Secure Electronic Voting Over the World Wide Web

by
Mark A. Herschberg

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfilment of the Requirements for the Degrees of
Bachelor of Science in Electrical [Computer] Science and Engineering
and Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 27, 1997

[] Copyright 1997 Mark A. Herschberg. All rights reserved.

The author hereby grants to M.1.T. permission to reproduce and dis-
tribute publicly paper and electronic copies of this thesis and to
grant others the right to do so.

11 Lo PRSPPI
Department of Electrical Engineering and Computer Science
May 27, 1997
(@1 1 11=To 1N o) PSP
Ronald Rivest, ES Webster Professor, Electrical Engineering and Computer
Science

Thesis Supervisor

ACCEPLIEA DY oo
F. R. Morgenthaler
Chairman, Department Committee on Graduate Theses

Secure Electronic Voting Over the World Wide Web

by
Mark A. Herschberg

Submitted to the
Department of Electrical Engineering and Computer Science

on May 27, 1997

In Partial Fulfilment of the Requirements for the Degree of
Bachelor of Science in Computer [Electrical] Science and Engineering
and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

It has only been within the past two decades that protocols for electronic voting using
modern computers have been developed. Only in recent years have any of the theories
actually been actually implemented. Unlike its predecessors, E-Vox, based off of Fujioka
et al., is the first implementation which is both easy to use (from the standpoint of the
voter) and system independent. The voter needs only click a few buttons in what can be a
single stage protocol. The entire system requires only that the voter register a name and
password. It does not require voters to use a public key, or other encryption/authentication
system.

Thesis Supervisor: Ron Rivest
Title: ES Webster Professor, Department of Electrical Engineering and Computer Science

Table of Contents

O 1 0 T 0 T3 1 T o 5
I A = 7 Yod (o | {0 Vo SRS 5
I o 111 (o] Y2 6
IR B V[0 1Y o) o 12

P22 1 1= To Y2 8......... 1
2.1 CryptographiC EIEMENTS.uu i 18
2.2 "A Practical Secret Voting Scheme for Large Scale Elections™..................... 22

3 ThE E-VOX SYSEEIM ..ttt s e e e e e et s e e e e e e e e aeeeeeeeeansnnnnns 26
3.1 ASSUMPLIONS ...ttt erba s 26
3.2 Creating a Well-Defined SYStEMcccuuiiiiiiiiiiiiiieieieee e 27
3.3 The Revised Voting ProtOCOol.............ouuuiiiiiiiiiie e 33
3.4 Proof of Correctness of the Revised ProtoCol..........ccccoeeeeeiiiiiiiiiiiiiiiiiicnnn 37

T O] 4 0] oTo] dT=T o | PP PP 42
4.1 CryptographiC LIBraryoooeueiiiiiiiiiii s e e e e e 42
Y [0 (3 @] o] 1= 0! SR 43
4.3 GenRand, the Random Number GENErator........oocevuieiviiiiieiieeee e 44
4.4 NetWOrK CONNECHIONS. ...uuuiiiiiiiiiiiiiiiee et e e e e e e e e e e e e e e e e e e s s s s aannnes 45
T S =To 11 =T OSSR PPURPPUPPRPT 47
I =1 =T ox 1 o =0 1o = P PUPUUPR a7
YT 4V = SRR PP URRPPRPTIN 49
4.8 VOUNG APPIBL....ceeeeeeeeee e 62

I =TT 1 o TR OO P PPPPPPPPPPPP 65.........

6 Limitations, Their Solutions, and Further EXtENSIONScccccoeeeeiiiiiiiiicciiiiie 67
G R O T [[o] 01001 V/=T o 4[] o £ TR 67
G e (0] oo | SR 68
6.3 ATCNITECIUIE. ...ttt e e e e e e e e e e e e e e e s bbb bbb e e eee e 74
B.4 POIICY ..t aaaaaaas 77

3 1 11 1= (o o SR 79

Y o] o L= g o [SRR 80

] 0] [ToTe] =1 o] o) V2N USSP 81

List of Figures

List of Tables

Acknowledgments

The code for this project was developed by Mark Herschberg, Ben Adida, and Randy
Milbert, under the supervision of Prof. Ron Rivest. | would like to thank them all for their
contributions. Ben’s knowledge of Java proved invaluable to the project. He created the
server’s basic functionality and is credited with the wonderful interface it has. Ben also
developed the lower layers of the communications protocol. Randy implemented such cru-
cial components as the Blowfish algorithm, a terrific random number generator, and the
ballot. Ron’s supervision was helpful throughout the development process.

We would also like to thank DARPA, which sponsored our research under grant num-

ber DABT63-96-C-0018, and Dr. Karger, for the use of his machine during the coding.

Netscapeis a trademark of Netscape Communications Corporation.
Periclesis a trademark of the Massachusetts Institute of Technology.

RSA is a trademark of RSA Data Security, Inc.

Chapter 1

Introduction

1.1 Background

In 1869 Thomas Edison received US patent 90,646 for an “electronic voting device.”
He tried to sell his invention to the Massachusetts legislative bodies, unsuccessfully. A
century later, we are once again attempting to apply electronic wizardry to expedite the

democratic process.

It seems as though everything is being automated by computers today. With the recent
explosion of growth on the world wide web, the ability to communicate more information
faster and cheaper is at our fingertips. We have email, electronic newspapers, and video

conferencing all leading the trend towards a paperless society.

Elections themselves have not remained completely static. Absentee ballots have long
been common. This idea was extended in April, 1997, when Monterey County, California
experimented with the first voting by mail (VBM) system. Additionally, Direct Recording
Electronic (DRE) systems have been used in polling stations since the 1970s. In DRE
booths, unlike their mechanical counterparts, the tallies are stored electromagnetically.
[Kir95]

Thanks to the recent advances in the field of cryptography we can bring all these
trends together and create a secure electronic voting system. Our system, E-Vox, combines
the flexibility of a VBM with the speed and power of modern day computers. Although

some philosophers may disagree, we take the value of these properties to be self evident.

1.2 History

The cases listed above are, unfortunately, exceptions, rather than the rule. The fact is,
progress in the field of electronic voting has moved very slowly over the last hundred
years. It was not until cryptography become a field of public interest, as opposed to one

used exclusively for military purposes, did the first protocols begin to surface.

1.2.1 Properties of a Secure Secret Voting Scheme

Fujioka et al. defines seven requirements of a secure, secret election.

1. Completeness: All valid votes are counted correctly.

2. Soundness: The dishonest voter cannot disrupt the voting.

w

. Privacy: All votes must be secret.

SN

. Unreusability: No voter can vote twice.

(62

. Eligibility: No one who isn’t allowed to vote can vote.

6. Fairness: Nothing must affect the voting.

\‘

. Verifiability: No one can falsify the result of the voting.

Curiously, the above properties are often taken for granted in the US electoral system.
After a voter drops the ballot in the box, he goes home and awaits the return. Certainly the
need for a photo ID and a signature provides some authentication, but that's the extent of
it. Perhaps his vote was secretly recorded; maybe the tallies from his booth were not
reported correctly; it is possible that the election officials stuffed the ballot box when he
wasn’t looking. Most systems rely heavily on our trust in the government appointed offi-

cials overseeing the election.

There is significantly less trust when computers are involved. This is not without some

justification. Anyone who has spent any time working on a computer has seen it crash.

Bugs are an accepted part of most software. Recently it seemed as though every other
week college students were discovering security flaws in supposedly secure web browsers.
These problems, coupled with the general public’s lack of understanding about computers,
makes for a very distrustful populous. (In defense of computers, though, US elections do
not exactly have a spotless record either.)

Before any computerized balloting system can be accepted it must stringently meet the
above requirements. There are also four additional properties a system may, or may not,
possess.

8. Receipt-Freeness: The voter does not need to keep any record of his vote.
9. Non-Duplication: No one can duplicate anyone else’s vote.
10. Public Participation: Everyone knows who did, and did not, vote.

11. Private Error Correction: A voter can prove his vote was miscounted without

revealing how he voted.

(Properties 9, 10, and 11 are taken from Schneier [Sch96].)

The value of these four properties really depend on the values of the specific society.
Most elections require the user to record some or all of his ballot, to later verify that it was
counted correctly. This receipt also allows voters to easily sell their votes. The buyers can
use the receipts to verify the way in which bought voters voted. [Gen96] (ckme)

Duplication does not seem to be such a significant problem in most real elections.
Schneier gives the example of a three person election between Alice, Bob, and Carol. If
Alice does not care about the outcome of the election, she can simply duplicate Bob’s
vote. The winner is then the person for whom Bob voted (because Alice will have voted

with him). Alice knowing the result of the election, effectively sees Bob’s ballot. Given an

election with any reasonable number of people, who are assumed to genuinely care about

the outcome, this will not be an issue.

The property of public participation is one which may or may not be of value to a soci-

ety. Private error correction is one which most societies would probably consider useful.
1.2.2 Secure Election Strategies

There are three main approaches to secure electronic elections. Within each of these

categories there are a number of variants, each trading complexity for functionality.

Self-Adjudicating Protocols

The most basic protocols require no external parties. Security is created by multiple
layers of encryption and/or signing. Anonymity is generated by repeated reordering of the
votes during various steps of the algorithm. Michael Merritt designed one of the earliest
schemes. [DeM82] All voters need to have public keys which are assumed to have been

distributed before the election beings.
In this scheme, each voter performs the following steps, as summarized by Schneier.
1. He attaches a random string, R, to his vote, V.
2. Then he encrypts his vote with public keys of Voters 1 through N, in that order.
3. Again, he repeats step two, but this time includes a random string within each
layer of encryption.

At this point the votes look like:

En(RNGEN-1(--(Roy Ex(Ry, En(En-a (- (E1(VIR))..))))--.))
where R is random string of voter i, andjEs the encryption of the parenthesized

expression using Voter j's public key.

4. All votes are passed from voter to voter, starting with voter N and ending with
Voter 1. Each voter decrypts the message and strips off the random string, mak-
ing certain it is the one he had used. The voter then scrambles the votes and

sends them onto the next voter (with Voter 1 sending the votes on to Voter N).

Now only the inner encryptions remain.

En(En-1---(BE1(V,R))...)
5. Again each Voter from N down to 1 decrypts his layer, but then signs the mes-
sage and sends it on. Voter i checks the validity of the signature of voter i+1

and if it is valid decrypts, signs, and passes the message onward.

Partway through this step the votes looks like

Si+1(Ei.-.(E(VIR))...)
where $is the signature of \Voter i.
6. All voters confirm the signature of Voter 1 and check the list of votes for their

initial random string to insure their vote was counted.

The number of votes is constant throughout the process and so ballot stuffing or drop-
ping is easily detected. Votes cannot be replaced by a malicious party. An attempt to do so
in the second round of decryptions (step 5) will be discovered as the signed object will not
be correct. The signatures at this stage make it easy to trace back and find the malicious
party.

An attempt to substitute votes during the first round of decryptions (step 4) will either
be detected later in the round because the random number is incorrect; or, if Voter i substi-

tutes for Voter j's vote, for j > i, then Voter j will detect it during the start of the second

round of decryptions. As opposed to second round decryption substitutions, the malicious

party cannot be uniquely identified in this case.

The scrambling of votes provide anonymity; and the inner random string R allows par-

ticipants to insure their Vote is in the final tally.

There are quite a few problems with this scheme. If for no other reason, it is simply too

computationally intensive to be useful.

Central Vote Repository

Excessive computation can be avoided by creating a Central Vote Repository (CVR).
This system requires far less computational work. Again the voters are presumed to have a
public/private key pair {k,d}.

1. The CVR asks each voter whether or not he will participate in the upcoming

election.

2. A list of all participants is made public.

3. Each voter receives an ID number using an All-Or-Nothing-Disclosure-of-

Secrets (ANDOS) protocol.

4. Each voter anonymously sends the CVR his ID number, I, along with the

encryption of his vote, V, paired with his ID number.

5. The CVR publishes all encrypted votggl /).

6. After step 5 is complete, each voter anonymously sends {I,d} to the CVR.

7. All votes are decrypted and their values published alongside them.

This system prevents unauthorized voters from voting, as well as registered voters
from repeatedly doing so. While the ANDOS system [Nur91] is too complex to be

described here, suffice it to say that votes cannot be traced to the voter, because the

10

ANDOS system prevents the ID distribution center from knowing which voter got which

ID.

There are some significant limitations to this system. The main drawback is that the
central facility is a single point of failure or corruption. It can forge votes in the name of
people who abstain (although step 1 is supposed to reduce the number of abstainers). Con-
versely, it can drop valid votes and claim they were never sent. The voter has no way of
proving that he did submit a vote. If, instead, the CVR simply chooses to miscount a vote,
the voter’s only recourse is to show the triplet {I (Ev), d} at which point his vote is

revealed. Finally, the ANDOS protocol is rather complex.

Simpler variations on this theme do not have all the necessary properties. More com-

plex ones overcome some of the difficulties. [Sak94]

Multiple Voting Organizations

In the spirit of checks and balances, the next improvement to election schemes comes
from using two centers, instead of one. Now, instead of a single CVR, there are two enti-
ties: a Validation Agency (VA) and a Tabulation Facility (TF). A valid vote must pass
through both bodies to be counted. The first recognizes the voter’s right to vote, without
seeing the actual ballot, and gives the voter some token confirming this authorization. The
second party is then anonymously passed the validation token and the vote. This type of
scheme, of course, assumes that the two groups are set up so as not to collude with one

another.

1. Each voter, after providing his identity, asks the VA for an authorization number.
2. The VA randomly generates authorization numbers and distributes them.

3. The list of all such authorization numbers is given to the TF.

11

4. Each voter picks a random ID number and sends it, along with his vote and

authorization number to the TF.

5. The TF checks the authorization number and, if it is on the list, crosses it off and

publishes the vote along with the ID number.

While this protocol does not require that the voters all have public keys, all communi-
cation needs to be encrypted in some manner. Additionally the voter needs to prove his
identity to the VA somehow. Finally, an anonymous channel is again needed by the voter
to communicate with the TF.

This type of system has some notable improvements over the previous two examples.
Neither body, by itself, has enough information to link a specific ballot with a voter. The
VAs validation numbers prevent both unauthorized voters from participating and valid
voters from voting repeatedly.

Still, this system is not perfect. The VA can create false voters and vote in their name.
Collusion between the VA and TF can break the system. Despite these flaws, however, this
system is a good starting point, and the Fujioka et al. system we implemented is an

improvement on this theme.

1.3 Motivation

1.3.1 Impediments to Development

There have only been a handful of papers in the area of secure electronic voting. The
result is that there have been only a handful of implementations. This is likely due to soci-
etal needs. Electronic data transfers and communications are commonplace in today’s
world. Business, government, and military applications all require strong, efficient,

encryption and authentication schemes. Elections, on the other hand, are occasional

12

events; and not very popular ones in places like the United States with only a 55% turnout
rate for presidential elections. It is no surprise that most cryptographic research has been
devoted to mainstream topics such as data encryption and public key systems, whereas
electronic voting is considered by experts like Bruce Schneier to be an “esoteric protocol.”
However, as the use of the internet increases, we expect work in this field to grow.
Elections are really just a special case of secure multiparty computation, [Kil90] in which
a group of people wish to perform a calculation together, perhaps each using personal
data, without revealing their individual data. Contract bidding, negotiations, and aggregate
demographic data, just to name a few examples, are related computations which we can
expect to see calculated on the internet in the future. Our work will be relevant to these
areas, as well as general security developments. At the very least, it is, to our knowledge,

the first secure electoral system built under Java.

This lack of need for secure elections has resulted in a rather large gap between theory
and practice. Although the algorithms are sound, certain assumptions they make are far
from trivial to implement, as we’ll see in the case of E-Vox, based on a paper by Fujioka et

al. (2.2.1)

There are also a number of logistical problems. Two parties desiring a secure commu-
nication channel, can, together, develop their own program and each take a copy. An elec-
tion usually has a much larger base of participants, each of whom will need to receive the
code. Whereas a physical meeting could be used to verify the authenticity of the code in
the former case, that is unfeasible in the latter. The code must also be trusted by the voters
not to perform any malicious activities, such as erasing the hard drive, or recording the
keystrokes and forwarding them to someone wishing to defeat the anonymity of the elec-

tion. Again, this is easier among a small group of people such as in the former case.

13

Finally, there are a number of policy issues that come with elections. By policy we
mean problems which cannot be solved by cryptography alone. The fundamental problem
of key distribution becomes a registration problem in this case. Throughout this imple-
mentation there will be a number of places in which the problem is left open to the users of

the system.

1.3.2 Previous Work

Despite the obstacles listed above, a number of universities have begun supporting
electronic voting, in the past few years, often for student elections. These systems, how-

ever, all have some drawbacks.

Pericles (MIT)

At MIT, student government elections are held both electronically and on paper during
disjoint periods. The computer-based voting system, Pericles was developed by Paul

Kirby. [Kir95] It is a C based system, which runs over Mosaic.

There are two drawbacks to this system. First, it relies on the Kerberos system for
authentication and message encryption, making its application to the general public lim-
ited. Second, it is a single server system. Although it is set up to protect the privacy of the
students and insure a fair election, anyone with access to the server can defeat the system.
Despite this cryptographic dependency, Pericles does have a very good user interface, and

works extremely well for the type of election for which it was designed.

Princeton

The scheme at Princeton, developed by Ben Davenport, Alan Newberger, and Jason
Woodward is also an implementation of the Fujioka, et al. [Dav96] The details of this sys-

tem will be discussed fully in section 2.2.

14

We believe our implementation has certain advantages over theirs. Their implementa-
tion is written in Perl and uses a web based interface. The downside to this is that the web
browser must connect to a server to perform the actual computations required of the voter.
This system is vulnerable to a spoofing attack from which their suggestion of using SSL
will not protect them (see section 6.3.4). This server also must be trusted to reliably per-
form a step critical to the voting process, hours after the voter has interacted with the sys-

tem (see section 2.2.2).

The servers themselves are limited in that they can only handle one connection at a
time. The messages passed between them, although all encrypted with PGP, are subject to

all sorts of timing analysis, which could defeat the anonymity of the system.

Sensus

Lorrie Cranor and Ron Cytron have implemented Fujioka et al., as well. [Cra96]
Again, we believe our system has certain benefits over theirs. First, they employ a three
stage protocol. That is, the voter must perform three separate actions, two of which are
absolutely necessary for their vote to be tallied. Our implementation requires only two
actions on the part of the voter, only one of which is necessary (see section 2.2.2).

Second, their system is written in C and Perl, and makes use of CGI scripts. This has
the code logistical problems mentioned earlier (see section 1.3.1). In the environment of a
college campus (or even business), where the computers are maintained by a vigilant and
knowledgeable group of system administrators, this is not a problem. However porting it
across intranets, so otherwise disjoint groups can participate in the same election still is a
problem.

Finally, it presumes the use of a public key system for all voters. Again, this may not

be a problem on a given intranet, but will be in the general case.

15

1.3.3 Goals

With the above systems in mind, our goal was to develop a secure, user-friendly, stand-

alone system for a small scale election.

Secure

We define secure to mean meeting the seven requirements as listed by Fujioka et al.

User-Friendly

The system was designed to be completely user-friendly. By this we mean that the
voter himself needs to perform the bare minimum number of actions required of any elec-
toral process and no more. The two steps absolutely required of any election are registra-
tion and voting. Note that our requirement is procedural rather than computational. There
iS no constraint on the computation, save the implied limit of it being finished within a rea-
sonable amount of time. Much of the literature has been devoted to improving the effi-
ciency of elections, but that is not one of our goals.

From the voter’s standpoint, both activities are performed quickly and easily. To regis-
ter, the voter must go to the appropriate registration office, prove his identity (the process
by which this is done is left as a matter of policy), and then simply enter his name, or any
unique ID, and password into a program (both of which he needs to remember).

When it comes time to vote, he can simply download the applet using a web browser,
enter his name and password, and then click a few buttons. At that point, the voter can
walk away from the process knowing he has completed the act of voting, just as if he had
stepped out of the election booth. (As explained in section 2.2.2, because the user interface
was such an important goal of this system, we did significantly alter the security model of

the protocol to achieve it, but we still meet our definition of secure nonetheless.)

16

Both registration and voting programs take on the order of seconds to complete, and

the user interface is self-explanatory.

Stand-Alone

Our system was designed to be a stand-alone system. Some current systems (e.g. Peri-
cles) assume certain structures are in place, such as key-distribution systems. We make no
assumptions of this sort. All we require are some servers and a web browser which sup-
ports the JDK1.1 (Java Development Kit). Specifically, the user (voter) does not need to
download any code ahead of time; and because Java applets are run inside a sandbox, there

is no need to worry about system security.

Size

E-Vox can easily support elections on the order of a hundred people. With sufficiently
fast servers, a few thousand can be quite reasonable. Moreover, the system can be scaled
further without significant effort. The limit is really the speed and size of the servers, and
the bandwidth of their connections. There is also a slight bottleneck in terms of file system
latency. Currently, each registered voter is stored in a separate registration file. With the
release of the JDBC (Java Database Connectivity), a database backend can be set up to
more efficiently manage a larger number of people. We claim that this system can poten-
tially handle tens of thousands of voters. Note that for any sufficiently large system, sepa-
rate elections still need to be held, much like the way in which current US federal elections

are broken into a number of small districts.

17

Chapter 2

Theory

2.1 Cryptographic Elements

Election protocols are built from a number a low level cryptographic structures. These
structures, alone or in combination, create the various properties we desire in election sys-
tems. The reader is presumed to have a basic understanding of public key cryptosystems.
[Dif77]

2.1.1 Digital Signatures

Digital signatures are intended to be the electronic analog of written signatures. That
is, some object “attached” to another (say a document or file), undeniably associating it
with the signer. The signature must have three properties. First, it must be unique; the sig-
natures of different parties must be different. Second, the signature must not be forgeable,
Alice cannot create Bob’s signature. Third, the digital signature needs to be verifiable, so
anyone can confirm the authenticity.

E-Vox implements digital signatures using the RSA public key cryptosystems. [Riv78]
They work as follows. Alice, with public key e, private key d, and modulus of n, signs an

object, M, by encrypting it with her private key.

S=Mmodn

Because she is the only person who knows her private key, she is the only person who

can create the signature, S, for this object, M.

18

Anyone can verify that S is indeed her signature of M by encrypting S with her public

key.

M = S mod n = (M)® mod n = M®mod n = M mod n
2.1.2 Blind Signatures
Our voting system’s need for signatures has an additional constraint in that it must be a
blind signature. To illustrate what a blind signature is, suppose Bob doesn't trust Alice. He
does, however, trust Trent, who trusts Alice. Bob is willing to accept a message from Alice
only if Trent signs it. Unfortunately, the message is of a rather personal nature and Alice

doesn’t want Trent to see it. She can use a blind signature.[Cha82]

Schneier provides a good analogy of the solution. In the real world, Alice can seal her
message in an envelope filled with carbon paper. Trent can then sign the outside of the
envelope and his signature will get transferred to Alice’s message, without Trent ever actu-
ally seeing it. Alice can then remove the message from the envelope, and give the signed

message to Bob, who can verify Trent’s signature.

The cryptographic version is as follows. Trent has a public key e, private key d, and

modulus n. First Alice blinds her message, M, using a random value, k, between 1 and n.

B = Mk® mod n

Then Trent signs it by

S = B% mod n = (MK) mod n = Mk mod n

Alice can unblind this to yield Trent's signature of M as

S=(S'/k) mod n = M mod n

This can be verified as it is now a normal digital signature.

19

2.1.3 (One-Way) Hashing

A one-way hash is a mathematical function. We say h is the hash of M for hashing

function H

h = H(M).

A one-way hash has the following properties. For any size M (or any size within a
given range of sizes), the size of the output, h, is constant. The inversesHiard to
compute, such that given h and H, it is hard to find any M such that H(M) = h. Given a
message M, it is hard to find another message M’, such that H(M) = H(M’). Finally, it is
hard to find two messages M, M’ such that H(M) = H(M").

We employ a version of SHA, the Secure Hash Algorithm, designed by the NIST and
the NSA. Specifically, we use SHA-1. SHA takes any input up%tﬁts in length and
produces 160 bit output.

Hashing is often used in conjunction with digital signatures. The signing of large doc-
uments can be computationally expensive. Because the hash, sometimes referred to as the
fingerprint, of an object is unique, and often of a shorter length than the original object, it
is the hash of an object which is often signed, rather then the object itself. For a given
object and signed hash, the object itself can be hashed by the recipient, and then compared
to the signed hash after the “un-signing” function has been applied to it.

2.1.4 (Blind) Commitment
A commitment is a way in which one party can commit to an object (e.g. string of bits,

message, contract) without the anyone else seeing what that object really is. However any

attempt by the first party to change the object can be detected.

A good analogy would be for Alice to lock away a message in a safe requiring two

keys, which she would then split between her and Bob. Alice cannot open the safe to

20

change the message, and Bob cannot open the safe to see the message, without the help of

the other.

A few ways to commit to a bit pattern are available. In our protocol we use one-way
hashing to insure bit commitment. Alice generates two random bit stringsn®R,. She

then hashes those, along with her message, M, and sends it to Bob with one of the keys,

say R.

C= H(Rl, R2, M)
Bob cannot compute M from C because of the properties of the hashing function, H. Sim-

ilarly, Alice cannot not find another message and bit string pair (M’, R’) such that

C=H(R, R, M)
and so she cannot change her message to M’ without detection by Bob. By keeping R
secret, Alice prevents Bob from hashing every possible string, along witkoRry and
find the message to which Alice committed. (This type of attack is known as a dictionary

attack.)

Specifically, we use

h= SHA(k1, SHA(message, k2))
In the above equation, the message is actually hashed twice. During each hash, a key is
first appended, and then prepended, to the object being hashed. In our application, the keys

are used to add random bits to the hashed message.

2.1.5 Anonymous Channels

The final piece needed by our system is an anonymous channel. This is not necessarily

a purely cryptographic beast. An anonymous channel is simply one in which Alice can

21

send a message to Bob without revealing her identity (some channels allow Bob to reply to
Alice, while maintaining Alice’s anonymity). [Anon]

Anonymous channels will be discussed in more detail later in section 3.2.

2.2 “A Practical Secret Voting Scheme for Large Scale Elections”

2.2.1 Core Protocol

E-Vox is based on “A Practical Secret Voting Scheme for Large Scale Elections” by
Fujioka, Okamoto, and Ohta [Fuj93]. The paper itself is quite concise. It gives a mathe-
matical framework for a secure election. However, many details needed for a full imple-

mentation were left out (see section 3.2).

The protocol is similar to the third scheme listed in section 1.2.2. It involves an admin-
istrator, a counter, and the voter. Like most election protocols, it requires an anonymous

channel.

The administrator is responsible for rubber stamping ballots. That is, after a voter
proves his identity to administrator, the administrator will sign the committed, blinded bal-
lot it is given. Then the voter will be removed from the list of those eligible to vote. At the
end of the protocol, the administrator will publish a list with the committed, blinded bal-
lots, those ballots when signed, and the voters to whom they were given.

The voter will use this signature as proof of eligibility with the counter. The vote is
sent to the counter through an anonymous channel. The counter has no way of matching
the ballots it receives to any voter. The counter does, however, know to count the votes,
because they have the administrator’s signature.

The vote is actually sent in two parts. First the committed ballot signed by the admin-

istrator is anonymously passed to the counter. While the counter knows the vote is valid, it

22

cannot break the commitment scheme to actually see it. Rather it must wait for the keys to
uncommit the vote to be sent through a second anonymous channel. At the end of the pro-
tocol, a list of the committed ballot, the administrator’s signature of it, the keys used to

uncommit it, and the actual ballot are publicly posted.
The steps listed in Fujioka, et al. are as follows.
1. The voter selects his candidates and commits to this ballot.
2. This committed ballot is then blinded and signed by the voter. It is then sent to

the administrator.

3. The administrator verifies the right of the voter to vote, and the signature of the
blinded vote. If the signature is valid, the administrator signs the committed,
blinded ballot, returning this signed ballot to the user, and publishes its log.

4. The user unblinds the ballot, and verifies the administrator’s signature, which,
because of the blinding properties, should still be valid for the committed (but
no longer blinded) ballot.

5. The committed ballots, now signed by the administrator, are then sent, through
an anonymous channel, to the counter which publishes it along with an index
number.

6. After all the committed votes have been sent in, the voters can confirm that their
vote is listed, and that all votes have valid signatures.

7. After everyone has had a chance to confirm the entries in the counter’s published
list, each voter sends in the keys needed to uncommit his vote, along with the
index of the committed vote. Again the communication is through an anony-

mous channel.

23

8. The counter then adds to the published list the keys and the uncommitted votes
(which can be confirmed to match the committed votes).

A list of all voters who have had their vote signed is published by the administrator.
This list includes their name, blinded ballot, and its signature. The counter’s intermediate
published list (from step 5) has the committed (unblinded) ballot and its signature. The
final published list of the counter contains the values form the intermediate list as well as

the keys used to uncommit, and the uncommitted (plaintext) vote, itself.
2.2.2 Modifications to the Protocol

The core protocol above does not quite satisfy our design requirements. Specifically, it
fails to be user-friendly. Fujioka, et al. requires the voter to perform three steps.

1. Get the administrator to sign the vote and send it to the counter

2. Check that the vote is listed by the counter, confirm any of signatures listed, and,

if everything appears on the level, send in the keys to uncommit.
3. Confirm that all votes were uncommitted and counted correctly.

While a program can easily do any of the steps, it still involves a button click on the
part of the user. People want to drop the ballot in the box and go home. An election of this
nature might require 3 days to run, one for each step, an unappealing prospect to many
potential users of the system.

In theory, during step one, the executables for the later steps could be set up to sleep in
the background of a computer, and run at a later time without further effort on the part of
the voter. However, this requires foreign code to be downloaded onto a workstation.

There are two problems with this approach. First, the code must be trusted not to hurt
the system (or be confined to a sandbox which must then be maintained until the code is

finished and removed). Second, the code must be safely stored until it executes; on a pub-

24

lic workstation, someone could come along and delete the sleeping programs before they
execute the remaining steps.

There may be a social solution to this problem. Prof. Rivest cleverly suggests that as
electronic voting becomes commonplace, people will entrust other entities to perform
these later steps for them. Political parties, for example, have a vested interest in making
sure keys do get sent, and signatures are confirmed, more so than the average voter. They
would be likely to provide such services to their membership.

In order to meet our goal of user-friendliness, requiring a bare minimum of work on
the part of the voter, our revised protocol requires only two steps. Specifically, steps one
and two, listed above, get combined, so that if the voter wishes to leave at this point, he
may do so knowing that the election will not be disrupted and that his vote will be
counted. The voter simply yields his right to confirm that his vote was counted, and also
that any other votes are correct. Others may still do so.

The justification for this stems from current election systems. As noted in section
1.2.1, after a citizen walks out of the polling station, he doesn’t think about his vote again,
but rather assumes everything is on the level. The same can be done in our implementa-
tion. However, for those who desire to check, the individual votes and the tally can be con-

firmed.

25

Chapter 3

The E-Vox System

3.1 Assumptions

As noted in section 1.3.3, our system was designed as an improvement over others in
that it makes very few assumptions about the environment in which it is run. That is, we
do not presuppose any public key system or other basic cryptosystem is in place. We do,

however, make a few basic underlying assumptions.

3.1.1 Assumptions Made by the Protocol.
1. The cryptographic systems used are hard to break.

2. Each of the following parties: voter, administrator, anonymizer, and counter do
not collude with each other. They may work with other parties outside the sys-

tem in an attempt to defeat it.

Cryptography

Almost all of the properties we desire in our system are achieved by cryptographic
methods (e.g. blind signatures, encrypted messages). Although certain systems like RSA
are unproven to be secure, conventional wisdom thinks they are. Their continued use in

other applications suggests our assumption is quite reasonable.

Independence

The security of this system is based on an adversarial model. To assume collusion

defeats the premise around which the system was designed.

26

3.1.2 Assumptions about the Physical System

The following assumptions are all that are required of a network to run E-Vox.
1. The communication channels provide a low level of data confirmation such as

TCP/IP.

2. The server machines have the JDK1.1 (or better) installed.

3. The host machines run a web browser that supports the Java 1.1 (or better) and
allows the (potentially signed) applet to open connections to multiple hosts.

4. The host machines are secure in that they will not explicitly maintain a record of

operations performed on them.

3.2 Creating a Well-Defined System

Fujioka et al. only described a core theoretical system for voting. Many of the details
needed to actually build the system were left out. There were four general issues not suffi-

ciently addressed in their paper.

1. Authentication. Although specified, it called for authenticaion of the voter by
the administrator using a digital signature scheme. We preferred a different
solution.

2. Communication. No communication issues were considered. This included mes-
sage interception, prevention of data tampering during transmission, and the

anonymous channel itself.
3. Keys. The distribution of keys between servers is not addressed.

4. Errors. Descriptions of how to use the receipts and server logs are mentioned but

no formal complaint process is specified.

27

In defining this system, we leave open policy issues. Such issues include registration,

time, and the handling of errors. See section 6.4 for a more detailed description.

3.2.1 Authentication

The two options considered for voter identification were a public key system, sug-
gested by the use of digital signatures in Fujioka, et al. and a password system. The former
was discarded for two reasons. First, one of our highest priorities is user-friendliness.
Passwords are a familiar and accepted concept, even to the non-technical user. Public keys
are less familiar, and far more confusing. Additionally, the public keys needed for signing
would be on the order of several hundred bits. Second, either a public key system must
already be in place, or the keys must be distributed in a secure manner. The most likely
form of distribution would be for voters get their keys during registration, which requires
that they either remember the unwieldy number, or have some sort of secure electronic
transfer available. From a non-technical user’s perspective, passwords are clearly easier to
manage. However, our system is a very modular one, such that you could replace the
authentication sub-system with one using public keys transparently, with respect to the

rest of the system.

3.2.2 Communication

In the protocol as given by Fujioka et al, simple communications (i.e. those which did
not require an anonymous channel) had satisfactory cryptographic protection from a pas-
sive attacker. That is, an attacker who can view, but not alter the message.

In reality, communications are more complex, and so are the malicious parties. (See
section 6.2). Any number of things could happen during a communication. In addition to
eavesdropping, there could be noise on the channel, partial or total loss of a message, and

partial or total message substitution. To protect against this, all communications between

28

any two parties (e.g. the voter applet and the administrator server) are handled by the fol-
lowing protocol for “secure connections.” Note that we do not assume the use of SSL.
Secure Channels

Alice, the initiator, needs a random number generator, and Bob, the recipient, should

have a public key. Alice sets up a connection with Bob (e.g. opens a TCP socket).

Alice Ef{message, k ky, MAC}, E,, g{S} ~ Bob

Figure 3.1: Secure Message passing

We use Blowfish, a block cipher designed by Bruce Schneier, to encrypt all communi-
cations. Alice generates a session key, S, which is a random byte array used as a Blowfish
key. Alice also generates two random byte arrays for paddipgnkl k. These byte
arrays, along with the message, are then hashed to generate a MAC (Message Authentica-
tion Code). The MAC is the HMAC-SHA hash of these values, used to ensure the integrity
of the bits during transmission. [Kra97] The message, padding keys, and the MAC are
then encrypted with Blowfish using the random session key generated earlier. The Blow-
fish key is then encrypted with the recipient’s public key (pk-B). Together these are sent to
Bob, who can decrypt the second part of the transmission to get the Blowfish key, and use
that to get the message and padding keys. Bob can rehash the message and keys to confirm
the integrity of the communication. Note that a regular hash with a single random key
would suffice.

Protection from eavesdropping is provided by the Blowfish encryption. The TCP layer

guards against noise and occasional packet loss. The MAC prevents partial substitution or

29

loss from going unnoticed. The code for sending and receiving the messages through our
connections (secure or otherwise) makes use of timeout functions. Finally, the protocol
itself will catch any total message substitutions.

Replay attacks, being somewhat equivalent to attempts of stuffing the ballot box, are
also ineffective. The administrator will accept exactly one request per voter for a signa-
ture. If the message from the voter to the administrator is replayed, the administrator will
not honor it, but rather will send a complaint tot he commissioner. All replayed messages
to the anonymizer will be passed on by the server. However, the counter will remove any
duplicate votes, so this attempt to vote twice will fail.

While these attacks will not succeed in the cryptographic sense, it is not good enough
for our purposes. Replayed messages waste time, bandwidth, and computational power. To
further guard against reply attacks (as well as more general attacks) we implement a

method of blacklisting to limit messages in the system (see section 4.7.1).

Anonymous Channels

The anonymous channel was largest unspecified component. There are a number of
anonymous remailers currently in use throughout the internet. [Anon] Many of these could
have been the basis for our channel. In the end, the approach we took is different from
most, because we can make certain assumptions about the messages being transferred and

optimize our channel for it. Namely:

1. There is one message per voter.

2. The flow of information is unidirectional, meaning no information about the

sender’s address needs to be saved for a reply message.
3. Messages are all approximately the same size.

4. All messages are sent during a relatively short, fixed time span.

30

5. Messages need only be received by the deadline, there are no chronological or

other ordering requirements.

With this in mind, our anonymous channel uses a single server which works by
employing secure connections. Specifically, we layer a secure connection from the voter to
the anonymizer on top of a secure connection from the voter to the counter. The voter
applet will take the signed object, and encrypt it, along with the plaintext vote, hash keys,
and a MAC, using a Blowfish session key. The applet will then encrypt the session key
with the counter’s public key. These two encrypted items become the message transmitted
in the secure connection to the anonymizer, layered on top of this secure connection to the
counter.

The anonymizer will, up until the voting deadline, receive votes encrypted in this man-
ner. It will store these votes without any information about their origin. Shortly after the
deadline, the server will scramble these votes and send them on, en masse, to the counter.
Consequently, no timing analysis can be performed to correlate messages from the voter to

the anonymizer, with those from the anonymizer to the counter.

Serialization

All objects are passed through communication channels in serialized form, that is, as a
string of bytes. Any object can be serialized. The structure of the object, along with its
data is recorded using special demarcation bytes. The object can then easily be transmitted

and deserialized on the other end of the channel. [Cor97]

3.2.3 Key Distribution

Key distribution is a traditional problem in cryptography. How can parties send keys to
one another and be certain the key is valid? How can we prevent a man in the middle from

switching keys during transmission?

31

The solution is to use a secure channel employed specifically for this purpose. The
design and implementation of this secondary channel is left to the user of the E-Vox sys-

tem.

Included in the E-Vox package is a RSA key generator. Before an election is run, each
server must generate its own keyset. The public keys are then exchanged between servers
in whatever manner is deemed appropriate. At start-up, all servers, as well as the voting
applet, will have all the keys, including its own, “hardcoded” (i.e. written explicitly in the
code). By exchanged, we mean passed through a secure channel set up by the servers (or
their human overseers) beforehand. This could involve trusted couriers, or a previous
meeting at which IDs were confirmed and cryptosystems to allow this exchange were
composed and distributed. While a corrupt server could distribute incorrect keys at the

outset, it would be immediately detected once the voting commences.

3.2.4 Error Detection and Response

The process outlined in Fujioka et al. does allow certain types of voting fraud to be
found somewhat early in the protocol. For example, if, after the second stage, the counter
had received more committed votes than the administrator had signed, it would be known

before all the votes are opened and counted.

Unfortunately, with our modification, such errors will not be discovered until after the
election is over. It also suggests that the voter, who we presume may vote from a private
workstation, must make the effort to diagnose the error and report it to the appropriate
authority. The code for the applet and servers recognizes different types of errors and auto-
matically sends complaints to the commissioner server, which logs them. Servers also

keep their own error logs in case communications are problematic.

The commissioner server itself is ultimately overseen by humans. During and after the

election, they must make decisions about appropriate responses to complaints. For exam-

32

ple, if half the voters claim an invalid signature from an administrator, they may wish to
shut down and investigate the administrator server immediately. On the other hand, if one
of a thousand voters claims the administrator server refused his connection for no good
reason, a noisy connection might have been the culprit and the commissioners may choose

to ignore the isolated incident.

3.3 The Revised Voting Protocol

Our specific steps are as follows (displayed in Figure 3.2)

1. The voter selects his candidates and commits to this ballot using HMAC-SHA
(requiring two commitment keys).

2. This committed ballot is then blinded by the voter and sent to the administrator,
along with the voter's name and password, using a secure connection.

3. The administrator verifies the right of the voter to vote, and the validity of his
password. The administrator then signs the committed, blinded ballot, return-
ing this signed ballot to the voter. (After the deadline, the administrator pub-
lishes a list of voter names, blinded ballots, and their signatures.)

4. The voter verifies the administrator’s signature and then unblinds the ballot.

5. The signed, committed ballots, along with the (unsigned) committed ballot, the
plaintext and commitment keys, are then sent to the anonymous server, using

the two layered secure connection (with the counter server).

33

6. All votes received by the anonymous server before the deadline are then ran-
domly reordered and forwarded, en masse, to the counter just after the dead-
line. (The anonymous server publishes a list, in the scrambled order, of
messages it sent to the counter).

7. The counter confirms the administrators’ signatures, and tallies the votes. The
counter publishes a list containing the plaintext ballot, commitment keys, com-

mitted vote and signed vote.

34

COUNTER

@

E{signed (committed) vote,
E{OK} plaintext vote, committed
vote, commitment keys}, Registration Files

ADMINISTRATOR

(®

ANONYMIZER

VOTER APPLET

Name
Password

L®

Figure 3.2: E-Vox Process Chart

35

The voter selects candidates in all the races and creates a vote object, which contains
the ballot with his choices. This ballot is then committed using a hash function. Specifi-
cally, HMAC-SHA, requiring two keys, is used. This hash, in addition to acting as a com-
mitment, allows for smaller, and in our case, constant size, messages requiring signatures.

This hash is then blinded and sent to the administrator to be signed.

The administrator verifies the right of the voter to vote, the validity of his password,
and checks to see if he has voted before. If the voter is confirmed as eligible to vote, the
administrator and signs the committed, blinded ballot, returning this signed ballot to the
applet. After the deadline, the administrator publishes the voter's name, his (committed)

blinded vote, and the administrator’s signature of it.

Upon receipt of the signed vote, the applet verifies the administrator’s signature, and
then unblinds the signed object. The signature, because of the blinding properties, should
still be valid for the committed (but no longer blinded) vote. A secure connection is cre-
ated by the applet to the counter. Layered on top of this is a secure connection from the
applet to the anonymous server. The applet then sends the plaintext vote, the keys used to
commit, the committed vote, and the signed committed vote to the anonymizer. This is a
bit redundant, because the plaintext and keys can be used to reconstruct the committed
vote which can be compared with the signed committed vote. However this redundancy is

useful as an extra check, especially by suspicious humans, against errors.

Note that the anonymizer and counter both send replies. Under normal circumstances
they will each send an OK message. If something is awry, either server can send a com-
plaint notice back to the sender. This reply is not required by the protocol, and so is not
explicitly listed in it. However, the replies are a useful safety check. The reply is encrypted
using the session key chosen by the sender. Recall from section 3.2.2 that the session key

is encrypted with the recipients public key during the transmission from the sender to the

36

receiver. Only the intended receiver should be able to decrypt the message to get the ses-
sion key to create the correctly encrypted reply.

The anonymizer saves each vote in a separate file, without any information about its
origin. After the deadline passes, the anonymizer sends the votes using a regular channel,
in a random order, to the counter. Note that the votes are still encrypted with the counter’s
public key because the lower layer of the secure connection is still in place. Upon comple-
tion of the transmission to the counter, the anonymous server publishes a list of what it
sent. The list is published using the same random ordering that was used to create ano-
nymity when forwarding the votes to the counter.

The counter first removes duplicate votes. By duplicate, we mean every bit is the same,
including the session keys and message encrypted with them. Having done this, the
counter confirms all administrator signatures, and lists: the committed signed votes, the
committed votes, the keys used to commit, and plaintext votes (as well as the final tallies).

All lists are published after the election deadline. Anyone can confirm that the signa-

tures are valid, that no extra votes were added by a server, and that the tally is correct.

3.4 Proof of Correctness of the Revised Protocol

Because this system is only a slight modification of the protocol listed in Fujioka. et

al., our proofs are based on those from the paper.

Theorem 1 (Security):

No voter or external party can prevent the election or maliciously alter the results.

37

Sketch of Proof:

First we examine the problem cryptographically. A simple eavesdropper cannot gain
any information because everything is encrypted by Blowfish or RSA. Note that because
they are randomly generated and used for a single communication between two parties, no
Blowfish session key is intentionally used more than once by party involved (two parties
could independently generate the same key, but this is unlikely given sufficiently large
keys). A man-in-the-middle attack is prevented because the public keys of the recipients,

which are known ahead of time, are used to effectively encrypt all messages.

If the message is intercepted during transmission, it cannot be altered because then the
MAC will not be valid. If instead the interceptor simply blocks the receiver from getting
the message, the communication channel will timeout and the sender will be alerted to a
problem. (Note that this is the best we can do in the real world as well. If someone welded

shut the doors to the polling station, voters could not vote then, either.)

From the standpoint of the physical system, a voter can do one of two things. A regis-
tered voter can send a bad or partial vote (e.g. no keys to uncommit). This only hurts the
voter and prevents him from exercising his franchise. The other option is for a voter to
send repeated votes (or external party to send garbage). In theory, the counter detects
repeated ballots and discards them (as well as any invalid ballots), so they will not be
counted more than once. In practice, to maintain efficiency, the number of connections per
host are limited (see section 4.7.1), so the voter would have to move the vote from host to

host to send a large number of message, greatly slowing down the attack.

(Repeated voting by a registered voter with a signed vote is also addressed in Theorem

3.)

38

Theorem 2 (Privacy):

Only if the counter and the anonymizer conspire can privacy be brokere this vio-

lates our assumption of non-collusipn.

Sketch of Proof:

The blinded ballot given to the administrator server cannot be correlated to a specific
plaintext vote, committed vote, or (administrator) signed vote sent to the counter. The
administrator and counter together, along with all their published information, cannot
break the privacy. Any external party would have exactly the same information because

the lists are public.

When claiming an error occurred, privacy may be maintained. Given a problem during
execution of the protocol, the voter has the following recourse. If the administrator’s sig-
nature is invalid, the voter can show the blinded vote and its signature. (We address the
problem of an administrator switching votes on the voter in section 6.2.4.) The blinded
vote cannot be matched to the same committed vote, blinded differently when the voter re-
initiates the protocol. If the vote is “lost” before or during the counting stage, the voter can
show those values in this case, too. Again, the blinded vote (as well as its signature) cannot

be traced to any other value shown.

If the anonymous server is corrupt, by itself, it can do nothing. The votes that it sees
are encrypted with the counter’s public key in the lower layer of the secure connection.
Only if the anonymous channel is broken, that is, it is no longer anonymous because it
reveals information about the origin of votes to the counter, can privacy be compromised.

However this violates our assumption.

39

Theorem 3 (Unreusability):

Assume that no voter can break the commitment or blind signature scheme. Then the

voter cannot reuse the right to vote.

Sketch of Proof:

The first vote signed by the administrator for that voter is valid. The administrator will
not sign another vote given to it by the voter. The voter must change the committed ballot,
while still keeping the signature valid, which it cannot do by our cryptographic assump-
tions.

Theorem 4 (Eligibility):

Assume no one can break the blinded signature scheme. Then a nonregistered person

cannot vote.

Sketch of Proof:

For a nonregistered person to vote, he must be able to forge the administrator’s signa-
ture, since the administrator will never accept one of his votes for signature. This violates
our cryptographic assumption.

Theorem 5 (Recoverability):

Assuming that a voter will never lose his ballot in the process, and given that no two

parties collude, a vote dropped by any party can be recovered.

Sketch of Proof:

If the counter drops a vote, the anonymous server can give its list to the commissioner

who will then have the counter decrypt them and find the missing vote. If the anonymizer

40

drops a vote, the voter can show his signed, blinded vote. If the administrator drops it
(which is equivalent to refusing to sign it), the voter complains to the commissioner. If the
administrator did sign it, it can show the signed vote to the commissioner.

Note that although we can recover a lost vote, we cannot determine which of two par-
ties lost the vote. This issue is addressed in section 6.3. The assumption that the voter will
not purposely lose his vote is discussed in section 6.2.1. A malicious administrator and

forged voting is analyzed in section 6.2.4.

41

Chapter 4

Components

4.1 Cryptographic Library

When this project began, the JDK1.0 was available. During its progression, the
JDK1.1 was released in various beta forms, and then in its final version. In terms of secu-
rity, JDK1.1 provides much more support than its predecessor. It includes basic hashing
functions, as well as key generation, support for arbitrarily large numbers, pseudo-random
number generation, and object (including applet) signdgte: At this time, most web

browsers do not yet support JDK1.1, but are expected to in the near future.

The cryptographic library packaged with E-Vox is relatively straightforward. It
includes a class/interface hierarchy for keys, encryption, decryption, blinding, and com-

mitting. The library can easily be further extended both vertically and horizontally.

While Fujioka et al. does not call for any particular cryptographic class to be used, we
have implemented the necessary functions in RSA, SHA-1 (referred to as SHA), and
Blowfish. Our motivation for RSA was due to both RSA's simplicity, and out of respect for
the author’s thesis supervisor. SHA was chosen because it is the NIST standard and pro-
vided by the JDK1.1. Blowfish was chosen because it is faster than most other algorithms
in its family (although to our knowledge, no comparative speed tests have been performed
in Java). However, this speed is partially offset by the large number of subkeys which must
be precomputed before encryption/decryption. Also Blowfish allows for a variable length

key up to 448 bits.

The base algorithms have been implemented as follows. An object to perform a spe-

cific type of function is constructed with the appropriate input. This object’s methods then

42

perform the actual computations. For instance, we might createsaBriRryptionobject
calledmyRsausing anRsaKeyobject, some subset of keys (say just the public keys), or a

seed from which to generate keys. To encrypt a message, we would then perform

RsaEncryption myRsa = new RsaEncryption(seed);
cyphertext = myRsa.encrypt(message);

At this level, all objects passed into, and returned from the objects’ methods, are done
so as byte arrays. The decision to use byte arrays insteBidloftegersvas made because
the former are more general (easier to concatenate and use in functions such as Blowfish).
However, all of the mathematical computations are done after the input has been converted
into aBiginteger

The hashing is specifically HMAC-SHA. The HMAC requirements do not add any
extra load on the system, as the HMAC keys simply replace the commitment keys.
Because we are signing the SHA of a vote, rather than the vote object itself, the size is pre-

determined and therefore not too unwieldy to use in our algorithms.

4.2 Vote Object

At the heart of the protocol is théoteitself, a Java class. This object contains within it
fields for the various stages the ballot goes through. This includes a field to hold the actual
candidate selections (wrapped in@hoiceobject built for this purpose), as well as fields
to hold the value of th&€hoiceobject when committed, blinded, signed, and unblinded.
The object also has methods to perform those functions, given the appropriate tools (e.g. a
signing method which takes &saKeyobject as input).

Code using the object will set the appropriate fields, serialize the Vote, and send it on

to another party. We may, however, still need some of the original data later. For example,

43

the voter will set both the committed and blinded fields, in addition toGheiceobject.

The administrator, on the other hand, only needs, and, in fact, should only be allowed to
see, the values in the committed-and-blinded field. The solution is to make a copy of the
object, clear the fields the administrator should not see, and send that on to the administra-
tor server. The administrator sends back this object with an additional field, blinded-and-
signed, filled in. This new field from the administrato¥ste object, is then copied back

into the originalVoteobject created by the applet. In this mannerVWoe&object is passed

from one party to the next throughout the protocol.

4.3 GenRand, the Random Number Generator

For key generation throughout the protocol, we need a source of random bits. This is
achieved by the GenRand object. The various components (servers and applet) all contain

an object of this type.

Tao securely send your vote, it is necessary to generate
random data. The cursor's position will be continually
tracked until encugh data is obtained. Toensure
randomness, move the cursor quickly and erratically
within the boundary of this window,

Figure 4.1: GenRand dialog box

44

Just after construction, a GenRand object will be seeded. When this occurs, a dialog
box will pop up (Figure 4.1) and the user will be asked to randomly move the mouse
around in the window. A bar across the middle of the object indicates how many bytes

have been recorded.

The mouse positions are tracked as the mouse is moved. Each position consists of a
32-bit x, and 32-bit y, coordinate. Those are cast to 8 bit bytes (that is, the higher bits are
removed). These bytes are then hashed using SHA to create a seed foSéavaeRan-
dom object, a pseudo random number generator provided by the JDK. Subsequent

(pseudo) random bits are generated by this Java object.

4.4 Network Connections

Java provides basic networking functionality (i.e. the java.net API). This includes the
ability to create sockets and send object streams through them. Objects are also serializ-
ible, that is, transformable to and from byte arrays, which are more readily transferable.
On top of this we have added our own protocols to allow for secure connections, ones
which do not require the use of a SSL connection.

We offer two types of connections, simple connections and secure connections. Both
are used in the protocol, though mostly the latter. A simple connection is provided directly
by the JDK. A secure connection then adds a cryptographic layer on top of it (see section
3.2.2).

Specifically, a secure connection is created using the server address and port number,
the RSA keys of the receiver (again, a different family of encryption functions can be
used), and &enRandbject.

Using GenRand, we create a Blowfish session key of a specified length. This key is

used to encrypt the serialized object we are sending. The session key is then encrypted

45

using the receiver’s public key and also sent to the receiver, who can decrypt the session-

key, and then decrypt the message.

The Blowfish encrypted message also carries with it a MAC (Message Authentication
Code). This is used to confirm the integrity of the bit stream. The MAC itself is simply the
HMAC-SHA of the plaintext message, and two random keys, which are also sent in the
communication. Normally, a simple single hash is sufficient, i.e. SHA. Assuming most
people will vote for candidates on the ticket, there are a rather small number possible bal-
lots, and consequently, a small number of possible messages. The keys add some random-

ness to the messages to reduce their similarities.

Secure connections can be “layered” an arbitrary number of times. That is we can cre-
ate a secure connection, which consists of cyphertext and an encrypted key, as listed
above, and then take that pair as a new message, which is sent using another secure con-

nection.

Note that there is no handshaking in this protocol. The sender encrypts everything, and
sends it without requiring any work on the part of the recipient. (The recipient’s public key
is known by the sender ahead of time.) The result is that we allow for middle men in lay-
ered, multi-party secure connections. That is, Alice can send a message to Carol via Bob
in such a way that 1) Bob cannot see the messages being sent because the they are
encrypted with Carol’'s public key during transmission, and 2) Carol cannot match Bob’s
incoming and outgoing messages with each other, because the former are encrypted with
Bob’s public key, whereas the latter are not. This type of layered connection is necessary
for creating the anonymous channel. If desired, handshaking can be added on top of a

layer used by any two parties in “direct” connection.

46

4.5 Registrar

There needs to be some person or persons who ultimately confirms people as being eli-
gible to vote. Those that are eligible can then register using the registration program. This
simply records each voter’s information - unique ID (e.g. name), password, status of vote
(“Has the person voted yet?” initially false) - in a file named as the unique ID. These files
are given to the administrator server. The status field is marked true by the administrator

during the signing process, to prevent repeated voting by a single person.

4.6 Election Builder

There is an application which allows users to create an Election Object. This object
contains the “list” of questions and possible answers (including write-ins). The object is
used by both the applet and counter in performing their duties.

The election builder creates an Election Object within a file specified by the user. The
user can select the number of questions, and the number of choices for each question. For
any question write-ins may or may not be allowed. The program pops up a dialog box
which runs through a series of “cards,” prompting the user for input. Two cards are shown

in Figures 4.2 and 4.3.

47

will Mark graduate?d

[Woatgedel]
.
ool
-

< previous| et |

Figure 4.2: Election Builder Questions Card

Figure 4.3: Election Builder Answer Card for Question Number 2

48

4.7 Servers

4.7.1 Server Interface

All servers have some basic functionality in common. This is a Java interface, inher-

ited by all servers, which defines their general properties.

———

-
T amew

‘Shutdown Server|

Figure 4.4: Server Interface

Figure 4.4 shows a typical server, in this case the commissioner server. All servers are
window based. The top box indicates its status, currently “Server running.” We see that the
server runs two threads, one of which, thread number two, is busy taking a connection
from the localhost. There are currently no connection requests waiting on the queue nor

are there any blacklisted IP addresses (see below).

49

Information on the threads and blacklisted addresses can be viewed using the menu
bar at the top of the window. Thread information might include a list of connections it han-
dled. Blacklisted Addresses could contain a record of all attempts made from an address.
At this time, we do not store either of those records. However, there is currently an option

to remove an address from the blacklist.

All servers support both secure and regular connections. One attack to which servers
are vulnerable is flooding. That is, the members a group wishing to disrupt the election all
sit down at terminals and keep requesting connections to the servers (or have an program
to do this for them). Every thread will repeatedly waste time dealing with these bogus
requests, similar to anarchists who keep walking into a polling station and asking to vote.
If 10,000 people continually did this at a single polling station, they would greatly impede

the system from performing.

To protect against this sort of attack, after a set number of connections to a server, an
IP address is blacklisted, an idea first suggested by Ben Adida, and connections from that
IP address will no longer be accepted. While a request to connect must still be dealt with,
it is blocked at a lower level, requiring less of the server’s time. Larger, more complex sys-
tems, may require a more complex blacklist. For instance, certain “public” terminals
(defined as having more than one possible user) such as those at libraries or colleges may
be allowed many more requests than a private PC at a home or office. Still, with appropri-
ate numbers for apportioning voting districts, the number of public terminals per cluster
(e.g. building), and the number of connections before being cut off, this should not be a
problem, unless early one morning the attackers run around from terminal to terminal and
blacklist every physically local IP address. It is reasonable to assume, however, that public
terminals are monitored to some extent, and the attackers cannot access private ones. To

this end, districts can set up special computer polling stations, which would simply replace

50

the current mechanical booths and paper ballot boxes. (People could still vote using their

private PC, of course.)

Fri May 22 21:27:0171 PDT 1937 — notmal Server Layer: Server.. Al
Fri May 23 21:28:24 PDT 1937 — normal mark 3161707835487 83..,
Fri May 22 21:25:52 PDT 1937 — notimal ben 863232223762 1655...
Fri May 22 21:29:06 PDT 1937 — notmal Randy 1653574413684,
Fri May 23 21:29:18 POT 1997 — warning admin localhost/127...

e

Figure 4.5: Sample Log (from the Administrator)

All servers maintain a log file. There are two types of entries to this log. The first is an
entry which will eventually published, as per the protocol. The second is an error entry.
Figure 4.5 shows the record log of the administrator. Double clicking on an entry pops up
another window with the specific information about the entry. In this case, clicking on a
name would bring up a window with the blinded vote and its signature. Double clicking on
the “warning” entry would give a description of the complaint sent to the commissioner.
The errors are recorded because a well-prepared attacker might cut off the communica-

tions lines to the commissioner (or the commissioner might be corrupt).

The values to be published (e.g. committed vote) are all simply byte arrays. We cast
these objects intdBigintegersto display them. Part of the first of the two numbers
recorded by the administrator can be seen is the main window shown in the figure above.

Finally, all servers will have their keys generated beforehand. On start-up, each server

will have its key set, and all public keys of other servers hardcoded within them.

51

4.7.2 Administrator Server

The administrator server is responsible for verifying the voter’s right to vote, and
authenticating the ballot. It must sign at most one vote per legitimate voter who requests it

to do so.

The server has access to all the registration files, which need to have been securely
transferred to it ahead of time. (One option is to run the administrator server on the same
machine used for registration.) The server runs a number of threads, each of which will
respond to secure connection request from a voter applet, confirm the voter ID and pass-
word, and sign the committed, blinded vote, and then marks the voter as having voted.
There is also a queue of finite size should the server receive more requests than it can han-
dle. A voter applet trying to connect to the server when the queue is full will be refused. At
this point, a complaint may be sent to the commissioner (if enough complaints are sent,

the commissioner may suspect foul play and investigate.)

The protocol should work as follows:

\oter Administrator
Eg{blinded vote, ID, password, MAC}, fx_a{S}

Confirms the ID
and password,

and signs the vote.
Marks voter as

E{signed (blinded) vote, MAC} having voted.
-

Confirms
signature.

Figure 4.6: Voter-Administrator Communications

52

Here S is the Blowfish session key and pk-A is the public key of the administrator.

If the administrator finds that the message is not valid (e.g. bad MAC, missing certain
components, the voter is not listed, incorrect password), it will inform both the voter
applet and the commissioner server of the problem. The voter/applet may decide to try

again, give up, and/or complain to the commissioner.

4.7.3 Anonymous Server

Fujioka et al. calls for an anonymous channel. This is one of the largest gaps between
theory and practice. A few simple anonymous channels were considered in which a mid-
dle man strips off the headers. Prof. Rivest noted that they all suffer from the same type of
timing attack. Namely, eavesdroppers can record the times and sizes of network traffic on

both sides of the channel.

Our approach was to use an anonymous server, somewhat similar to an anonymous
remailer. The high-level model is as follows. The voter applets connect to the anonymous
server (aka the anonymizer), at various times, which will see their IP addresses, but not
their votes. The anonymous server then strips off the headers, with their identifying infor-
mation, and just after the voting deadline, randomly re-orders the votes, and sends them
off, en masse, to the counter at a specified time. The counter sees only the votes, without
knowing their point of origin.

Connections are handled much like they are by the administrator server. The only dif-
ference is in the message itself, what gets sent, and how it is handled. The voter applet cre-
ates a secure connection with the counter (remember, there is no handshaking, so the
applet can initiate this protocol with no interaction from the counter). Two object are used
in the secure connection to the counter, the message, keys, and MAC, all encrypted using

Blowfish, and the Blowfish session key encrypted with the counters public key (as in Fig-

53

ure 3.1). Together, these two objects become the new message, and are wrapped in a sec-
ond layer of secure connection. This outer layer is used as a connection between the applet
and the anonymous server. The vote is then sent to the anonymizer. Upon receiving this
message, the anonymizer strips off the outer layer (as well as the headers) and records the
vote, which is still encrypted so that only the counter can see it, in a file. At the appropriate

time, the anonymizer reorders all votes and sends them on to the counter.

Suppose we did not double encrypt the message from the voter to the counter with two
layers of secure connection. Suppose the outer layer were left off. Although the anony-
mous server prevents timing attacks, anyone (especially the counter) tapping the anony-
mous server's communication lines could defeat the scrambling, because the earlier
message will include unencrypted header info, and the body of the message could be

matched against the server’s outgoing messages.

Looking at it the other way, if we left off the inner layer of encryption, the anonymizer
would see the plaintext votes. Knowing the sources of these votes, it can correlate voters
with votes. (This, of course, would be almost the same as having the anonymizer be the
counter with no anonymous channel.)

Under the protocol listed above, the message received by the anonymous server has
been “doubly encrypted” (not in the sense of triple-DES, but rather in the one defined
above). The message sent from the anonymous server to the counter is encrypted just
once. The only variation in vote size at this stage comes from the length of the write-in

names (if any). Traffic analysis attacks and their prevention are discussed in section 6.3.2)

54

Yaoting Deadline:

I May 24, 1397 11:29:29 M

Yaote Destination:

I ibis.lcs.mit.edu:BEEEE

Yotes Received:

| 1

E

Yotes Sent:

Figure 4.7: Anonymous Server Record Window

In addition to the server interface listed in section 4.7.1, the anonymizer has a second
window. This window lists the status of the votes. The Anonymizer shown in Figure 4.7
shows that one vote has been received, and none have been sent on to the counter. When
the deadline passes, the votes will be sent to port 6666 on ibis.lcs.mit.edu. If “Votes Sent”
does not match “Votes Received” after they have all been sent off, the log file can be

checked to find the votes that were not sent.

4.7.4 Counter Server

The counter server is relatively simple. At one or more designated times, it receives

encrypted votes from the anonymous channel. As noted above, the votes have been

55

encrypted with a session key, and this session key is encrypted with the counter’s public
key.

Upon decryption, the counter will confirm that each vote has a valid signature from the
administrator. Moreover, it checks that the committed vote matches the commitment of the
keys and plaintext vote. Any discrepancies cause the vote to be excluded from the tally,
and are reported to the commissioner. The counter publishes the plaintext vote, the com-
mitment keys, the committed vote, and the administrator’s signature of the committed
vote.

The votes are then tallied. Any voter can confirm that his vote is on the list. Addition-
ally a voter, or any other party, can confirm that all votes there are valid (by checking their

hashes and signatures) and counted correctly.

Vote #1: T0BEET1721ET17161 FO30E2E4 36263

Yote #2: 334454931 2264753123352911610
420154764995545914291

Vote #4: 2103403283301828811233535435
Vote #32) 406584568E367 1061040931344 13

| b=

Votes Received:

Figure 4.8: Counter List (Vote 3 of 5 selected)

56

Figure 4.8 shows the counter’s listing of votes. Each vote number is listed along with
the byte arrays (cast ®iginteger3 which are the vote. This interface works exactly like a
log file, such that double clicking on a vote will bring up a window recording information

for that specific ballot, as shown in Figure 4.9.

When?
0 — 1996 # write—Ins | O
1 —1337
0 — 19398
hackl nextl

Figure 4.9: Vote Number 3, Question 2

Note that in the figures above, not all information is listed in the windows. That is, Fig-
ure 4.8 did not list the committed, signed and plaintext vote, as well as the commitment
keys. Nor are those numbers explicitly given in the window shown in Figure 4.9. This was
done only for the sake of clarity and could certainly be included in the display.

A typical way in which an interface like this may be used is for the votes to be listed,
having been sorted by the number which is the commitment of the vote. Clicking on the
actual vote listing would perform a consistency check and, if it passed, pop up the window
above.

Finally, a tally is generated by clicking the “count” button on the server’s vote list (not

shown). When clicked it will open another window, which looks like a specific vote, but

57

with the final tallies and all write-ins displayed. The tallies for our sample election are

shown in figures 4.10 and 4.11.

_back| _next|

Figure 4.10:Question 1 Final Tally

A

| back] next|

Figure 4.11:Question 2 Final Tally

58

When?

0 — 1998 # write—lns | O
1 —19897
i — 19983

hack| next|

Figure 4.12:Vote 3, Question 2

4.7.5 Commissioner

The commissioner is the party responsible for overseeing the entire election process.
The commissioner’s job is generally a passive one. Most of the time, it will sit and wait for
complaints. The following is a list of possible complaints. Listed in parenthesis are the

party or parties who would send such a message.

1. Connection Error (Any)

2. Bad MAC (Any)

3. Bad Message Format (Any)

4. No Keys to Uncommit (Counter)

5. Voter Not Registered (Administrator)
6. Invalid Password (Administrator)

7. Vote Already Signed (Administrator)

8. Vote Already Committed (Voter)

59

9. Vote Already Uncommitted (Counter)

10. Bad Signature (\Voter)

11. File Error (Any Server)

12. Math Error, when performing cryptographic calculations (Any)
13. Unknown Error, used when no other case applies (Any)

14. Vote Received after the Deadline (Anonymizer)

15. Voter Already Voted (Administrator)

Anytime one of the above cases occurs, one or both parties will contact the commis-
sioner (via a secure connection) and note the problem, parties involved, and time this
occurred (i.e. time complaint was sent). The commissioner will note the time, and from
whom the complaint was received (IP address). A commission of humans can then sort

through the complaints and take appropriate action.

Fri May 22 2004917 PDT 19397 — normal Server Layer: Server.. Al
Fri May 232 20:51:08 PDT 13997 — normal Complaint #1;
Fri May 23 20:51:34 PDT 1997 — normal Complaint #2;
Fri May 22 20:52:32 PDT 13397 — normal Complaint #3:
Fri May 232 20:52:53 PDT 1397 — normal Complaint #4;
Fri May 23 20:53:37 PDT 1997 — normal Complaint #5;

Figure 4.13:Commissioner’s Complaint Log

As with all logs, double clicking on an entry gives more detailed information about it.

For example, suppose someone tried to vote in Randy’s place, but did not know his pass-

60

word. In this example, the error log of which is shown in Figure 4.14, the administrator
complained to the commissioner that someone using Randy’s hame tried to vote but did
not provide a valid password. The attempt was made from the localhost at 11:52 PM on
May 23. (Note: unfortunately, typos made by legitimate votes will be considered mali-
cious attempts. It is up to the human commissioners to use their judgement in cases like

this.)

Date: Fri May 23 20:52:32 PDT 1997
Status: normal
Complaint #3: =
Sender:
Recipient:
Plaintif; fdmin
Defendant: localhost/127.0.0.1
Error Meos B
Error Type: bad passwaord
Description: java.lang.Exception: Randy’s password not valid,
Tirne Made: Fri May 23 21:52:28 PDT 1997
Time Received: Fri May 23 21:52:32 PDT 1957
v
~ =
Di5mi55|

Figure 4.14:Complaint Number 3. Someone tried to vote in Randy’s name, but did not
know the password.

Finally, the commissioner must check the record of each server to confirms that all
votes passed from one stage to the next, and votes were neither added nor lost.

A server is given to automate the complaint process. However, most of the commis-
sioner’s job depends very much on the specific instance of an election, and how those who
are running it wish to handle such complaints. Consequently, the commissioner’s

responses to complaints have been left unspecified.

61

4.8 Voting Applet

The voting applet is the program used by the voter. It is run using a web browser that
supports Java. Browsers give different classes of applets different permissions. This applet
needs permission to open connections to multiple addresses, and ideally should have file
accesses, too (see below). The best way to achieve this is to use the JDK signed applet fea-
ture, to allow safe downloading of the appropriate applet (and not some trojan horse), so
the granted functionality won't be abused, and can be limited to this trusted applet only.
Unfortunately, JDK1.1 only partially supports this feature apglet signing is not yet

available (but expected shortly)

Once the applet has been downloaded, the voter simply needs to click on the appropri-
ate choices, enter his name and password and click on the “Vote” button. After that every-
thing should be done automatically, including the filing of most complaints, should
something go awry. At the end of the applet’s execution, it will print the voter’s receipt to
the screen, which includes his committed vote, blinded vote, signed blinded vote, and
signed unblinded vote, as well as any complaints.

If the applet has access to the local file system, it could be extended to write this infor-
mation (and any complaints) to a file. Taking this idea further, it could be made to read in
the voter’s personal registration file so the user would not need to remember a password.
The voter could get a copy of his registration file on disk when he registers and upload that
in an appropriate place in the local file system for the applet to use.

Of course, automating the applet in this way is dangerous. However, if the applet is
signed, there should be no problem. The applet byte codes can be downloaded, verified,
and then reverse-compiled to generate the source code. The code can then be confirmed to

be innocuous. Or, more mundanely, the source code could be widely distributed, and seen

62

to be safe. Then anyone wishing to do so can compile the code, and compare it with the

signed applet byte code.

Figure 4.15: Sample Applet

This is just one of many possible layouts of the applet interface. In this case, two fields
are used to take in the voters name and password (which is not displayed in the clear). The
messages text area reports the status of the vote as it is processed. The receipt field lists the
appropriate numbers. If the applet cannot access the filesystem, the user must cut and

paste the numbers to record them. The third box is used for error messages. If anything

63

goes wrong during the execution of the protocol, it will be reported here to alert the voter.

Finally, at the bottom of the applet is the ballot.

64

Chapter 5

Testing

This project has been tested on small elections. It ran and worked fine when there was
no foul play. By altering our code and/or physically manipulating the data files, we tested

the following cases, alone and in combination.

1. Voters tried to vote repeatedly.

N

. Unregistered voters tried to vote.

w

. Bad passwords were used.
4. The administrator gave invalid signatures.

5. Votes were lost by the anonymous server.

(o2}

. otes were lost by the counter.

\‘

. Duplicate votes were given to the counter.

8. Invalid votes were given to the counter.

9. The administrator shut down before scheduled.
10. The anonymizer shut down before scheduled.
11. The counter shut down before scheduled.

12. The commissioner shut down before scheduled.

In all cases tested, the code followed the protocol and worked correctly.

It should be noted however, that security problems are a negative goal. Where other
programs can show they achieved something, we cannot conclusively demonstrate secu-

rity short of testing every possible input combination (e.g. different ballots, different num-

65

ber of voters, different voters trying different attacks in different orders at different times,

etc.).

We do believe we have tried a reasonable set of test vectors to give us some indication
of the security of the system, in addition to our own analysis of the code. However, further

testing and tuning is necessary before the system can be used for meaningful purposes.

We were unable to test transmission errors (say, due to “corrupted wires”), as we did

not have the hardware available. However we believe the protocol will hold work.

We did not explicitly “test” cases in which the various servers “lied” and needed to be
caught. We skipped this family of tests for two reasons. First, this is an issue of policy, not
cryptography. Second, in most cases with a single server, the cheating party itself cannot
be uniquely determined (see section 6.3), only the error corrected. To actually catch a
party, multiple servers are needed. Although we did not “test” this case, we confirm all
data is printed correctly and so the votes can be recovered.

Perhaps most importantly, the testing was not performed under true operating condi-
tions. Resource limitations allowed us only one machine on which to work. During the
election, all servers, as well as the applets, were run on the same host (this is why “local-
host” is listed as the machine address in many of the figures). Additionally, the applet was

run under the JDK1.1 appletviewer because currently no browsers support Java 1.1.

Further testing is recommended and planned.

66

Chapter 6

Limitations, Their Solutions, and Further Extensions
The system is still in its infancy. E-Vox is currently a working prototype of what prom-

ises to be a tremendous tool for democracy. Currently, there are a number of limitations to
E-Vox. Fortunately all of them can be solved without too much effort by more coding,

internet advances, and policy choices.

6.1 Code Improvements

6.1.1 Election Instantiation

The first type of limitation suffered by E-Vox is the naivete of the code. There are no
macro programs by which to set up the system. The only automated part is the election
builder, allowing us to substitute different ballots in different elections. Ideally, we would
like to automate more of the code. The parameters (e.g. key size) can only be set by edit-
ing a specific file, whereas in the future we hope to have a master program which will do
this for us. The same is true for the specific encryption protocols (the library itself should
certainly be expanded). Even the counting, as it stands, is done by explicit code in the
counter server. The system cannot currently support, say, a preferential balloting system,
without a nontrivial effort. It could, but the low level code itself would need to be modi-
fied, as opposed to being able to select a back-end counting plug-in from a pool of tabula-
tion plug-ins.

The master program, would ask for all system parameters, including key sizes, redun-
dancy among servers and architecture layout, server addresses, ballot, tallying system,

cryptographic building blocks, and deadlines. It would then set all system wide variables

67

and create the appropriate structures. At this point the server code could be moved to inde-

pendent machines, and the public keys for the servers can be generated.

6.1.2 Public Postings

The protocol calls for public listings of the votes from various servers. Given our deci-
sion to use a web browser as the voting booth, a posting on a web page seems like a logical
continuation. A simple (scripting) program can be execute by the servers after the deadline
has passed which will cause HTML pages to be created. These pages can then be viewed

and their contents checked for validity by anyone wishing to do so.

6.2 Protocol

The E-Vox architecture, as specified in section 3.3, has a number of single points of
failure. Any of the servers can attempt to disrupt the protocol. A good example of this is a
problem found both in Fujioka et al. and our system. Although a lost vote can be recov-
ered, the corrupt party often cannot be uniquely determined. (Fujioka et al. refers to an
example of this as an illegal key problem.) We propose a number of solutions to this prob-

lem.

6.2.1 Receipts

Because every server has a RSA public key set, we can use that to create receipts,
allowing for certified message passing. Recall that secure connections have two compo-
nents, a Blowfish encrypted message and an encrypted Blowfish session key.

The message Alice sends to Bob is just as before. Now, Bob takes the (unkeyed) hash
of the contents of the first part of the communication, that is, the encrypted message, keys
and MAC, and signs it to create a receipt, H. This receipt is then returned to Alice. Note

that the receipt does not need to be encrypted, because the hashing has removed any con-

68

nection between the receipt and the message, but it can be sent using a secure connection
just like any other message. If Alice’s message is lost, she can prove Bob received it

because she can rehash it to get H, and then and show that the receipt from Bob is his sig-

nature of H.
Alice Bob
E{message, k ky, MAC}, E,_g{S}
- Eprivate-B{H}

Where H = Hashiessage, K k,, MAC)

Figure 6.1: Secure Connection with a Receipt

This does, in some sense, only shift the problem. Bob can refuse to send a signature to
Alice, making her think he never received the message. He can later claim he did send her
the message, but that Alice lost it in an attempt to discredit him. Still, this is an improve-

ment over the previous case.

The lack of receipts may not be a significant problem. It seems reasonable to assume
every voter is motivated to cast valid vote. A voter, then, would have no interest in not
sending his vote. A malicious voter may wish to lose his vote, and claim it was the server’s
fault in order to frame the server. However, it would take a coordinated effort among many
voters to truly cast suspicion in this manner. That is, if only one or two voters, among

thousands do this, the server will most likely be considered trustworthy and they would be

69

suspected of foul play. If, on the other hand, a few hundred voters did this, then the server
would appear faulty. The possibility of sufficiently large conspiracy among voters, how-
ever, seem unlikely. (The point at which the server does become suspected is a matter of
policy.)
6.2.2 Communications as a Single Point of Failure

The system tends to put all its eggs in one basket. Ideally the vote should be locked
away in a vault (committed) and the keys to the vault should be sent separately. This way
if one of the two messages is compromised, the anonymity of voter, and/or the integrity of
the vote, is not. By reducing the protocol to only two stages, we send the keys with the

vault. This does create a single point of failure.

For example, all messages are subject to a dictionary attack. That is, the encrypted
messages can be recorded during the election process. Then, off-line, the attacker can
decrypt the first part of the secure connection message by trying every possible Blowfish

key to decrypt the message. This attack is hindered by the use of large keys.

We could hinder this type of attack by splitting up our message, and using multiple
anonymous channels, each with its own, independent secure connection from the applet.
Now instead of sending the message, M, in the clear, which includes the plaintext vote,
committed vote, and commitment keys, we encrypt it using another random encryption
key, Q. Q is then sent through the second anonymizer. Breaking the encryption of the first
message will only yield the attacker another encrypted message, which must then be bro-
ken using the same computationally expensive attack of brute force. Breaking the second

message reveals even less, as it is only an encryption key to an unknown message.

Figure 5.2 shows an example of this type of distributed anonymous channel. Note that
the inner secure connection, that is, the one between the applet and the counter, is not

shown in this diagram.

70

Counter

Anonymizer 2

ki is a key used to
generate the MAC

pk-A; is the public
key of anonymizer |

Anonymizer 1

Note: The inner layer of
the secure connection (to
the counter) is not shown.

Applet

Figure 6.2: Split Message Passing Through the Anonymous Channel

The two messages must somehow be paired. this is easily achieved through index

numbers (also not shown in Figure 6.2). The index numbers can be generated by the

applet, or by requesting a number from one of the servers. The use of sufficiently large,

71

randomly generated index numbers makes collisions unlikely in the former case (or the

latter case with redundant servers).

6.2.3 Cryptographic Attacks

In general, a cryptographic attacker can do worse than just eavesdropping. Often pro-
tocols are designed to withstand a specific type of attack. In our case, however, no more
than two messages are ever known to be encrypted with the same Blowfish key. And the
encrypted Blowfish keys themselves, being random, do not easily lend themselves to an
attack on the private keys of the servers.

There is one potential cryptographic weakness in our system, which is that the plain-
text messages are often partially known. Certainly the attacker can expect correlations
within a vote, as people vote party lines. More to the point, the Java serialized object has a
well defined pattern. [Cor97] Knowing simply how the messages are laid out, the attacker
knows some of the bits in the encrypted message.

As to whether this is of any use is open for debate. There are some attacks on reduced
round Blowfish encryptors. Schneier, the author of the encryption scheme, knows of no
attacks on the full 16 round implementation; he notes that there are some weak keys for

Blowfish, but “they seem impossible to exploit.”

6.2.4 Administrator Voting

The administrator is the single most powerful entity. Its signature alone validates a
vote. This leaves the administrator a few avenues of deceit.

First the administrator can simply create false ballots. All signed ballots are listed by
the administrator with a voter’s name. However, this is not a problem. Five minutes before
the deadline, if the administrator notices Alice didn’t vote, he can create a vote in her

name. If she didn’'t bother to vote, she probably won't bother to check the lists either.

72

Alternatively, the administrator can create a vote in anyone’s name. If, later, that per-
son tries to vote, or claims the administrator cheated, the voter cannot prove it. The admin-

istrator can claim the voter voted before, and is simply pretending not to have done so.

Digital signatures alone, like those used in Fujioka et al. do not solve the problem.
Because the vote is committed and blinded, it looks random. If a public key digital signa-
ture system like RSA is used, the administrator can create a random object, S, and encrypt
it with the voter’s public key, e and n, to create another object, M, such that®irofl n.

Now it appears as though, the voter signed M. If the voter claims this is garbage and can-
not be uncommitted, the administrator replies that the voter simply lost they keys to

uncommit on purpose.

The above problem, we believe, is a fundamental one faced by any system, like regis-

tration. There are some solutions to guard against it, though.

The first solution is “one-time passwords.” When a voter registers, his password is not
recorded, but rather, the registrar records the hash of it. When voting, a voter only sends
the hash of the password to the administrator who can verify it is correct. At the end of the
protocol, the original password is sent to the counter, who got a list of all hashes from the
registrar. The password itself is hashed and confirmed to be on the list. The administrator
cannot reverse the hashing function and so cannot find the password. An alternative to this
approach is to use secret sharing. [Sha79] Instead of saving the hash of the password, the
encryption of it, using a public key, can be stored. The private key used for decrypting is
shared among a number of parties (perhaps in a threshold scheme) so that a reasonable
subset must come together in order to be able to see the actual password. Both attacks are
vulnerable to a dictionary attack by the registrar or administrator. This attack can be hin-

dered with the use of salt.

73

Finally, Davenport, et al. [Dav96] suggest a practical approach to help deter the admin-
istrator form voting. If the voting is being used on a system where all the registered voters
have email accounts, the commissioner can notify all voters that their votes have been tab-
ulated by emailing everyone on the administrator’s published list of voters. Again, an
abstainer may be so passive as to not care, and the administrator can try to intercept the
email, but this approach has the right idea in that the attacker must perform more work,

and the victim can recognize the attack with less work.

6.3 Architecture

Another approach to the corrupt server problem, one suggested in Fujioka et al., is to
create redundant systems. To guard against dropped votes, parallel servers at any given
level will all (or some subset of them) get the message. If all receivers but one have the
message, the fault lies on the receiving end. On the other hand, if only one receiver has any
record of a transmission, the sender may have tried to incriminate the servers by sending it
to only one. These cases rely on a “preponderance of the evidence” approach to catching

the malicious party.

6.3.1 Redundant Administrators

As noted earlier, when voters are not looking, a polling official can drop a few extra
ballots in the box. This is often prevented by having members of adversarial parties all
watching the ballot box together.

One possible solution to the problem of the malicious administrator is the natural ana-
log of this. That is, provide a number of parallel administrator servers).gagr a vote to
be accepted by the counter, it must h&aed n valid signatures, from separate administra-
tors. Thereforet of n administrators would need to be corrupt in order to create false bal-

lots. Clearlyt must be greater tham2 (rounded up), to prevent a voter from voting under

74

two disjoint subsets of administrators (or two subsets with one corrupt administrator in

common).

This system however, is not as efficient as the original. Still, it may be good enough.

Testing is recommended.

6.3.2 Anonymizer-Counter Additional Message Passing Security

The messages may be sent to the counter in any number of ways, at any reasonable
interval (long enough to insure a significant number of votes to have been scrambled). To
further avoid the above problem with differing message lengths, a block of votes could be
grouped together, and a secure connection established between the anonymizer and
counter server, so that the individual votes cannot be viewed (in their encrypted form) by

an eavesdropper.

Of course, the counter still sees the individual votes, so this will not help against a cor-
rupted counter which compares message lengths. The only variation in length comes from
write-in votes. These are likely to be rare and not significantly different in length from a
regular ballot (one with no write-ins). Still every message from the applet, to the anony-
mizer, to the counter, can include padding to insure that they are all the same length (it
assumes write-ins are all bound to some reasonable size). The communications between

the applet and the administrator is of a fixed size because of the hashing.

6.3.3 Redundant Anonymizers

Another potential problem is that the anonymizer could simply drop the message from
the voter. Again, the lost vote would not be detected until after the election has finished
and the counter has published the results. To protect against this, multiple anonymous
servers can be used in parallel, such that only one needs be reliable to pass the vote

through the channel.

75

An orthogonal problem occurs when the anonymous server keeps record of the mes-
sage origins, or does not randomly reorder them. If the anonymizer works with the
counter, granted, this collusion is contrary to our assumption, anonymity is lost. The prob-
lem can be circumvented by using chained anonymous servers (a la the nym anonymous
remailer system [Nym]). The vote would be sent from the voter to the first anonymous
server in the chain. It would then be passed along the chain, with the final server in the
chain forwarding it on to the counter. Only one server need reliably strip off the header

and randomly scramble votes for the channel to be anonymous.

6.3.4 Web Spoofing

The World Wide Web is a rather untamed area. A number of attacks exist against any-
one who ventures into it. Relevant to our purposes, there is a spoofing attack which can

learn votes without the voter knowing.

The attack is really that of a man-in-the-middle. Suppose Alice tried to download a
web page, or Java applet. Bob can create a special interface applet and trick her into down-
loading that instead. Bob’s applet will mimic the one Alice was originally looking for,
without even knowing which one she wanted ahead of time.

Bob will intercept Alice’s request and download his applet to her instead. Bob’s applet
is a “shell” in which the applet Alice really wants is run. Any data Alice gives, or receives
from the applet she wants to run, will really be given to Bob’s applet. Bob’s applet records
the information, and then mimics the behavior of the original applet by passing the data on
to it, and returning the results to Alice. Or, Bob’s applet could simply impersonate the one
Alice wants, and won't really contact it.

Attacks have this nature have been studied by Felten et al [Fel97]. A (humorous)

example of this type of web spoofing is the Zippy Filter [Zip].

76

Such an attack is prevented by signed applets. As long as the key used for verifying the
signature is publicly known, a web browser can confirm the downloaded applet is the cor-

rect one before running it.

6.4 Policy

6.4.1 Time

An issue for any distributed system is that of time coordination. A common approach
is to create time beacons which can be used as a universal standard (to within a reasonably

small error). The use of beacons would work here, too, but it is most likely unnecessary.

In current, real world elections, if a voter shows up to the polls late, and claims his
watch was slow, he forfeits his right to vote. It is the responsibility of the voter to keep

track of the time. We require the same of a user voting electronically.

The only case where unsynchronized time may come into play is during a complaint.
The times of complaints may be useful in diagnosing the problem. If everyone has their
own definition of time, the time stamp becomes meaningless. Fortunately, the commis-
sioner marks the time of receipt of the complaint. Assuming a sufficiently small delay
between the act about which the complaint is made, and the receipt by the commissioner,
the unsynchronized time should not be an issue. (Redundant commissioners would need to

coordinate time, but they can be easily synchronized at start-up.)
6.4.2 Registration

The Registrar can create ghosts. That is, it can register non-existent voters and later
cast votes under those names. The prevention of ghosts is a policy issue, and not one for

cryptography. A practical solution is to have adversarial parties oversee the registration

process, to make sure the dead do not rise to vote again.

77

6.4.3 Key Distribution

As noted earlier, we face the fundamental problem of key distribution. The servers
must securely share public key information. Additionally, if the applet is signed, this infor-

mation, too, must be publicly dispersed.

78

Chapter 7

Conclusion
Only within the last few years has electronic voting moved from the realm of papers to

actual computer implementations. Although E-Vox is not quite the first implementation,
we believe it is the first secure, user-friendly, stand-alone system.

Our model is only a prototype, and further work needs to be done. Most importantly,
the system needs to be run and attacked. We have suggested a number of extensions in
Chapter 6. All of these increase security at the cost of simplicity. To optimize our design,
we must find which attacks are the most cost-effective for the attacker and protect against
those types of attack.

As the world wide web continues to become more integrated in our daily lives, we
believe future protocols will follow our design and use web-based servers and applets.
Additionally, projects such as digital cash, which face similar design problems, can build
on our work. (When voting becomes electronic, is it any surprise that cash is not far
behind?) Actually, Prof. Rivest has pointed out that voting can be considered a form of
spending special coins.

While smart cards may be years in the future, digital certificates are becoming com-
monplace. Such certificates, could effectively provide a general authentication system
throughout the world wide web, making protocols like ours even easier to implement.

Given all these trends, work in this area is certain to continue. We look forward to

learning from the further expansion of the field.

79

Appendix

Electronic Voting and Its Effects on Society

A full investigation into the effects of electronic voting on elections, and society in
general is far beyond the scope of this paper. Nonetheless, as scientists and engineers, we
have a social responsibility to inform society of the power of what we build, and the

effects it might have.

Kirby [Kir95] has both surveyed the literature in this area, as well as conducted some
limited testing as to the effects of electronic voting at MIT. Although MIT is a very biased

population form which to sample, it is a good start.

By the very nature of it being computer based, we might expect to see both a technical
and monetary bias. Voting will have become easier for the people who can afford or even
know how to use a (public) computer.

On the other hand, a distrust of computer security could cause people to doubt the out-
comes of elections in which computer voting was popular. This might cause politicians to
back away from such schemes. On the other hand, E-Vox and other computer based sys-
tems allow every voter to verify the election returns for himself.

Studies of the effects of the physical ballot layout have been done for both paper bal-
lot, and DRE systems. Voting over the web offers a much more complex ballot. For
instance, hypertext links could be on the ballot, linking the voter to multimedia web pages
of the candidates, parties, and special interest groups. Web pages of this sort will be care-

fully created in an attempt to give the voter that final push, while at the ballot box!

We look forward to further research in this area.

80

References

[Anon] Web site http://www.stack.nl/~galactus/remailers/

[Cha82] D. Chaum, “Blind Signatures for Untraceable Payments,” Advances in Cryp-
tography: Proceedings of Crypto 82, Plenum Press, 1983, pp 199-203.

[Cor97] G. Cornell and C. S. Horstman@pre Java Sunsoft Press, Mountain View,
CA, 1997.

[Cra96] L. F. Cranor and R. K. Cytron, “Design and Implementation of a Practical
Security-Conscious Electronic Polling System.” WUCS-96-02, Washington University
Department of Computer Science, St. Louis, January 23, 1996. Taken from http://
www.ccrc.wustl.edu/~lorracks/sensus/

[Dav96] b. Davenport, A. Newberger, and J. Woodward, “Creating a Secure Digital
Voting Protocol for Campus Elections,” Princeton University, 1996. Taken from http://
www.princeton.edu/~bpd/voting/paper.html

[DeM82] R. DeMillo, N. Lynch, and M. Merritt, “Cryptographic Protocols,” Proceed-
ings of the 14th Annual Symposium on the Theory of Computing, 1982, pp. 383-400.

[Dif77] W. Diffe and M. E. Hellman, “New Directions in CryptographyEEE Trans-
actions on Information Theary. IT-22, n. 6, Jun., 1977, pp. 74-84.

[Fel97] E. W. Felten, D. Balfanz, D. Dean, and D. S. Wallach, “Web Spoofing: An
Internet Con Game,” Technical Report 540-96 (Revised Feb. 1997), Department of COm-
puter Science, Princeton University.

[Fuj93] A. Fujioka, T. Okamoto, and K. Ohta “A Practical Secret Voting Scheme for

Large Scale ElectionsAdvances in CyptologyAUSCRYPT ‘92.

81

[Gen96] R. Cramer, R. Gennaro, and B. Schoenmakers, “A Secure and Optimally Effi-
cient, Multi-Authority Election Scheme,” MIT, Nov 6, 1996. A preliminary version of
which was submitted anonymously to tBecurity in Communications Networksrk-

shop, Sep. 16-17, Amalfi, Italy, 1996.
[Kil90] J. Kilian, Uses of Randomness in Algorithms and Protgddl3 Press, 1990.
[Kir95] J. P. Kirby, “Electoral Method Effects of Decentralized Electronic Voting.”

[Kra97] M. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for Mes-
sage Authentication,” RFC 2104, Feb. 1997. Taken from http://src.doc.ic.ac.uk/comput-

ing/internet/rfc/rfc2104.txt.

[Nur91] H. Nurmi, A. Salomaa, and L. Santean, “Secret Ballot Elections in Computer

Networks,”Computers & Securify. 10, 1991, pp. 553-560.
[Nym] Web site http://www.cs.berkeley.edu/~raph/n.a.n.html.

[Riv78] R. L. Rivest, A. Shamir, and L. M Adleman, “A Method for Obtaining Digital
Signatures and Public Key Cryptosysten@gdmmunications of the ACM. 21, n. 2, Feb.

1978, pp. 120-126.

[Sak94] K. Sako “Electronic Voting Schemes Allowing Open Objection to the Tally,”
Transactions of the Institute of Electronic, Information, and Communication Engineers

E77-A, n. 1, 1994, pp. 24-30.
[Sch96] B. SchneieApplied CryptographyJohn Wiley & Sons, New York, 1996.

[Sha79} A. Shamir, “How to Share a Secret,” Communications of the ACM, v. 24, n.

11, Nov 1979, pp. 612-613.

[Zip] Web site http://www.metahtml.com/apps/zippy/welcome.mhtml.

82

	Secure Electronic Voting Over the World Wide Web
	by
	Mark A. Herschberg
	Submitted to the Department of Electrical Engineering and Computer Science
	in Partial Fulfillment of the Requirements for the Degrees of
	Bachelor of Science in Electrical [Computer] Science and Engineering
	and Master of Engineering in Electrical Engineering and Computer Science
	at the
	MASSACHUSETTS INSTITUTE OF TECHNOLOGY

	May 27, 1997
	Copyright 1997 Mark A. Herschberg. All rights reserved.

	The author hereby grants to M.I.T. permission to reproduce and distribute publicly paper and elec...
	Author
	Department of Electrical Engineering and Computer Science
	May 27, 1997

	Certified by
	Ronald Rivest, ES Webster Professor, Electrical Engineering and Computer Science
	Thesis Supervisor

	Accepted by
	F. R. Morgenthaler
	Chairman, Department Committee on Graduate Theses

	Secure Electronic Voting Over the World Wide Web
	by
	Mark A. Herschberg
	Submitted to the
	Department of Electrical Engineering and Computer Science
	on May 27, 1997
	In Partial Fulfillment of the Requirements for the Degree of
	Bachelor of Science in Computer [Electrical] Science and Engineering
	and Master of Engineering in Electrical Engineering and Computer Science

	ABSTRACT
	Table of Contents
	1 Introduction 5
	2 Theory 18
	3 The E-Vox System 26
	4 Components 42
	5 Testing 65
	6 Limitations, Their Solutions, and Further Extensions 67
	7 Conclusion 79

	List of Figures
	List of Tables
	Acknowledgments

	Chapter 1
	Introduction
	1.1 Background
	1.2 History
	1.2.1 Properties of a Secure Secret Voting Scheme
	1. Completeness: All valid votes are counted correctly.
	2. Soundness: The dishonest voter cannot disrupt the voting.
	3. Privacy: All votes must be secret.
	4. Unreusability: No voter can vote twice.
	5. Eligibility: No one who isn’t allowed to vote can vote.
	6. Fairness: Nothing must affect the voting.
	7. Verifiability: No one can falsify the result of the voting.
	8. Receipt-Freeness: The voter does not need to keep any record of his vote.
	9. Non-Duplication: No one can duplicate anyone else’s vote.
	10. Public Participation: Everyone knows who did, and did not, vote.
	11. Private Error Correction: A voter can prove his vote was miscounted without revealing how he ...

	1.2.2 Secure Election Strategies
	Self-Adjudicating Protocols
	1. He attaches a random string, R, to his vote, V.
	2. Then he encrypts his vote with public keys of Voters 1 through N, in that order.
	3. Again, he repeats step two, but this time includes a random string within each layer of encryp...

	EN(RN,EN-1(...(R2, E1(R1, EN(EN-1(...(E1(V,R))...))))...))
	4. All votes are passed from voter to voter, starting with voter N and ending with Voter 1. Each ...

	EN(EN-1...(E1(V,R))...)
	5. Again each Voter from N down to 1 decrypts his layer, but then signs the message and sends it ...

	Si+1(Ei...(E1(V,R))...)
	6. All voters confirm the signature of Voter 1 and check the list of votes for their initial rand...
	Central Vote Repository
	1. The CVR asks each voter whether or not he will participate in the upcoming election.
	2. A list of all participants is made public.
	3. Each voter receives an ID number using an All-Or-Nothing-Disclosure-of- Secrets (ANDOS) protocol.
	4. Each voter anonymously sends the CVR his ID number, I, along with the encryption of his vote, ...
	5. The CVR publishes all encrypted votes Ek(I,V).
	6. After step 5 is complete, each voter anonymously sends {I,d} to the CVR.
	7. All votes are decrypted and their values published alongside them.

	Multiple Voting Organizations
	1. Each voter, after providing his identity, asks the VA for an authorization number.
	2. The VA randomly generates authorization numbers and distributes them.
	3. The list of all such authorization numbers is given to the TF.
	4. Each voter picks a random ID number and sends it, along with his vote and authorization number...
	5. The TF checks the authorization number and, if it is on the list, crosses it off and publishes...

	1.3 Motivation
	1.3.1 Impediments to Development
	1.3.2 Previous Work
	Pericles (MIT)
	Princeton
	Sensus
	1.3.3 Goals

	Secure
	User-Friendly
	Stand-Alone
	Size

	Chapter 2
	Theory
	2.1 Cryptographic Elements
	2.1.1 Digital Signatures

	S = Md mod n
	M = Se mod n = (Md)e mod n = Mde mod n = M mod n
	2.1.2 Blind Signatures

	B = Mke mod n
	S’ = Bd mod n = (Mke)d mod n = Mdk mod n
	S = (S’/k) mod n = Md mod n
	2.1.3 (One-Way) Hashing

	h = H(M).
	2.1.4 (Blind) Commitment

	C = H(R1, R2, M)
	C = H(R1, R’, M’)
	h= SHA(k1, SHA(message, k2))
	2.1.5 Anonymous Channels
	2.2 “A Practical Secret Voting Scheme for Large Scale Elections”
	2.2.1 Core Protocol
	1. The voter selects his candidates and commits to this ballot.
	2. This committed ballot is then blinded and signed by the voter. It is then sent to the administ...
	3. The administrator verifies the right of the voter to vote, and the signature of the blinded vo...
	4. The user unblinds the ballot, and verifies the administrator’s signature, which, because of th...
	5. The committed ballots, now signed by the administrator, are then sent, through an anonymous ch...
	6. After all the committed votes have been sent in, the voters can confirm that their vote is lis...
	7. After everyone has had a chance to confirm the entries in the counter’s published list, each v...
	8. The counter then adds to the published list the keys and the uncommitted votes (which can be c...

	2.2.2 Modifications to the Protocol
	1. Get the administrator to sign the vote and send it to the counter
	2. Check that the vote is listed by the counter, confirm any of signatures listed, and, if everyt...
	3. Confirm that all votes were uncommitted and counted correctly.

	Chapter 3
	The E-Vox System
	3.1 Assumptions
	3.1.1 Assumptions Made by the Protocol.
	1. The cryptographic systems used are hard to break.
	2. Each of the following parties: voter, administrator, anonymizer, and counter do not collude wi...

	Cryptography
	Independence
	3.1.2 Assumptions about the Physical System
	1. The communication channels provide a low level of data confirmation such as TCP/IP.
	2. The server machines have the JDK1.1 (or better) installed.
	3. The host machines run a web browser that supports the Java 1.1 (or better) and allows the (pot...
	4. The host machines are secure in that they will not explicitly maintain a record of operations ...

	3.2 Creating a Well-Defined System
	1. Authentication. Although specified, it called for authenticaion of the voter by the administra...
	2. Communication. No communication issues were considered. This included message interception, pr...
	3. Keys. The distribution of keys between servers is not addressed.
	4. Errors. Descriptions of how to use the receipts and server logs are mentioned but no formal co...
	3.2.1 Authentication
	3.2.2 Communication
	Secure Channels
	Figure 3.1: Secure Message passing

	Anonymous Channels
	1. There is one message per voter.
	2. The flow of information is unidirectional, meaning no information about the sender’s address n...
	3. Messages are all approximately the same size.
	4. All messages are sent during a relatively short, fixed time span.
	5. Messages need only be received by the deadline, there are no chronological or other ordering r...

	Serialization
	3.2.3 Key Distribution
	3.2.4 Error Detection and Response

	3.3 The Revised Voting Protocol
	1. The voter selects his candidates and commits to this ballot using HMAC-SHA (requiring two comm...
	2. This committed ballot is then blinded by the voter and sent to the administrator, along with t...
	3. The administrator verifies the right of the voter to vote, and the validity of his password. T...
	4. The voter verifies the administrator’s signature and then unblinds the ballot.
	5. The signed, committed ballots, along with the (unsigned) committed ballot, the plaintext and c...
	6. All votes received by the anonymous server before the deadline are then randomly reordered and...
	7. The counter confirms the administrators’ signatures, and tallies the votes. The counter publis...
	Figure 3.2: E-Vox Process Chart

	3.4 Proof of Correctness of the Revised Protocol
	Theorem 1 (Security):
	Sketch of Proof:
	Theorem 2 (Privacy):
	Sketch of Proof:
	Theorem 3 (Unreusability):
	Sketch of Proof:
	Theorem 4 (Eligibility):
	Sketch of Proof:
	Theorem 5 (Recoverability):
	Sketch of Proof:

	Chapter 4
	Components
	4.1 Cryptographic Library
	4.2 Vote Object
	4.3 GenRand, the Random Number Generator
	Figure 4.1: GenRand dialog box

	4.4 Network Connections
	4.5 Registrar
	4.6 Election Builder
	Figure 4.2: Election Builder Questions Card
	Figure 4.3: Election Builder Answer Card for Question Number 2

	4.7 Servers
	4.7.1 Server Interface
	Figure 4.4: Server Interface
	Figure 4.5: Sample Log (from the Administrator)

	4.7.2 Administrator Server
	Figure 4.6: Voter-Administrator Communications

	4.7.3 Anonymous Server
	Figure 4.7: Anonymous Server Record Window

	4.7.4 Counter Server
	Figure 4.8: Counter List (Vote 3 of 5 selected)
	Figure 4.9: Vote Number 3, Question 2
	Figure 4.10: Question 1 Final Tally
	Figure 4.11: Question 2 Final Tally
	Figure 4.12: Vote 3, Question 2

	4.7.5 Commissioner
	1. Connection Error (Any)
	2. Bad MAC (Any)
	3. Bad Message Format (Any)
	4. No Keys to Uncommit (Counter)
	5. Voter Not Registered (Administrator)
	6. Invalid Password (Administrator)
	7. Vote Already Signed (Administrator)
	8. Vote Already Committed (Voter)
	9. Vote Already Uncommitted (Counter)
	10. Bad Signature (Voter)
	11. File Error (Any Server)
	12. Math Error, when performing cryptographic calculations (Any)
	13. Unknown Error, used when no other case applies (Any)
	14. Vote Received after the Deadline (Anonymizer)
	15. Voter Already Voted (Administrator)
	Figure 4.13: Commissioner’s Complaint Log
	Figure 4.14: Complaint Number 3. Someone tried to vote in Randy’s name, but did not know the pass...

	4.8 Voting Applet
	Figure 4.15: Sample Applet

	Chapter 5
	Testing
	1. Voters tried to vote repeatedly.
	2. Unregistered voters tried to vote.
	3. Bad passwords were used.
	4. The administrator gave invalid signatures.
	5. Votes were lost by the anonymous server.
	6. Votes were lost by the counter.
	7. Duplicate votes were given to the counter.
	8. Invalid votes were given to the counter.
	9. The administrator shut down before scheduled.
	10. The anonymizer shut down before scheduled.
	11. The counter shut down before scheduled.
	12. The commissioner shut down before scheduled.

	Chapter 6
	Limitations, Their Solutions, and Further Extensions
	6.1 Code Improvements
	6.1.1 Election Instantiation
	6.1.2 Public Postings

	6.2 Protocol
	6.2.1 Receipts
	Figure 6.1: Secure Connection with a Receipt

	6.2.2 Communications as a Single Point of Failure
	Figure 6.2: Split Message Passing Through the Anonymous Channel

	6.2.3 Cryptographic Attacks
	6.2.4 Administrator Voting

	6.3 Architecture
	6.3.1 Redundant Administrators
	6.3.2 Anonymizer-Counter Additional Message Passing Security
	6.3.3 Redundant Anonymizers
	6.3.4 Web Spoofing

	6.4 Policy
	6.4.1 Time
	6.4.2 Registration
	6.4.3 Key Distribution

	Chapter 7
	Conclusion

	Appendix
	Electronic Voting and Its Effects on Society
	References

