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Abstract—This paper presents a general class of gossip-
based averaging algorithms, which are inspired from Uniform
Gossip [1]. While Uniform Gossip works synchronously on
complete graphs, weighted gossip algorithms allow asynchronous
rounds and converge on any connected, directed or undirected
graph. Unlike most previous gossip algorithms [2]–[6], Weighted
Gossip admits stochastic update matrices which need not be
doubly stochastic. Double-stochasticity being very restrictive in
a distributed setting [7], this novel degree of freedom is essential
and it opens the perspective of designing a large number of
new gossip-based algorithms. To give an example, we present
one of these algorithms, which we call One-Way Averaging. Itis
based on random geographic routing, just like Path Averaging [5],
except that routes are one way instead of round trip. Hence in
this example, getting rid of double stochasticity allows usto add
robustness to Path Averaging.

I. I NTRODUCTION

Gossip algorithms were recently developed to solve the
distributed average consensus problem [1]–[6]. Every nodei
in a network holds a valuexi and wants to learn the average
xave of all the values in the network in a distributed way. Most
gossip algorithms were designed for wireless sensor networks,
which are usually modeled as random geometric graphs and
sometimes as lattices. Ideally a distributed averaging algorithm
should be efficient in terms of energy and delay without
requiring too much knowledge about the network topology
at each node, nor sophisticated coordination between nodes.

The simplest gossip algorithm is Pairwise Gossip, where
random pairs of connected nodes iteratively and locally aver-
age their values until convergence to the global average [2].
Pairwise local averaging is an easy task, which does not re-
quire global knowledge nor global coordination, thus Pairwise
Gossip fulfills the requirements of our distributed problem.
However, the convergence speed of Pairwise Gossip suffers
from the locality of the updates, and it was shown that averag-
ing random geographic routes instead of local neighborhoods
is an order-optimal communication scheme to run gossip.
Let n be the number of nodes in the network. On random
geometric graphs, Pairwise Gossip requiresΘ(n2) messages
whereas Path Averaging requires onlyΘ(n logn) messages
under some conditions [5].

The previous algorithm gained efficiency at the price of
more complex coordination. At every round of Path Averaging,
a random node wakes up and generates a random route.
Values are aggregated along the route and the destination node
computes the average of the values collected along the route.

Then the destination node sends the average back through the
same route so that all the nodes in the route can update their
values to the average. Path Averaging is efficient in terms
of energy consumption, but it demands some long distance
coordination to make sure that all the values in the route were
updated correctly. Routing information back and forth might as
well introduce delay issues, because a node that is engaged in
a route needs to wait for the update to come back before it can
proceed to another round. Furthermore, in a mobile network,
or in a highly dynamic network, routing the information back
on the same route might even not succeed.

This work started with the goal of designing a unidirectional
gossip algorithm fulfilling the following requirements:

• Keep a geographic routing communication scheme be-
cause it is highly diffusive,

• Avoid routing back data: instead of long distance agree-
ments, only agreements between neighbors are allowed,

• Route crossing is possible at any time, without introduc-
ing errors in the algorithm.

As we were designing One-Way Averaging, we happened to
prove the correctness of a broad set of gossip-based algo-
rithms, which we present in this paper along with One-Way
Averaging. These algorithms can be asynchronous and they
use stochastic diffusion matrices which are not necessarily
doubly stochastic, as announced by the title of the paper.

In Section II, we give some background on gossip algo-
rithms, and we explain why Uniform Gossip is a key algorithm
to get inspired from when building a unidirectional gossip
algorithm. In Section III, we present Weighted Gossip, an
asynchronous generalization of Uniform Gossip, which was
already suggested in [1] but had remained unnamed. We show
in Section IV that weighted gossip algorithms converge to
xave, which is a novel result to the best of our knowledge. In
Section V, we describe in detail One-Way Averaging and we
show on simulations that the good diffusivity of geographic
routes in Path Averaging persists in One-Way Averaging.
Computing the speed of convergence of weighted gossip
algorithms remains open and is part of future work.

II. BACKGROUND ON GOSSIPALGORITHMS

The values to be averaged are gathered in a vectorx(0) and
at any iterationt, the current estimates of the averagexave are
gathered inx(t). Gossip algorithms update estimates linearly.
At any iterationt, there is a matrixW (t) such that:

x(t)T = x(t− 1)TW (t).



In gossip algorithms that converge to average consensus,W (t)
is doubly stochastic:W (t)1 = 1 ensures that the global
average is conserved, and1T

W (t) = 1T guarantees stable
consensus. To perform averaging on a one way route,W (t)
should be upper triangular (up to a node index permutation).
But the only matrix that is both doubly stochastic and upper
triangular matrix is the identity matrix. Thus, unidirectional
averaging requires to drop double stochasticity.

Uniform Gossip solves this issue in the following way.
Instead of updating one vectorx(t) of variables, it updates a
vector s(t) of sums, and a vectorω(t) of weights. Uniform
Gossip initializess(0) = x(0) andω(0) = 1. At any time, the
vector of estimates isx(t) = s(t)/ω(t), where the division
is performed elementwise. The updates are computed with
stochasticdiffusion matrices{D(t)}t>0:

s(t)T = s(t− 1)TD(t), (1)

ω(t)T = ω(t− 1)TD(t). (2)

Kempe et al. [1] prove that the algorithm converges to a
consensus onxave (limt x(t) = xave1) in the special case
where for any nodei, Dii(t) = 1/2 andDij(t) = 1/2 for
one nodej chosen i.i.d. uniformly at random. As a key remark,
note that hereD(t) is not doubly stochastic. The algorithm is
synchronous and it works on complete graphs without routing,
and on other graphs with routing. We show in this paper
that the idea works with many more sequences of matrices
{D(t)}t>0 than just the one used in Uniform Gossip.

III. W EIGHTED GOSSIP

We call Weighted Gossip the class of gossip-based algo-
rithms following the sum and weight structure of Uniform
Gossip described above (Eq. (1) and (2)). A weighted gossip
algorithm is entirely characterized by the distribution ofits
diffusion matrices{D(t)}t>0. Let P (s, t) := D(s)D(s +
1) . . .D(t) and letP(t) := P (1, t). Then

s(t)T = x(0)TP (t), (3)

ω(t)T = 1T
P (t). (4)

If a weighted gossip algorithm is asynchronous, then,
Dii(t) = 1 andDij,j 6=i(t) = 0 for the nodesi that do not
contribute to iterationt. If Dij(t) 6= 0, then nodei sends
(Dij(t)si(t− 1),Dij(t)ωi(t− 1)) to nodej, which adds the
received data to its own sumsj(t−1) and weightωj(t−1). At
any iterationt, the estimate at nodei is xi(t) = si(t)/ωi(t).

Because1T
D(t) 6= 1T , sums and weights do not reach a

consensus. However, becauseD(t)1 = 1, sums and weights
are conserved: at any iterationt,

n
∑

i=1

si(t) =

n
∑

i=1

xi(0) = nxave, (5)

n
∑

i=1

ωi(t) = n. (6)

This implies that Weighted Gossip is a class of non-biased
estimators for the average (even though

∑n

i=1
xi(t) is not

conserved through time!):

Theorem 3.1 (Non-biased estimator): If the estimates
x(t) = s(t)/ω(t) converge to a consensus, then the
consensus value is the averagexave.

Proof: Let c be the consensus value. For anyǫ > 0, there
is an iterationt0 after which, for any nodei, |xi(t)− c| < ǫ.
Then, for anyt > t0, |si(t) − cωi(t)| < ǫωi(t) (weights are
always positive). Hence, summing overi,
∣

∣

∣

∣

∣

∑

i

(si(t)− cωi(t))

∣

∣

∣

∣

∣

≤
∑

i

|si(t)− cωi(t)| < ǫ
∑

i

ωi(t).

Using Eq. (5), (6), the previous equation can be written as
|nxave − nc| < nǫ, which is equivalent to|xave − c| < ǫ.
Hencec = xave.
In the next section, we show that, although sums and weights
do not reach a consensus, the estimates{xi(t)}1≤i≤n converge
to a consensus under some conditions.

IV. CONVERGENCE

In this section we prove that Weighted Gossip succeeds in
other cases than just Uniform Gossip.

Assumption 1: {D(t)}t>0 is a stationary and ergodic se-
quence of stochastic matrices with positive diagonals, and
E[D] is irreducible.
Irreducibility means that the graph formed by edges(i, j)
such thatP[Dij > 0] > 0 is connected, which requires the
connectivity of the network. Note that i.i.d. sequences are
stationary and ergodic. Stationarity implies thatE[D] does not
depend ont. Positive diagonals means that each node should
always keep part of its sum and weight:∀i, t,Dii(t) > 0.

Theorem 4.1 (Main Theorem): Under Assumption 1,
Weighted Gossip using{D(t)}t>0 converges to a consensus
with probability 1, i.e. limt→∞ x(t) = xave1.
To prove Th. 4.1, we will start by upper bounding the
error ‖x(t)− xave1‖∞ with a non-increasing functionf(t)
(Lemma 4.1): letηji(t) = Pji(t)−

∑n

j=1
Pji(t)/n = Pji(t)−

ωi(t)/n, thenf is defined asf(t) = max1≤i≤n fi(t), where
fi(t) =

∑n

j=1
|ηji(t)| /ωi(t). Then, we will prove thatf(t)

vanishes to0 by showing thatηji(t) vanishes to0 (weak
ergodicity argument of Lemma 4.3) and thatωi(t) is bounded
away from0 infinitely often (Lemma 4.4).

Lemma 4.1: If {D(t)}t>0 is a sequence of stochastic ma-
trices, then the functionf(t) is non increasing. Furthermore,

‖x(t)− xave1‖∞ ≤ ‖x(0)‖∞ f(t). (7)

Proof: By Eq. (3), for any nodei,

|xi(t)− xave| =

∣
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j=1
|ηji(t)|
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= ‖x(0)‖∞ fi(t),



which proves Eq (7). Next, we need to prove thatf(t) is a
non-increasing function. For any nodei, by Eq. (1) and (2),

fi(t) =

n
∑

j=1

|ηji(t)|
ωi(t)

=

n
∑

j=1

|∑n

k=1
ηjk(t− 1)Dki(t)|

∑n

k=1
ωk(t− 1)Dki(t)

≤
n
∑

j=1

∑n

k=1
|ηjk(t− 1)|Dki(t)

∑n

k=1
ωk(t− 1)Dki(t)

=

∑n

k=1

∑n

j=1
|ηjk(t− 1)|Dki(t)

∑n

k=1
ωk(t− 1)Dki(t)

≤ max
k

∑n

j=1
|ηjk(t− 1)|Dki(t)

ωk(t− 1)Dki(t)
(8)

= max
k

∑n

j=1
|ηjk(t− 1)|

ωk(t− 1)

= max
k

fk(t− 1) = f(t− 1),

which implies thatf(t) ≤ f(t − 1). Eq. (8) comes from the
following equality: for any{ak}1≤k≤n ≥ 0, {bk}1≤k≤n > 0,

∑n

k=1
ak

∑n

k=1
bk

=

n
∑

k=1

bk
∑n

j=1
bj

ak
bk
≤ max

k

ak
bk

.

The following lemma is useful to prove Lemmas 4.3
and 4.4.

Lemma 4.2: Under Assumption 1, there is a deterministic
time T and a constantc such that

P[D(1)D(2) . . .D(T ) > c] > 0,

whereA > c means that every entry ofA is larger thanc.
Proof: The proof of this lemma can be found in [8]. For

the case where{D(t)}t>0 is i.i.d., a simpler proof can be
found in [9]. Note that the theorems proven in [8] and [9] are
slightly different than our lemma because the authors multiply
matrices on the left, whereas we multiply them on the right.
However the multiplication side does not change the proof.

For completeness and simplicity, we give the proof in
the i.i.d. case.E[D] being irreducible and having a pos-
itive diagonal, it is primitive as well: there is anm >
0 such that E[D]m > 0 (elementwise).{D(t)}t≥1 is
i.i.d., henceE[D(1)D(2) . . .D(m)] = E[D]m > 0, and

P

[

(D(1)D(2) . . .D(m))ij > 0
]

> 0 for any entry (i, j).

For any timet, the diagonal coefficients ofD(t) are non-
zero, thus, if the(i, j)th entry of P(k, k + m − 1) =
D(k)D(k + 1) . . .D(k +m− 1) is positive, thenPij(t) > 0
for all t ≥ k + m − 1. Now take T = n(n − 1)m. The
probability thatP(T ) > 0 is larger than or equal to the joint
probability thatP12(1,m) > 0, P13(m + 1, 2m) > 0, . . .,
Pn,n−1(T −m+ 1, T ) > 0. By independence of{D(t)}t≥1,

P[P(T ) > 0] ≥ P[P1,2(1,m) > 0]P[P1,3(m+ 1, 2m) > 0]

. . . . . .P[Pn,n−1(T −m+ 1, T ) > 0] > 0.

Therefore, there is ac > 0 such thatP[D(1)D(2) . . .D(T ) >
c] > 0.

Lemma 4.3 (Weak ergodicity): Under Assumption 1,
{D(t)}t≥1 is weakly ergodic.

Weak ergodicity means that whent grows,P(t) tends to
have identical rows, which may vary witht. It is weaker than
strong ergodicity, whereP(t) tends to a matrix1πT , whereπ
does not vary witht. Interestingly, simple computations show
that if P(t) has identical rows, then consensus is reached. All
we need to know in this paper is that weak ergodicity implies
that

lim
t→∞

max
i,j

n
∑

k=1

|Pik(t)−Pjk(t)| = 0,

and we suggest [10] for further reading about weak ergodicity.
Proof: Let Q be a stochastic matrix. The Dobrushin

coefficientδ(Q) of matrix Q is defined as:

δ(Q) =
1

2
max
ij

n
∑

k=1

|Qik −Qjk| .

One can show [10] that0 ≤ δ(Q) ≤ 1, and that for any
stochastic matricesQ1 andQ2,

δ(Q1Q2) ≤ δ(Q1)δ(Q2). (9)

Another useful fact is that for any stochastic matrixQ

1− δ(Q) ≥ max
j

min
i

Qij ≥ min
i,j

Qij . (10)

A block criterion for weak ergodicity [10] is based on Eq. (9):
{D(t)}t≥1 is weakly ergodic if and only if there is a strictly
increasing sequence of integers{ks}s≥1 such that

∞
∑

s=1

(1− δ(P(ks + 1, ks+1))) =∞. (11)

We use this criterion withks = sT , whereT was defined in
Lemma 4.2.

A joint consequence of Lemma 4.2 and of Birkhoff’s
ergodic theorem [11], [8] (in the i.i.d. case, one can use
the strong law of large numbers instead) is that the event
{D(ks + 1)D(ks + 2) . . .D(ks+1) > c} happens infinitely
often with probability 1. Hence, using Eq. (10), the event
{1 − δ (P(ks + 1, ks+1)) > c} happens infinitely often with
probability 1. We can thus conclude that the block crite-
rion (11) holds with probability1 and that {D(t)}t≥1 is
weakly ergodic.

The next lemma shows that, although weights can become
arbitrarily small, they are uniformly large enough infinitely
often.

Lemma 4.4: Under Assumption 1, there is a constantα
such that, for any timet, with probability 1, there is a time
t1 ≥ t at whichmini ωi(t1) ≥ α.

Proof: As mentioned in the proof of Lemma 4.3, the event
{D(ks + 1)D(ks + 2) . . .D(ks+1) > c}, whereks = sT ,
happens infinitely often with probability1. Let t1 be the
first time larger thant such thatD(t1 − T + 1)D(t1 − T +
2) . . .D(t1) > c. Then the weights at timet1 satisfy

ω(t1)
T = ω(t1 − T )TD(t1 − T + 1) . . .D(t1)

> cω(t1 − T )T11T ,



because weights are always positive. Now, because the sum
of weights is equal ton, ω(t1− T )T1 = n. Henceω(t1)T >
cn1T . Takingα = cn concludes the proof.
To prove Theorem 4.1, it remains to show thatf(t) converges
to 0.

Proof: (Theorem 4.1) For anyε > 0, according to
Lemma 4.3, there is a timet0 such that for anyt ≥ t0,

max
i,j

n
∑

k=1

|Pik(t)−Pjk(t)| < ε.

As a consequence|Pik(t)−Pjk(t)| < ε for anyi, j, k. Hence
|ηjk(t)| < ε as well. Indeed,

|ηjk(t)| =

∣

∣

∣

∣

∣

Pjk(t)−
n
∑

i=1

Pik(t)

n

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

i=1

Pjk(t)−Pik(t)

n

∣

∣

∣

∣

∣

≤
n
∑

i=1

|Pjk(t)−Pik(t)|
n

<

n
∑

i=1

ε

n
= ε.

Therefore, for anyt ≥ t0 and any1 ≤ i ≤ n,

fi(t) <
nε

ωi(t)
,

and therefore
f(t) <

nε

miniωi(t)
.

Using Lemma 4.4, there is a constantα such that, with prob-
ability 1, there is a timet1 ≥ t0 at whichmini ωi(t1) ≥ α.
Then, for anyε′, it suffices to takeε = αε′/n to conclude
that there is a timet1 with probability1 such thatf(t1) < ε′.
Sincef is non increasing (Lemma 4.1), for all timet ≥ t1,
f(t) < ε′; in other wordsf(t) converges to0. Using (7)
concludes the proof.

Remark: A similar convergence result can be proved with-
out Assumption 1 (stationarity and ergodicity of the matri-
cesD(t)), in a setting where the matrices are chosen in a
perhaps adversarial manner. One needs only some minimal
connectivity assumptions, which then guarantee that there
exists a finite numberT such that, for allt, all entries of
D(t+1) · · ·D(t+T ) are bounded below by a positive constant
c (see, e.g., Lemma 5.2.1 in [12]).

V. ONE-WAY AVERAGING

In this section, we describe in detail a novel weighted gossip
algorithm, which we call One-Way Averaging.

A. Assumptions and Notations

Assume that the network is a random geometric graph on a
convex areaA, with a connection radiusr(n) large enough
to enable geographic routing [3]. For every nodei, let Ti
be a distribution of points outside of the areaA, and let
Hi be a distribution of integers larger than2. Each node
has an independent local exponential random clock of rate
λ, and initiates an iteration when it rings. Equivalently, time
is counted in terms of a global and virtual exponential clock
of rate nλ. Each time the global clock rings, a node wakes
up independently and uniformly at random. In the analysis,t
indicates how many times the global clock rang. A detailed
analysis of this time model can be found in [2].

B. Description of One-Way Averaging

Each nodei initializes its sumsi(0) = xi(0) and its weight
ωi(0) = 1. For any iterationt > 0, let i be the node whose
clock rings. Nodei draws a targetZ according to distribution
Zi and a numberH ≥ 2 of hops according to distribution
Hi. Nodei chooses uniformly at random a neighbor which is
closer to the targetZ than itself. If there is no such neighbor
then the iteration terminates. If such a neighborj exists, then
nodei divides its sumsi(t − 1) and its weightωi(t− 1) by
H and sends(si(t− 1),ωi(t− 1)) ∗ (H − 1)/H to nodej.
It also sends the remaining numberH − 1 of hops and the
targetZ. Node j adds the received sum and weight to its
sumsj(t− 1) and its weightωj(t− 1). Then it performs the
same operation as nodei towards a node that is closer to the
target, except that it divides its new sum and weight byH−1
instead ofH (formally, H ← H − 1). Messages are greedily
sent towards the target,H being decremented at each hop. The
iteration ends whenH = 1 or when a node does not have any
neighbor to forward a message to. At any time, the estimate
of any node is the ratio between its sum and its weight.

C. Diffusion Matrices

Suppose that at roundt, a whole route ofH nodes is
generated. Then, after re-indexing nodes starting with the
nodes in the route, the diffusion matrixD(t) can be written
as:


















1/H 1/H . . . 1/H 1/H 0

0 1/(H − 1) . . . 1/(H − 1) 1/(H − 1) 0

0 0
. . .

...
... 0

0 0 0 1/2 1/2 0

0 0 0 0 1 0

0 0 0 0 0 Id



















,

whereId denotes the identity matrix. If the route stops early
and has for example only3 nodes whileH = 4, then, after
re-indexing the nodes,D(t) can be written as:









1/4 1/4 1/2 0

0 1/3 2/3 0

0 0 1 0

0 0 0 Id









.

Note thatD(t) is indeed stochastic for allt. It is upper-
triangular as well: One-Way Averaging does not require to
route information backwards along the path. Furthermore,
{D(t)}t>0 verifies Assumption 1. First,{D(t)}t>0 is an i.i.d.
sequence. Second,{D(t)}t>0 have positive diagonals. Third,
if the network is connected and if the routes generated by
distributions{Zi}1≤i≤n and{Hi}1≤i≤n connect the network,
thenE[D] is irreducible. Therefore, One-Way Averaging is a
successful distributed averaging algorithm. Finally, routes can
cross each other without corrupting the algorithm (the resulting
diffusion matrices are still stochastic).

D. Simulation

One-Way Averaging and Path Averaging were run (Matlab)
on random geometric graphs on the unit square, using the



same routes for a fair comparison. At each iterationt, the
number H(t) of hops was generated withH uniform in
[⌈1/
√
2r(n)⌉, ⌈

√
2/r(n)⌉] and the targetZ(t) was drawn in

the following way: letI be the coordinates of the woken node,
and letU be a point drawn uniformly at random in the unit
square, then

Z(t) = I + 3
U − I

‖U − I‖
2

.

Let C(t1, t2) be the message cost of a given algorithm
from iteration t1 to iteration t2. For One-Way Averaging,
C(t1, t2) =

∑t2
t=t1

R(t), whereR(t) ≤ H(t) is the effective
route length at iterationt. Because Path Averaging routes
information back and forth, the cost of one iteration is taken to
be equal to twice the route length:C(t1, t2) = 2

∑t2
t=t1

R(t).
Let ǫ(t) = x(t) − xave1. The empirical consensus cost is
defined as:

Cemp(t1, t2) =
C(t1, t2)

log ‖ǫ(t1)‖ − log ‖ǫ(t2)‖
,

so that

‖ǫ(t2)‖ = ‖ǫ(t1)‖ exp
(

− C(t1, t2)

Cemp(t1, t2)

)

.

In Fig. 1, we display the empirical consensus cost of both
algorithms, witht1 = 750 andt2 growing linearly withn. We
can see that One-Way Averaging performs better than Path
Averaging on this example. Although One-Way Averaging
converges slower in terms of iterations, spending twice as few
messages per iteration is sufficient here to outperform Path
Averaging.

The speed of convergence depends on the network but
also on {Zi}1≤i≤n and {Hi}1≤i≤n, which we have not
optimized. It would be interesting in further work to compute
the speed of convergence of Weighted Gossip, and to derive
optimal distributions{Zi}1≤i≤n and {Hi}1≤i≤n for a given
network using One-Way Averaging. As a conclusion, One-Way
Averaging seems to have the same diffusive qualities as Path
Averaging while being more robust at the same time.
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VI. CONCLUSION

We proved that weighted gossip algorithms converge to
average consensus with probability1 in a very general set-
ting, i.e. in connected networks, with stationary and ergodic
iterations, and with a simple stability condition (positive diag-
onals). We believe that dropping double stochasticity opens
great opportunities in designing new distributed averaging
algorithms that are more robust and adapted to the specificities
of each network. One-Way Averaging for example is more
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Fig. 1. Comparison of the consensus cost for One-Way Averaging and Path
Averaging in random geometric graphs of increasing sizesn. The connection
radius scales asr(n) =

√

6 logn/n. Display ofCemp(t1, t2) averaged over
15 graphs and4 simulation runs per graph.

robust than Path Averaging, and it surprisingly consumes fewer
messages on simulations. Also, double stochasticity is difficult
to enforce in a distributed manner in directed graphs using
unidirectional communications. With Weighted Gossip, one
could easily build averaging algorithms for directed networks
that are reliable enough not to require acknowledgements.

The next step of this work is to compute analytically the
speed of convergence of Weighted Gossip. In classical Gossip,
double stochasticity would greatly simplify derivations,but
this feature disappears in Weighted Gossip, which makes the
problem more difficult.
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