A DSMC-based variance reduction formulation for low-signal flows

H.A.Al-Mohssen husain@mit.edu
N. G. Hadjiconstantinou ngh@mit.edu

Mechanical Engineering Dept., MIT November 25, 2008

Motivation

• Boltzmann Equation (BE): describes the evolution of PDF f=f(x,c,t)

$$\frac{\partial f}{\partial t} + \mathbf{c} \cdot \frac{\partial f}{\partial x} = \left[\frac{\partial f}{\partial t} \right]_{\text{Collision}} = \frac{1}{2} \int \int \int \int (\delta_1' + \delta_2' - \delta_1 - \delta_2) f_1 f_2 c_{12} \sigma d\Omega d\mathbf{c}_1 d\mathbf{c}_2$$

• Used to describe flows with $Kn = \lambda/L > 0.1$

 λ is the gas mean free path and L is problem characteristic length scale

Direct Simulation Monte Carlo: simulates the BE

The uncertainty in "measurement" is:

$$\sigma_{\mathrm{Uncertainty}} = \frac{\sigma_{\mathrm{Thermal}}}{\sqrt{N_{\mathrm{Samples}}}}$$
 \Rightarrow problems in low signal(\equiv deviation from equilibrium) flows (eg. low Ma flows).

Ideally, we want:

$$\sigma_{\text{Uncertainty}} = \frac{\sigma(\text{Signal})}{\sqrt{N_{\text{Samples}}}}$$
 s.t. $\sigma(\text{Signal}) \rightarrow 0$ as Signal $\rightarrow 0$

Previous Work & Objective

Previous Work:

- **®** Baker & Hadjiconstantinou: Variance reduction by simulating only deviation from equilibrium (unstable for Kn < 1.0 without particle cancellation)
- **●** Chun & Koch: Particle method simulating deviation from global equilibrium using the linearized Boltzmann equation (unstable for Kn<1.0 without particle cancellation)
- Homolle & Hadjiconstantinou: Low-variance deviational simulation Monte Carlo (LVDSMC)

Objective: develop a VR method that is

- directly based on DSMC
- easily incorporates more complex interaction models
- more general (see later)

Notation:

Let $\langle R \rangle$ be a property of interest (eg. $u_x = \langle c_x \rangle$, $\langle c_x^4 \rangle$ etc.). In general, it can be written as:

$$\langle R \rangle = \int R(c) f(c) dc$$
 and likewise for $f_{eq} \neq f$, $\langle R \rangle_{eq} = \int R(c) f_{eq}(c) dc$

Where f_{eq} is an arbitrary reference equilibrium distribution

An estimate of this quantity (that we will call \overline{R}) can be calculated by generating samples c_i from $f(c_i)$

$$\Rightarrow \overline{R} \simeq \frac{1}{N} \sum_{i=1}^{N} R(c_i)$$

Variance Reduction Approach

Variance Reduction Approach

Variance Reduction Approach

$$\overline{R}^{\text{VR}} = \overline{R} - \overline{R}_{\text{eq}} + \langle R \rangle_{\text{eq}}$$

Formulation

How can we use above concept (previously used in polymer simulation [Öttinger, 1997]) to produce low-variance solutions using DSMC?

Our Formulation:

 $igodeligate{igodeligate}$ Use an **unmodified** DSMC to directly calculate \overline{R} $\overline{R} \simeq rac{1}{N} \sum_{i=1}^N R(c_i)$

$$\overline{R} \simeq \frac{1}{N} \sum_{i=1}^{N} R(c_i)$$

ullet Use an **auxiliary** simulation to calculate \overline{R}_{eq} . The auxiliary simulation does not perturb the main DSMC simulation and uses the same samples c_i

Auxiliary Simulation Using Likelihood Ratios

- How can we calculate both \overline{R} and \overline{R}_{eq} from the same set of data?
- Likelihood ratios $(W_i \equiv W(c_i) \equiv f_{eq}(c_i)/f(c_i))$:

$$\langle \mathbf{R} \rangle_{\text{eq}} = \int R(\mathbf{c}) f_{\text{eq}}(\mathbf{c}) d\mathbf{c} = \int R(\mathbf{c}) \left(\frac{f_{\text{eq}}(\mathbf{c})}{f(\mathbf{c})} \right) f(\mathbf{c}) d\mathbf{c} = \int R(\mathbf{c}) W(\mathbf{c}) f(\mathbf{c}) d\mathbf{c}$$

$$\Rightarrow \overline{R}_{\text{eq}} = \frac{1}{N} \sum_{i=1}^{N} W_i R(\mathbf{c}_i)$$

As a result:

$$\overline{R}^{\text{VR}} = \overline{R} - \overline{R}_{\text{eq}} + \langle R \rangle_{\text{eq}} = \frac{1}{N} \sum_{i=1}^{N} (1 - W_i) R(\boldsymbol{c}_i) + \langle R \rangle_{\text{eq}}$$

Evolution of Wi

- 0. Initialize N particles at $c_i \& W_i = ??$
- 1. Advection: $x_i' = x_i + \Delta t c_i \& W_i = ??$
- 2. Collisions:
 - 2.1 Select candidates (*i* and *j*) & process with $P_{NE} = c_{ij} / MX$ <u>Accepted:</u> Scatter both particles & $W_i^* = ??$

<u>Rejected:</u> Keep same velocity & $W_i^* = ??$

3. Sample:
$$\overline{R}^{VR} = \frac{1}{N} \sum_{i=1}^{N} (1 - W_i) R(c_i) + \langle R \rangle_{eq}$$

4. Repeat steps 1, 2, 3 & 4

Evolution of Wi

- 0. Initialize N particles at c_i & $W_i = \frac{f_{eq}(c_i,t=0)}{f(c_i,t=0)}$
- 1. Advection: $x_i' = x_i + \Delta t c_i$ & advect W_i
- 2. Collisions:
 - 2.1 Select candidates (*i* and *j*) & process with $P_{NE} = c_{ij} / MX$ Accepted: Scatter both particles & $W_i^* = W_i W_j$ Rejected: Keep same velocity & $W_i^* = W_i \frac{1 W_j P_{NE}}{1 P_{NE}}$
- 3. Sample: $\overline{R}^{VR} = \frac{1}{N} \sum_{i=1}^{N} (1 W_i) R(c_i) + \langle R \rangle_{eq}$
- 4. Take $W_i^* \rightarrow W_i$, repeat steps 1, 2, 3 & 4

Stability

Problem:

These weight update rules are not stable ⇒ loss of Variance Reduction

Solution:

- From definition $W_i = f_{eq}(c_i)/f(c_i) \Rightarrow$ we need knowledge of PDF
- Re-construct the PDF from samples, this is a standard numerical method known as Kernel Density Estimation
- \odot Specifically, for every particle at c

$$f(\boldsymbol{c}) \simeq \int K(\boldsymbol{c}' - \boldsymbol{c}) \, f(\boldsymbol{c}') \, d\boldsymbol{c}' \text{ and } f_{\text{eq}}(\boldsymbol{c}) \simeq \int K(\boldsymbol{c}' - \boldsymbol{c}) \, f_{\text{eq}}(\boldsymbol{c}') \, d\boldsymbol{c}' = \int K(\boldsymbol{c}' - \boldsymbol{c}) \, W(\boldsymbol{c}') \, f(\boldsymbol{c}') \, d\boldsymbol{c}'$$

Implementation:

• For each particle i with W_i @ c_i we replace post-collision weight with average weights within a sphere (in velocity space) of radius ε .

Final Algorithm Summary

- 0. Initialize N particles at c_i & $W_i = \frac{f_{eq}(c_i,t=0)}{f(c_i,t=0)}$
- 1. Advection: $x_i' = x_i + \Delta t c_i$ & advect W_i
- 2. Collisions:
 - 2.1 Select candidates (*i* and *j*) & process with $P_{NE} = c_{ij} / MX$ Accepted: Scatter both particles & $W_i^* = W_i W_j$ Rejected: Keep same velocity & $W_i^* = W_i \frac{1 W_j P_{NE}}{1 P_{NE}}$
- 3. Sample: $\overline{R}^{VR} = \frac{1}{N} \sum_{i=1}^{N} (1 W_i) R(c_i) + \langle R \rangle_{eq}$
- 4. Use Kernel Density Estimation to produce W_i' from W_i^* of all particles around c_i
- 5. Take $W'_i \rightarrow W_i$, repeat steps 1, 2, 3, 4 & 5

Results: Error vs. &

Conclusions

- ❖ Variance reduction using likelihood ratios is viable and promising
- Main advantage: the DSMC simulation is never perturbed
- Small increase in computational cost
 - \odot need to find NN of particle at end of every step making the total cost $O(N \log(N))$

• We are working on:

- improving the efficiency and robustness of stabilizing scheme
- moving into multi-dimensional problems
- More details to appear in:
 - Al-Mohssen, H. A., Hadjiconstantinou, N.G.; Yet another variance reduction method for direct Monte Carlo simulations of low-signal flows, 26th International Symposium on Rarefied Gas Dynamics, July 21-25, 2008.

Appendixes

2.1 Variance Reduction Using Likelihood Ratios

This formulation can be used to yield variance reduction if $\langle R \rangle_{eq}$ is known by writing,

$$\overline{R}^{\text{VR}} = \overline{R} - \overline{R}_{\text{eq}} + \langle R \rangle_{\text{eq}} = \frac{1}{N} \sum_{i=1}^{N} (1 - W_i) R(c_i) + \langle R \rangle_{\text{eq}}$$

When f is close to f_{eq} , i.e. $|W_i - 1| \ll 1$, we can show that

$$\sigma^{2}\{\overline{R}^{VR}\} = \frac{1}{N^{2}} \sum_{j=1}^{N} \sum_{i=1}^{N} (1 - W_{i}) (1 - W_{j}) R(c_{i}) R(c_{j}) (\delta_{i,j} N - 1)$$
 &
$$\sigma^{2}\{\overline{R}\} = \frac{1}{N^{2}} \sum_{j=1}^{N} \sum_{i=1}^{N} R(c_{i}) R(c_{j}) (\delta_{i,j} N - 1)$$

 \Rightarrow

$$\sigma^2 \{ \overline{R}^{VR} \} \ll \sigma^2 \{ \overline{R} \}$$

3.1 Auxiliary Simulation: Advection

DSMC simulates the non-equilibrium BE. For the auxiliary simulation the governing equation is:

$$\frac{\partial f_{\text{eq}}}{\partial t} + c \cdot \frac{\partial f_{\text{eq}}}{\partial x} = 0$$

Making the substitution $f_{eq} \rightarrow W f$ we obtain

$$f\left(\frac{\partial W}{\partial t} + c \cdot \frac{\partial W}{\partial x}\right) + W\left(\frac{\partial f}{\partial t} + c \cdot \frac{\partial f}{\partial x}\right) = 0$$

The main DSMC simulation causes the 2nd term to drop giving us:

$$\frac{\partial W}{\partial t} + c \cdot \frac{\partial W}{\partial x} = 0$$

⇒ Advecting weights satisfies the BE for equilibrium

3.2 Auxiliary Simulation: Collision (1/2)

Collision integral for equilibrium:

$$\left[\frac{\partial f_{\text{eq}}}{\partial t}\right]_{\text{Collision}} = \frac{1}{2} \int \int \int \int (\delta_1' + \delta_2' - \delta_1 - \delta_2) f_{\text{eq},1} f_{\text{eq},2} c_{12} \sigma d\Omega dc_1 dc_2$$

Making the substitution $f_{\rm eq} \rightarrow W f \Rightarrow$

$$\left[\frac{\partial f_{\text{eq}}}{\partial t}\right]_{\text{Collision}} = \frac{\text{MX}}{2} \int \int \int \left(\delta_1' + \delta_2' - (\delta_1 + \delta_2)\right) W_1 W_2 f_1 f_2 \frac{c_{12}}{\text{MX}} \sigma d\Omega dc_1 dc_2$$

Which can be re-written as:

$$\frac{1}{2} \text{MX} \int \int \int \left(-\frac{\delta_1}{W_2} - \frac{\delta_2}{W_1} + \delta_1' + \delta_2' \right) W_1 W_2 f_1 f_2 \left(\frac{c_{12}}{\text{MX}} \right) \sigma d\Omega dc_1 dc_2 + \frac{1}{2} \text{MX} \int \int \int \left(\frac{\delta_1}{W_2} + \frac{\delta_2}{W_1} - \delta_1 - \delta_2 \right) \frac{c_{12}/\text{MX}}{\left(1 - \frac{c_{12}}{\text{MX}} \right)} W_1 W_2 f_1 f_2 \sigma \left(1 - \frac{c_{12}}{\text{MX}} \right) d\Omega dc_1 dc_2$$

$$= \text{"acceptance"} + \text{"rejection"}$$

 $MX = Max \{ W c_{12} \}$

3.2 Auxiliary Simulation: Collision (2/2)

■ Weight "bookkeeping"

Event	In	Intermediate Steps	Final Result
Accepted	$W_1 @ C_1$	Create: $W_1 W_2 @ C'_1 \& W_1 W_2 @ C'_2$	$W_1 W_2 @ C'_1$ and
$(\mathbf{Prob.} = C_{12}/\mathbf{MX})$	$W_2 @ C_2$	Annihilate: $W_1 @ C_1$, $W_2 @ C_2$	$W_1 W_2 @ C_2'$
Rejected (Prob. = $1 - C_{12}/MX$)	$W_1 @ C_1 \ W_2 @ C_2$		$\frac{1 - W_2 \frac{C_{12}}{MX}}{1 - \frac{C_{12}}{MX}} W_1 @ C_1$
		$W_{2} \frac{L}{MX} / \left(1 - \frac{L}{MX}\right) @ C_{2}$ Annihilate: $W_{1} W_{2} \frac{C_{12}}{MX} / \left(1 - \frac{C_{12}}{MX}\right)$ @ $C_{1} & C_{2}$	$\frac{1 - W_1 \frac{C_{12}}{MX}}{1 - \frac{C_{12}}{MX}} W_2 @ C_2$

5 Stability Results

Defining our stability parameter
$$H = \frac{\text{Variance at time 4 }\tau}{\text{Initial Variance}} = \frac{\text{Var}\left\{(1-W_i)c_{x,i}^4\right\}_{\text{at time}=4\tau}}{\text{Var}\left\{(1-W_i)c_{x,i}^4\right\}_{\text{at time}=0\tau}}$$

5 Results: Problem Setup

We study the relaxation of $\int c_x^4 f(c) dc$ in a homogeneous calculation from the initial condition:

$$f(c) = \beta \left(\exp\left[-\frac{(c_x - \alpha)^2 + c_y^2 + c_z^2}{c_0^2} \right] + \exp\left[-\frac{(c_x + \alpha)^2 + c_y^2 + c_z^2}{c_0^2} \right] \right)$$

Variance Reduction:
$$-\alpha = 0.1 \Rightarrow VR = 400$$

 $-\alpha = 0.01 \Rightarrow VR = 6.25 \times 10^6$