
Classification of Sketch Strokes and
Corner Detection using Conic Sections
and Adaptive Clustering

M. Shpitalni, H. Lipson1

This paper presents a method for classifying pen strokes in an on-
line sketching system. The method, based on linear least squares
fitting to a conic section equation, proposes using the conic
equation's natural classification property to help classify sketch
strokes and identify lines, elliptic arcs, and corners composed of two
lines with an optional fillet. The hyperbola form of the conic
equation is used for corner detection. The proposed method has
proven to be fast, suitable for real-time classification, and capable of
tolerating noisy input, including cusps and spikes. The
classification is obtained in o(n) time in a single path, where n is the
number of sampled points. In addition, an improved adaptive
method for clustering disconnected endpoints is proposed. The
notion of in-context analysis is discussed, and examples from a
working implementation are given.

Introduction
Freehand sketching is occupying a growing place in the

realm of user-interface approaches for CAD systems.
Sketching appears to be a natural communication language,
enabling faster conveyance of qualitative information while
not burdening the creativity of the user or disrupting the flow
of ideas. Recent studies [1, 2] emphasize the importance of
sketching in the mechanical design process, especially in the
conceptual design stage. Several interfaces based on sketching
have therefore been proposed, with stroke classification and
clustering playing a major role.

User interfaces based on on-line sketching are implemented
on several levels and can generally be divided into three
categories, according to the level of information they intend to
gather from the input sketch:
1. Drawing Pads. These sketchers allow basic sketching for

general purpose drawings, especially in the graphic
design arts. They smooth the input strokes and provide
many other graphic tools but do not attempt to interpret
the drawing in any way.

2. 2D sketchers. In 2D sketchers, sketch strokes are
smoothed and classified into 2D primitives, such as lines,
arcs and splines. Some automatically infer constraints and
relationships among the entities, such as parallelism or
orthogonality, thus further refining the sketch [2,3,4,5,6].

3. 3D sketchers. Sketches are analyzed as representing
rough projections of 3D scenes. The sketcher is still
required to identify the sketch strokes as basic geometrical
shapes, such as lines, arcs and corners. However, since the
analyzed sketch represents a rough projection of a three-
dimensional scene, some of the sketch strokes do not
necessarily represent what they appear to be. For instance,
a circular arc in a three dimensional scene is most likely to
appear as an ellipse in a projection. In addition, crossing
curves in the sketch do not necessarily represent curves
that actually meet. Systems for interpreting sketches as 3D
scenes must confront greater problems and are less
common [7,8,9].

This paper presents the basic operation of a sketcher from
the third category that is used to preprocess a rough sketch
representing a projection of a 3D object. The sketcher is the
front-end of a 3D scene interpreter, intended to serve as a
natural user-interface for 3D CAD applications. Although the

1Laboratory for Computer Graphics and CAD Faculty of
Mechanical Engineering, Technion, Haifa 32000, Israel

sketcher is designed to make automatic decisions, the
interactive environment allows the user to modify or re-
sketch erroneous interpretations. Two stages can be observed
in the functioning of the sketcher: (a) classification and
smoothing of sketch strokes as they are drawn, and (b)
linking the entities at their meeting endpoints to form a
connected graph (clustering). Both stages require robust
methods for analyzing the rough sketch data and overcoming
ambiguities inherent in 2D drawings representing 3D scenes.

Related Work
Many methods have been used to analyze line drawings

and convert image data into more meaningful geometrical
information [10]. However, analysis of image data is
fundamentally different from analysis of on-line sketching
strokes. Strokes have been classified into entity types using
curvature analysis [2], inspection of local angles at points
along the stroke [3], correlation with predefined templates
[11], and artificial neural nets [12]. With some sketchers, the
user can or must explicitly indicate which type of entity was
intended [6]. Classification must be distinguished from the
pure smoothing employed in applications in the "sketch-pad"
category. Smoothing is typically accomplished by averaging,
convoluting, or fitting to Bezier, B-Spline and conic curves
[13]. While conic section fitting has been used before both for
smoothing and modeling of scattered data, here we are
suggesting use of the natural classification properties of the
conic section to classify noisy sketch strokes.

In the classification process, corners are often detected by
searching for sharp curvature peaks or angle changes [2,3].
Note, however, that curvature analysis is extremely
susceptible to cusps, spikes and wobbles in the strokes which
are common in rough sketches even after smoothing.

In addition to classification and smoothing, most sketchers
link strokes at their endpoints, crossings and junctions. This
phase is difficult when rough and inaccurate sketches are
considered. Moreover, it poses a major hurdle when the
sketch depicts a 3D scene in which endpoints that appear to
be close in the sketch plane can actually correspond to
endpoints that are far apart spatially. Linking has been
performed using sharp distance tolerances [3], tolerance as a
percentage of length of meeting entities [5], or a clustering
scheme based on a threshold of the maximum interval in a
group of elements [4]. In the last case, the threshold was
empirically chosen according to the type of drawing and
statistics.

Stroke Classification Using Conic-Curve Fitting
In the classification stage, the sketcher is required to accept

sketch strokes and classify them into various geometrical
entities. A stroke is defined as the path marked by a pen
between the pen-down and the pen-up operations. Each
stroke is assumed to correspond to a single entity (line/arc),
or a sharp/filleted corner. In the specific case considered here,
the sketcher is part of a system aimed at interpreting a
drawing depicting a 3D object [7,14,15]. As asserted in [16],
line drawings of manmade objects often exhibit instances of
straight lines, circular arcs and ellipses, all of which are conic
sections. In addition, corners are important features of line
drawings. A corner closely resembles a hyperbola, which
fortunately is also a conic section. The use of a hyperbola also
permits detection of filleted corners. Consequently, it is
assumed that the majority of entities in the sketch will indeed
be either lines, elliptic arcs or corners, and we focus on their
detection. Other curve types (e.g. parabolas) are not
considered by our sketcher on the assumption that they are
special cases and may be entered directly into the CAD
system for which this sketcher is a front end.

A sketch stroke is classified by fitting it to a conic section
and analyzing its coefficients. A general conic section in the x-
y plane is given by:

Q x,y() =Ax
2

+Bxy+Cy
2

+Dx+ Ey+F =0 (1)
In practice, it can be assumed that F≠0; the equation can

therefore be normalized with F=1. A detailed description of
least-squares fitting to conic sections can be found in [13].
Briefly, a sketch stroke is denoted by
}}

L = x1,y1(), x2 ,y2(),�, xN ,yN(){ } . After defining an error
parameter and differentiating partially with respect to the
conic coefficients, the following linear system is obtained.

xi
4 xi

3yi xi
2yi

2 x i
3 x i

2yi

xi
3y i xi

2y i
2 xiyi

3 xi
2 yi x iyi

2

xi
2yi

2 xiyi
3 yi

4 xi yi
2 yi

3

x i
3 xi

2yi x iyi
2 xi

2 xi yi

xi
2 yi xiyi

2 yi
3 xi yi y i

2

�

�

��
��
��
��
��
��

�

�

��
��
��
��
��
��

i =1

N

A

B

C

D

E

��

��

��
��
��
��
��

��

�

��
��
��
��
��

+

xi
2

xiyi

yi
2

xi

yi

��

��

��
��
��
��
��
��

��

�

��
��
��
��
��
��

i =1

N

=0 (2)

Once the coefficients A...F have been solved, some
conclusions regarding the conic section may be derived using
the following definition. Denote:

δ ≡
A

B

2
B

2
C

 and ∆ ≡

A
B

2

D

2
B

2
C

E

2
D

2

E

2
F

 (3)

then, if δ>0, the section represents an ellipse, and if δ<0, a
hyperbola. For both hyperbolas and ellipses, translation and
orientation with respect to their canonical position can easily
be determined,

x =
BE −2CD

4AC−B
2 y =

DB− 2AE

4AC− B
2 (4)

θ =
tan−1 B

A −C
ℜ

ℜ

ℜ

ℜ

2
 (5)

The length of their main axes can also be calculated:

a ,b =
∆

δ
⋅

2

A +C()± A−C()2 +B2 (6)

where the distinction between a and b is made according to
the sign of B.

Classification is based on the specific form of the conic
section; the parameters of the form define the geometrical
dimensions of the shape and enable smoothing and
decomposition of strokes at corners. In the rare case of
obtaining a fit to a parabola, a slight perturbation of any
stroke point can be used to avoid the singularity. Exact lines
are also a rare form of a conic curve, occurring only in some
cases where D=d=0. A linear segment will typically be fitted
with a very narrow ellipse or hyperbola. Since detection of
linear segments is crucial, any elliptical or hyperbolic fit with
an aspect ratio (minor to major axis ratio) less than 1:20 is
assumed to be linear. This ratio is heuristic and was chosen
according to observations. A hyperbola fit must be further
broken down into a set of two lines with a possible elliptic
fillet between them. Such a fit can be obtained by scaling the
hyperbola so that a=b=1. Then, an ordinary circular fillet is
calculated and transformed back into the original plane.

The linear solution and classification forms are most
suitable for fast on-line interpretation. Whenever a new stroke
coordinate pair is generated, the matrix sums are updated
and the set of equations re-solved for A...F. The time
complexity of the classification process at a given point is not

a function of the number of points acquired so far; the process
may be executed in O(1) time. This fact allows continuous
updating of the conic fit at the cost of inverting a 5x5 matrix,
and the display may be updated as the user draws the stroke.
This continuous feedback, beneficial for spotting potential
misinterpretations in advance, is one of the advantages of an
on-line system. The time complexity of classifying a given
stroke of points is o(n) and requires a single pass.

Figure 1 shows some examples of conic sections (dashed)
fitted to strokes (noisy solid).

Entity Linking and Endpoint Clustering
In order to process the classified entities as more

meaningful data (in this case, as a projection of a 3D object),
they must be linked at connection points. However, an
examination of sketches reveals that users tend to place stroke
endpoints inaccurately. A simple approach of joining
endpoints that are closer than a minimal threshold distance
will not suffice; a threshold that is too large may eliminate
fine details, and a threshold that is too small may leave
adjacent endpoints unlinked. Different tolerances may be
necessary for different parts of the sketch, and certainly for
different sketches made by different users.

To overcome these variations, an adaptive clustering
approach is used. In essence, the method is based on
computing tolerance zones around each endpoint in the
drawing, where the size of the zone corresponds to the
uncertainty in the endpoint position. When the size of the gap
between two endpoints is less than the expected error in
placement of both the endpoints, it is likely that the endpoints
were meant to coincide. Based on this reasoning, endpoint
pairs are clustered when each member of the pair falls within
the uncertainty zone of the other member. First, a list of
potential connection points, termed raw vertices, is created.
These points are placed at the endpoints of all the entities in
the sketch. A specific tolerance is computed for each raw
vertex, according to its neighboring geometry and other
parameters, as discussed below. Then, every raw vertex is
grouped with any neighboring raw vertices when both
endpoints fall within each other's tolerance zone. The
procedure is repeated as more and more endpoints are
grouped. When two endpoints belonging to different groups
are clustered, their associated groups are united. This
procedure results in clusters of raw vertices. Each cluster will
finally be represented by one vertex whose coordinates are at
the average of centers.

The critical phase of this algorithm is determining the size
(radius, assuming the zones are circular) of the tolerance zone
for each raw vertex. The size corresponds to the uncertainty
in the vertex position. If the size is set to some (perhaps
arbitrary) value, the result reverts to that of simple distance
threshold linking. A tolerance threshold chosen according to a
statistical analysis may result in the clustering obtained in [4].
If a tolerance circle is set to a percentage of the attached entity
length, the result reverts to that suggested in [5].

Fig. 1: Some examples of conic fitting to strokes.

It seems that a uniform tolerance or one based on a
percentage of the associated line length cannot be used to
obtain the most reliable result. The size of the tolerance zone
should also be sensitive to the magnitude of the detail in the

close vicinity of the endpoint. To achieve this sensitivity, the
average distance from the endpoint to each entity in the
sketch is measured. This includes the average distance from
the endpoint to its own entity, namely, half the entity length.
The smallest of these averages is taken as the size of the
tolerance circle. Clearly, when small and fine detail is in the
close vicinity of the endpoint, the resulting tolerance circle
will be appropriately small. The value obtained will be
limited by some arbitrary upper bound. In addition, a
tolerance circle of an endpoint can never, by definition,
contain both endpoints of an entity and therefore will never
obscure even the finest detail. The tolerance circles shown in
Fig. 2 (a) were derived using this method.

Fig 2: Raw vertices with tolerance circles and resulting
clustering.

Alternative or additional criteria for determining the
tolerance circle size may be considered as well, for instance,
one based on pen dynamics and button-release timing.

The size of the tolerance circle can also be influenced by
criteria specific to the application in which the sketcher is
used. In this work, the sketch is assumed to depict a 3D object.
As is often the case in trihedral manifold objects, each
endpoint is connected to three edges. That is, endpoints tend
to be clustered in groups of three. Thus, clustering may be
biased towards such grouping; the tolerance of clusters
containing multiples of three endpoints are perturbed
downwards in an attempt to cause the cluster to split into
groups of three. Similarly, 3D objects tend not to contain
unconnected endpoints; the clustering mechanism is therefore
biased against such cases by slightly enlarging the size of
such disconnected single vertices. An example of a connected
graph processed by the above procedure is given in Fig. 3.

Fig 3: Tolerance circles obtained using clustering procedure
and resulting linking.

To conclude, the following steps are applied by the
clustering algorithm
• Create raw vertices at all endpoints of entities in the drawing.

• Determine the radius of the tolerance circle around each raw
vertex.

• Identify and group pairs of raw vertices when each member of
the pair falls within the other member's tolerance circle.

• Iteratively group chains of pairs into clusters.
• Place a vertex node at the centroid of each cluster.
• Adjust lines and arcs accordingly.

In-Context Classification and Clustering
The classification and clustering methods described above

and those appearing in the references all attempt to classify
entities using explicit geometrical information appearing in
the sketch. However, examples may be constructed where the
correct decision can only be made when the geometry is
considered in the global context of the drawing. Fig. 4
illustrates two such examples. In Fig. 4 (a), an encircled
junction of six lines appears in the two pictures. Although the
two junctions are geometrically identical, they have different
meanings when viewed in the drawing context: on the left,
the junction represents two separate corners which
accidentally coincide in the projection plane; on the right, it
represents an orthogonal junction of six lines. Similarly, the
classification of the horizontal entity illustrated in Fig. 4 (b)
depends on the context in which it appears. On the left, it
represents an arc, and on the right, it represents a straight
line.

It is evident that in order to differentiate between these
cases, the meaning of the sketch must be "understood." If the
sketcher is part of a larger mechanism that also interprets the
sketch as a whole, then making the decision in context is
possible.

(a)

(b)

Fig. 4: (a) The same line junction appears in the two drawings,
but with different meanings, (b) The same stroke appears at
the bottom of each drawing, on the left as an arc and on the
right as a line.

Conclusions
This paper presents a method for classifying sketch strokes

acquired from on-line sketching systems. The classification is
performed using conic-curve fitting and is capable of
recognizing lines, arcs, elliptic arcs, sharp corners and filleted
corners. The method has two basic advantages: (a) It can
perform robust classification of rough input including spikes
and cusps, which are troublesome for curvature-based
classification, and (b) it has a short execution time that is not
dependent on the length of the stroke or the number of

sample points acquired (assuming coordinates have been
summed while drawing the stroke). The procedure can
therefore be used to provide continuous feedback of the
interpreted entity during drawing, in real time. However, in
spite of this ability, it is evident that geometrical-based
classification is inherently limited and a more general,
context-sensitive approach must be pursued.

A new endpoint clustering scheme has also been presented
based on adaptive tolerances at different parts of the sketch.
The proposed formulation provides a framework for
implementing various criteria for determining local
thresholds, such as detail sensitive criteria, dynamic criteria,
or other application specific criteria. Again, clustering can be
improved using a context-sensitive approach.

Acknowledgments

This research has been supported in part by the Fund for
the Promotion of Research at the Technion, Research No. 033-
028.

References
1. Ullman, D. G., Wood, S., and Craig, D., 1990, "The importance of

drawing in the mechanical design process," Computers &
Graphics, Vol 14, No. 2, pp. 263-274.

2. Jenkins, D. L. and Martin, R. R., 1992, "Applying constraints to
enforce user's intentions in free-hand 2-D sketches," Intelligent
Systems Engineering, Autumn, pp. 31-49.

3. Kato, O., Iwase, H., Yoshida, M., and Tanahshi, J., 1982,
"Interactive Hand-Drawn Diagram Input System," Proc. IEEE
Conference on Pattern Recognition and Image Processing (PRIP 82),
Las Vegas, Nevada, pp. 544-549.

4. Pavlidis, T., and Van Wyk, C. J., 1985, "An Automatic Beautifier
for Drawings and Illustrations," SIGGRAPH 85, Vol 19, No. 3,
pp. 225-234.

5. Bengi, F. and Ozguc, B., 1990, "Architectural Sketch
Recognition," Architectural Science Review, Vol. 33, pp. 3-16.

6. Eggli, L., Brüderlin, B. P., and Elber, G., 1995, "Sketching as a
solid modeler tool," Third Symposium on Solid Modeling and
Applications, ACM SIGGRAPH, pp. 313-321.

7. Lipson, H. and Shpitalni, M., 1995, "A new interface for
conceptual design based on object reconstruction from a single
freehand sketch," Annals of the CIRP, Vol 44/1, pp. 133-136.

8. Lamb, D. and Bandopadhay, A., 1990, "Interpreting a 3D object
from a rough 2D line drawing," Proc First IEEE Conf on
Visualization, 90: 59-66.

9. Marti, E., Regomc—s, J., L—pez-Krahe, J., and Villanueva, J.J.,
1993, "Hand line drawing interpretation as three dimensional
object," Signal Processing, 32: 91-110.

10. Smith, R. W., 1987, "Computer Processing of line images: A
Survey," Pattern Recognition, Vol 20, No 1, pp 7-15.

11. Spur, G., and Jansen, H., 1984, "Automatic recognition of hand-
drawn contours for CAD applications," 16th CIRP Int. Seminar
on Manufacturing Systems, 63-72.

12. Koo, J. C. and Fernandez, B., 1993, "Geometrical Error
Correction Using Hierarchical/ Hybrid Artificial Neural
Systems," IEEE International Conference on Neural Networks, pp.
232-237.

13. Bookstein, F. L., 1979, "Fitting Conic Sections to Scattered Data,"
Computer Graphics and Image Processing, 9, pp. 56-71.

14. Shpitalni, M and Lipson, H, 1995, "Identification of faces in a 2D
line drawing projection of a wireframe object" to appear in IEEE
Transactions on Pattern Analysis and Machine Intelligence.

15. Lipson, H. and Shpitalni, M., 1996 "Optimization-Based
Reconstruction of a 3D Object From a Single Freehand Line
Drawing," Journal of Computer Aided Design, Vol. 28 No 8, 651-
663.

16. Nalwa, V. S., 1988, "Line-Drawing Interpretation: Straight Lines
and Conic Sections," IEEE Pattern Analysis and Machine
Intelligence, Vol 10., No. 4.

17. Faux, I. D. and Pratt, M. J., 1981, Computational Geometry for
Design and Manufacture, John Wiley

