, where 7 is the degree
exponent (64). Most nodes in scale-free networks have few
incoming/outgoing edges, whereas a handful of hubs have
many edges. Hubs can serve as gateways in terms of
network flow because they are linked to many other nodes.
The average path length in such networks ¢ ~ In(In N), so
messages may propagate more quickly random networks.

A scale-free network can be parameterized via a model
where the probability distribution of the number of edges
k is described as

P(k)=ak™". @)

Here, a is the proportionality constant and y is the degree
exponent (63). This construct results in a small number of
network hubs (nodes that have many interactions) rela-
tive to the more common nodes that have few links.

Modularity, local clustering, and scale-free topology are
jointly exhibited in many biological systems. Such systems
can be observed as combinations of recursive clusters
culminating in what is termed a hierarchical network. A
hierarchical design is formed through the interconnection
of sparsely connected nodes that are part of highly clus-
tered areas. Communication between the different highly
clustered neighborhoods is often mediated via hubs.

Studies have shown protein—protein interaction net-
works to be scale-free (65). Most proteins participate in
only a few interactions, whereas a few hubs participate in
many (61) (Fig. 8). Scale-free networks are vulnerable to a
targeted attack on a hub. In protein interaction networks,
it has been shown that knocking out high connected
proteins can cause catastrophic (lethal to organism) sys-
tem failure (66).

These models have been applied to protein—protein
interaction maps. Two early works (67,68) on the use of
high-throughput y2H approaches in identifying potential
protein—protein interactions between yeast proteins re-
sulted in the discovery of 183 and 692 protein—protein
interactions, respectively. Another study on C. elegans (69)
showed the utility of the y2H method in identifying 27
novel protein—protein interactions. In addition, it helped
to provide functional annotation for approximately 100
uncharacterized gene products in the worm via mapping
to orthologous clusters (70).

Another interesting area of current research is the
probabilistic prediction of protein interaction networks

Figure 8. Subset of the yeast protein interaction
network (YHR200W is a hub here).
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(71). A study on yeast (72) correctly predicted the func-
tional category for 72% of the 1393 characterized proteins
with at least one partner of known function. This model
has also been applied to predict functions of 364 pre-
viously uncharacterized proteins in yeast. Experimental
data from various sources are used to construct a skeleton
of known interactions, and statistical inference methods
such as Bayesian networks can be used to predict or
ascertain interactions between proteins.

Recent research efforts have mapped protein interac-
tions into modules. Modules describe subgraphs (compris-
ing interacting proteins) required for a specific cellular
function. Understanding module function(s) requires di-
rect knowledge of the involved proteins, where the pro-
teins localized, and the module’s regulation mechanisms.
Integrating the information from different types of net-
works (metabolic, genomic, proteomic) can lead to a better
understanding of functional modules (73). Researchers
have also used protein—protein interaction maps to for-
mulate new biological questions and hypothesis and for
reducing problem complexity (74). The complete potential
of protein interaction maps has yet to be exploited. Much
promise resides in current interdisciplinary efforts aimed
at mining the rich data contained within such networks.

5. CONCLUSION

The abundance, submicroscopic size, and dynamic nature
of proteins have historically made them difficult to ex-
plore. On the other hand, these features also make
proteins an ideal complex system for engineering-based
analysis. Accurate sensors and signal processing methods
are needed to rapidly assay protein abundance and inter-
action. High-throughput robotic systems are needed to
increase efficiency and reduce the potential for error in
sample preparation and processing. Intelligent decision-
making systems for image analysis (e.g., for gels), feature
extraction, and other machine learning techniques will
reduce the burden on the scientist in analyzing experi-
mental results and make whole-organism proteome-based
experiments a reality.

Future research in proteomics will benefit from both
new data-gathering technology and new data-processing
methods. The field abounds with collaborative opportu-
nities: Whereas the design of a protein chip or novel
machine-learning algorithm may require skills in me-
chanical engineering or mathematics, the design of an
experiment and the interpretation of its results will
require the skills of a biologist or a biochemist. Innovative
approaches, ranging from constructing accurate cellular
models to building better detection instruments to formu-
lating experimental hypotheses, will drive the future of
proteomics. In this new era, proteomics is not merely
validating hypotheses but generating new ones.
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