

Annotating the Tweebank Corpus on Named Entity Recognition and Building NLP Models for Social Media Analysis

Hang Jiang*, Yining Hua*, Doug Beeferman, Deb Roy | {hjian42, ninghua, dougb5, dkroy} @ mit.edu

Introduction

Processing the noisy and informal language of social media is challenging for traditional NLP tools because such messages are usually short in length and irregular in spelling and structure. Liu et al. (2018) introduced a tweet-based Tweebank V2 (TB2), including tokenization, part-of speech (POS) tags, and Universal Dependencies, but there is no NER benchmark on TB2. Annotating named entities in TB2 allows researchers to not only train multi-task learning models but also study linguistic relationship between named entities and syntactic labels.

Contributions

- Create the Tweebank-NER benchmark
- > Train and release the Twitter-Stanza pipeline.
- > Compare Twitter-Stanza against existing models, showing simple neural architecture is effective and suitable for Tweet processing.
- > Train Transformer-based models to establish a strong baseline on the Tweebank-NER benchmark.
- > Release our data, models, and code, including Twitter-Stanza and Hugging Face BERTweet models.

Why do we need Tweebank-NER?

- > Tweebank-NER is still challenging for current NER models (e.g. models pre-trained on WNUT17).
- > It makes TB2 a complete dataset for multi-task learning.

Annotate Named Entities in Tweebank v2.0

- > Follow CoNLL 2003 guidelines
- > Use Qualtrics platform + Amazon Mechanical Turk
- > Two-stage annotation
 - o 3 annotators annotate Tweets
 - Tweets without consensus to be re-annotated by the first two authors
- > Adopt token-level pairwise F1 score (70.7) calculated without the O label

Dataset statistics

Dataset	Train	Dev	Test
Tweets	1,639	710	1,201
Tokens	24,753	11,742	19,112
Avg. token per tweet	15.1	16.6	15.9
Annotated spans	979	425	750
Annotated tokens	1,484	675	1183
Avg. token per span	1.5	1.6	1.6

Table	1:	Annotated	corpus	statistics.
-------	----	-----------	--------	-------------

Label	Quantity	F1
PER	777	84.6
LOC	317	74.4
ORG	541	71.9
MISC	519	50.9
Overall	2,154	70.7

Table 2: Number of span annotations per entity type and Inter-annotator agreement scores in pairwise F1.

Methods for NLP Modeling

Models

- ➤ Stanza
- Hugging Face (BERTweet + Token Classification)
- spaCv. FLAIR, spaCv-transformer

Questions

- > How do Stanza models perform compared with other NLP frameworks on the core Tweet NLP tasks?
- > How do transformer-based models perform compared with traditional models on these tasks?

Performance on Tweebank-NER

Main findings

- ➤ The best non-transformer model: Stanza NER model (TB2+W17)
- ➤ The best transformer model: HuggingFace-BERTweet (TB2+W17)
- > TB2 and WNUT17 training sets boost the performance

TB2	WNUT17	F1 Drop
52.20	44.93	7.27↓
62.12	55.11	7.01↓
73.71	59.43	14.28↓
73.79	60.77	13.02↓
60.14	56.40	3.74↓
	52.20 62.12 73.71 73.79	52.20 44.93 62.12 55.11 73.71 59.43 73.79 60.77

Table 5: Comparison among NER models trained on TB2 vs. WNUT17 on TB2 test in entity-level F1. "Hg-Face" stands for "HuggingFace".

Systems	F1
spaCy (TB2)	52.20
spaCy (TB2+W17)	53.89
FLAIR (TB2)	62.12
FLAIR (TB2+W17)	59.08
HuggingFace-BERTweet (TB2)	73.71
HuggingFace-BERTweet (TB2+W17)	74.35
spaCy-BERTweet (TB2)	73.79
spaCy-BERTweet (TB2+W17)	74.15
Stanza (TB2)	60.14
Stanza (TB2+W17)	62.53
NER	

Performance on Syntactic NLP Tasks

okenization +	System	F1	System	F1
.emmatization	Twokenizer	94.6	NLTK	88.23
Stanza (TB2)	Stanford CoreNLP	97.3	spaCy	85.28
achieves the SOTA	UDPipe v1.2	97.4	Flair (TB2)	96.18
	Twpipe	98.3	Flair (TB2+EWT)	84.54
performance	spaCy (TB2)	98.57	Stanza (TB2)	98.25
Combining TB2 +	spaCy (TB2+EWT)	95.57	Stanza (TB2+EWT)	85.45
UD English-EWT	Stanza (TB2)	98.64	,	
•	Stanza (TB2+EWT)	98.59	Lemmatization	1
hurt performance	Tokenizatio	n		

Tokenization

POS Tagging + Dependency Parsing

- > POS: HuggingFace-BERTweet (TB2+EWT) achieves the SOTA
- > Parsing: spaCy-XLM-RoBERTa (TB2) achieves the SOTA
- Stanza achieves competitively against non-transformer models

ctaniza demotres competitively against her transfermer medele						
System	UPOS	System	UAS	LAS		
Stanford CoreNLP	90.6	Kong et al. (2014)	81.4	76.9		
Owoputi et al. (2013) (greedy)	93.7	Dozat et al. (2017)	81.8	77.7		
Owoputi et al. (2013) (CRF)	94.6	Ballesteros et al. (2015)	80.2	75.7		
Ma and Hovy (2016)	92.5	Liu et al. (2018) (Ensemble)	83.4	79.4		
BERTweet (Nguyen et al., 2020)	95.2	Liu et al. (2018) (Distillation)	82.1	77.9		
spaCv (TB2)	86.72	spaCy (TB2)	66.93	58.79		
spaCy (TB2+EWT)	88.84	spaCy (TB2 + EWT)	72.06	63.84		
FLAIR (TB2)	87.85	spaCy-BERTweet (TB2)	76.32	71.72		
FLAIR (TB2+EWT)	88.19	spaCy-BERTweet (TB2+EWT)	76.18	69.28		
HuggingFace-BERTweet (TB2)	95.21	spaCy-XLM-RoBERTa (TB2)	83.82	79.39		
HuggingFace-BERTweet (TB2+EWT)	95.38	spaCy-XLM-RoBERTa (TB2+EWT)	81.02	75.43		
spaCv-BERTweet (TB2)	87.61	Stanza (TB2)	79.28	74.34		
spaCy-BERTweet (TB2+EWT)	86.31	Stanza (TB2 + EWT)	82.10	77.60		
spaCy-XLM-RoBERTa (TB2)	93.90					
spaCy-XLM-RoBERTa (TB2+EWT)	93.75	Dependency Parsi	ng			

POS Tagging

Stanza (TB2)

Stanza (TB2+EWT)

Future Work

93.20

93.53

Develop multi-task Tweet NLP models, and design human-in-the-loop methods to identify bad annotation and improve the quality of Tweet NLP datasets.

References

- Liu, Y., Zhu, Y., Che, W., Qin, B., Schneider, N., and Smith, N. A. (2018). Parsing tweets into universal dependencies. NAACL.
- > Nguyen, D. Q., Vu, T., and Nguyen, A. T. (2020). Bertweet: A pre-trained language model for english Tweets, ACL Demo.