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Motivation

oxo Boltzmann Equation(BE): describes the evolution of PDF f=f(x,c,?)

5_f+c.f9_f:[5_f]
ot 0x ot

Collision

1
=5ff (01 +05-01—02) fifacipnodQde;dc,

ol» Used to describe flows with Kn=1/L>0.]

A is the gas mean free path and L is problem characteristic length scale

'X° Direct Simulation Monte Carlo: simulates the BE

The uncertainty in "measurement” is:

U Thermal . . o -
OUncertainy = ——= = problems in low signal(= deviation from equilibrium) flows
V Nsamples (eg. low Ma flows).

010 Ideally, we want:
o (Signal)

9 Uncertainty = s.t. o(Signal)— 0 as Signal = 0
\/ N, Samples
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Previous Work & Objective

ol Previous Work:

@ Baker & Hadjiconstantinou:Variance reduction by simulating only deviation
from equilibrium (unstable for Kn<1/.0 without particle cancellation)

@ Chun & Koch: Particle method simulating deviation from global equilibrium
using the linearized Boltzmann equation (unstable for Kn</.0 without
particle cancellation)

@® Homolle & Hadjiconstantinou: Low-variance deviational simulation Monte
Carlo (LVDSMQ)

ole Objective: develop a VR method that is
@ directly based on DSMC

@ easily incorporates more complex interaction models

@ more general (see later)
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Notation:

ole Let (R) be a property of interest (eg. u.=(cx), (c!) etc.). In general, it
can be written as:

(R) = fR(c) flc)dc and likewise for fegzf, (R)eq = fR (¢) feq(e)d c

Where f.;is an arbitrary reference equilibrium distribution

Oxo An estimate of this quantity (that we will call R) can be calculated
by generating samples ¢; from f(c;)

> R~ 5 R(c)

I‘ I MITMECHE



Variance Reduction Approach
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Variance Reduction Approach

Non-Eqg Simulation (Regular DSMC)
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Variance Reduction Approach

R =R = Reg + (R)eq

Non-Eqg Simulation (DSMC VR) *

Non-Eqg Simulation (Regular DSMC)

Analytical Eg Value

Eqg Simulation (Regular DSMC)
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Formulation

010 How can we use above concept (previously used in polymer
simulation [Ottinger,1997]) to produce low-variance
solutions using DSMQC?

ole Our Formulation:

@ Use an unmodified DSMC to directly calculate R
N
1
R~ Z:‘R(c,-)
1=

@ Use an auxiliary simulation to calculate . The auxiliary simulation does not
perturb the main DSMC simulation and uses the same samples c¢;
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Auxiliary Simulation Using Likelihood Ratios

OXOHow can we calculate both R and from the same set of
data?

0:0 Likelihood ratios (Wi=W(ci)=f.q(ci)/f(ci)):

Ry = [RE© ffrde= [ R(c)(fjf((j Jr@vdc= [rewe s de

> Reg = + 3L, WiR(c)

OIOAs a result:

RVR

N 1 &
R — + <R>eq = N Z(l - Wi R(¢;) + <R>eq
=1



Evolution of W,

0. Initialize N particles at¢; & W; = 77

1. Advection: x; = x; + Atc; & W; = 77
2. Collisions:
2.1 Select candidates (7 and j) & process with PNg = ¢j / MX
Accepted: Scatter both particles & W/ =77

Rejected: Keep same velocity & Wi =77

3. Sample:R'" = % it (L=W) R(cy) +(R)eq

4. Repeat steps 1,2,3 & 4
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Evolution of W,

feq(€;4=0)
f(e;=0)
1. Advection: x; = x; + Atc; & advect W;
2. Collisions:
2.1 Select candidates (7 and j) & process with PNg = ¢j / MX

Accepted: Scatter both particles & W; = W; W;

1-PNE

0. Initialize N particles at¢; & W; =

Rejected: Keep same velocity & Wi = W;

3. Sample:R'" = % it (L=W) R(cy) +(R)eq

4. Take W — W;, repeat steps 1,2,3 & 4
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Stability

ol* Problem:

@ These weight update rules are not stable = loss of Variance Reduction

Oxo Solution:
@ From definition Wi=f.4(c:)/f(ci;) = we need knowledge of PDF

@ Re-construct the PDF from samples, this is a standard numerical method known as
Kernel Density Estimation

@ Specifically, for every particle at ¢

fle) =~ fK(c' —¢) f(¢")de’ and fyq(c) =~ fK(c’ —¢) foq(c))dc’ = fK(c' —c)W(c) f(c")dc

ol* Implementation:

@ For each particle i with W; @ ¢; we replace post-collision weight with average
weights within a sphere (in velocity space) of radius ¢.
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Final Algorithm Summary

feq(€;4=0)
f(e;=0)
1. Advection: x; = x; + Atc; & advect W;
2. Collisions:
2.1 Select candidates (7 and j) & process with PNg = ¢j / MX

Accepted: Scatter both particles & W; = W; W;

0. Initialize N particles at¢; & W; =

. , . 1-W; PNE
Rejected: Keep same velocity & W = W, T
—PNE

3. Sample:R'" = % it (L=W) R(cy) +(R)eq

4. Use Kernel Density Estimation to produce W, from W} of all particles around c;
5. Take W/ — W;, repeat steps 1,2,3,4 & 5
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Results: Error vs. €

Error= A/B
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Conclusions

Oxo Variance reduction using likelihood ratios is viable and promising
'10 Main advantage: the DSMC simulation is never perturbed
Oxo Small increase in computational cost

@ need to find NN of particle at end of every step making the total cost O(N Log(N))

Oxo We are working on:
@ improving the efficiency and robustness of stabilizing scheme
@ moving into multi-dimensional problems

@ More details to appear in:

® Al-Mohssen, H. A, Hadjiconstantinou, N.G.; Yet another variance reduction method for direct Monte Carlo
simulations of low-signal flows, 26th International Symposium on Rarefied Gas Dynamics, July 21-25, 2008.
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2.1 Variance Reduction Using Likelihood Ratios

This formulation can be used to yield variance reduction if (R)q is known by writing,
VR = = 1Y
R =R=Req + (Rieq = = D (1 = W R(@) + (R)eq

i=1

When f is close to feq,1.. | W;— 1| < 1, we can show that

| NN | NN
o2 RVR) = - D= W) (1= W) R(c;) R(c;) (6; ;N - 1) & o2 (R) = = >0 > R(ci)R(ej) (6, ;N 1)
N= iZ1i=1 N* j=li=1
=



3.1 Auxiliary Simulation: Advection

DSMC simulates the non-equilibrium BE. For the auxiliary simulation the governing equation is:

0 feq 0 feq
+c- =
ot 0x

0

Making the substitution foq = W f we obtain

ow ow 0 0
f(—+c-—)+W(—f+c-—f):O

ot 0x ot 0x
The main DSMC simulation causes the 2nd term to drop giving us:

ow ow
—+4+c-—=0
ot 0x

= Advecting weights satisfies the BE for equilibrium
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3.2 Auxiliary Simulation: Collision (1/2)

Collision integral for equilibrium:

9 fe
5

1
| =_ff (6] + 85 — 81 = 02) foqu foq2 C12 - dQdicy dcy
Collision

Making the substitution foq > W f =

[

P ff ((5' +62 ((51+(52))W1 W2f1 fz—O’deCl dCz
t

Collision

Which can be re-written as:

MX
—foff ————+51 +62]W1W2f1f2( ]O'llﬂdcldCZ + —fof — ——61— 2 12/12 Wlwzflfzo'[l—ﬁldﬂdcldcz
MX
[
MX

= "acceptance" + '"rejection"

MX = Max{ WC]Q}



3.2 Auxiliary Simulation: Collision (2/2)

m Weight "bookkeeping"

Event In Intermediate Steps Final Result
Accepted Wi@ Cy |Create: Wi W, @ C; &W W@ C, | Wi W, @ C]and
(Prob. = Cy, / MX) W, @ C, | Annihilate: W, @ C;, W, @ C, WiW, e Cé

c c 1-W, o2
Rejected W;@ C; | Create: W, ﬁ (1 - ﬁ) @ (, TMX We (4
(Prob.=1-Cp, /MX) |W,e@ C, c c -2
Wzﬁ/(l—ﬁ)@Cz
MX MX
c c
Annihilate: W, W, 12 (1 - L2) . S12
MX MX 1 Mx W,@ C
@Cy &C, L 25 =2

“MX
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5 Stability Results

— x’i}at time=4 1
Initial Variance Var {(1 -W;) 4

Vaianceattimear | Var{-wiel
Defining our stability parameter H = ~S—< T HEST —
Cxii }at time=0 7
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5 Results: Problem Setup

We study the relaxation of f ¢t f(c)dc in a homogeneous calculation from the initial condition:

(cy —a)2 +c

2+ c? (cx+@? +c2+c2

f(e) = B|Exp|- EICS Y i
> >
0 €0
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