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Abstract—This paper presents a general class of gossip- Then the destination node sends the average back through the
based averaging algorithms, which are inspired from Unifom  same route so that all the nodes in the route can update their
Gossip [1]. While Uniform Gossip works synchronously on e to the average. Path Averaging is efficient in terms
complete graphs, weighted gossip algorithms allow asyncbnous of enerav consumption. but it demands some lona distance
rounds and converge on any connected, directed or undirecte - gy_ p ! . 9
graph. Unlike most previous gossip algorithms [2]-[6], Weghted ~coordination to make sure that all the values in the routeewer
Gossip admits stochastic update matrices which need not be updated correctly. Routing information back and forth migsh
doubly stochastic. Double-stochasticity being very resictive in  well introduce delay issues, because a node that is engaged i
a distributed setting [7], this novel degree of freedom is esntial a route needs to wait for the update to come back before it can

and it opens the perspective of designing a large number of . .
new gossip-based algorithms. To give an example, we plreser‘tproceed to another round. Furthermore, in a mobile network,

one of these algorithms, which we call One-Way Averaging. Its  OF in @ highly dynamic network, routing the information back
based on random geographic routing, just like Path Averagig [5], on the same route might even not succeed.

except that routes are one way instead of round trip. Hence in  This work started with the goal of designing a unidirectiona
this example, getting rid of.double stochasticity allows ugo add gossip algorithm fulfilling the following requirements:
robustness to Path Averaging. . . o
« Keep a geographic routing communication scheme be-
cause it is highly diffusive,
« Avoid routing back data: instead of long distance agree-
Gossip algorithms were recently developed to solve the ments, only agreements between neighbors are allowed,
distributed average consensus problem [1]-[6]. Every node . Route crossing is possible at any time, without introduc-
in a network holds a value; and wants to learn the average ing errors in the algorithm.
Tqye Of all the values in the network in a distributed way. Moshs we were designing One-Way Averaging, we happened to
gossip algorithms were designed for wireless sensor nkB/,vorprove the correctness of a broad set of gossip-based algo-
which are usually modeled as random geometric graphs améims, which we present in this paper along with One-Way
sometimes as lattices. Ideally a distributed averagingrilgn  Averaging. These algorithms can be asynchronous and they
should be efficient in terms of energy and delay withoyfse stochastic diffusion matrices which are not necegsaril
requiring too much knowledge about the network topologyoubly stochastic, as announced by the title of the paper.
at each node, nor sophisticated coordination between nodes In Section I, we give some background on gossip algo-
The simplest gossip algorithm is Pairwise Gossip, wherithms, and we explain why Uniform Gossip is a key algorithm
random pairs of connected nodes iteratively and locally-aveo get inspired from when building a unidirectional gossip
age their values until convergence to the global average [2]gorithm. In Section Ill, we present Weighted Gossip, an
Pairwise local averaging is an easy task, which does not esynchronous generalization of Uniform Gossip, which was
quire global knowledge nor global coordination, thus Paiew already suggested in [1] but had remained unnamed. We show
Gossip fulfills the requirements of our distributed problemin Section IV that weighted gossip algorithms converge to
However, the convergence speed of Pairwise Gossip suffefs., which is a novel result to the best of our knowledge. In
from the locality of the updates, and it was shown that avera@ection V, we describe in detail One-Way Averaging and we
ing random geographic routes instead of local neighborhoashow on simulations that the good diffusivity of geographic
is an order-optimal communication scheme to run gossiutes in Path Averaging persists in One-Way Averaging.
Let n be the number of nodes in the network. On rando®@omputing the speed of convergence of weighted gossip
geometric graphs, Pairwise Gossip requi¥s:?) messages algorithms remains open and is part of future work.
whereas Path Averaging requires orfl{nlogn) messages I
under some conditions [5]. .
The previous algorithm gained efficiency at the price of The values to be averaged are gathered in a vagiorand

more complex coordination. At every round of Path Averagin tahny |t§r_at|ort, tge Cl_melnt e_s'[r:matesc(;f the a\_/erag,@el_are |
a random node wakes up and generates a random ro thered inz(t). Gossip algorithms update estimates linearly.

Values are aggregated along the route and the destinatim n'g‘t any iterationt, there is a matrid¥(t) such that:
computes the average of the values collected along the.route )" =x(t—-1)TW({).

I. INTRODUCTION

. BACKGROUND ON GOSSIPALGORITHMS



In gossip algorithms that converge to average conse®Eys) Theorem 3.1 (Non-biased estimator): If the estimates

is doubly stochasticW ()1 = 1 ensures that the globalxz(t) = s(¢)/w(t) converge to a consensus, then the
average is conserved, and W (t) = 17 guarantees stable consensus value is the averagg..
consensus. To perform averaging on a one way rodfe;) Proof: Let ¢ be the consensus value. For any 0, there

should be upper triangular (up to a node index permutatioig.an iterationt, after which, for any node, |x;(t) — ¢| < e.
But the only matrix that is both doubly stochastic and uppdhen, for anyt > to, |s;(t) — cw;(t)] < ew;(t) (weights are
triangular matrix is the identity matrix. Thus, unidiremtal always positive). Hence, summing ovier

averaging requires to drop double stochasticity.
D (si(t) = cwi()| <D [si(t) — cwi(t)] < €D wi(t).

Uniform Gossip solves this issue in the following way.
Instead of updating one vectax(t) of variables, it updates a | i

vector s(t) of sums, and a vectow(t) of weights. Uniform Using Eq. (5), (6), the previous equation can be written as
Gossip initializess(0) = (0) andw(0) = 1. At any time, the |nx,,. — nc| < ne, which is equivalent t0z,,. — ¢| < .

vector of estimates ix(t) = s(t)/w(t), where the division Hencec = z4ye. ]
is performed elementwise. The updates are computed withthe next section, we show that, although sums and weights
stochastiadiffusion matrices{ D(¢)};>o: do not reach a consensus, the estim@ig$§t) }1<i<,, converge
s = st—1)TD®), (1) to a consensus under some conditions.
wit)l = wt-1)TD®). ) IV. CONVERGENCE

, In this section we prove that Weighted Gossip succeeds in
Kempe et al. [1] prove that the algorithm converges t0 &ner cases than just Uniform Gossip.
CONsensus Olrqye (llimt”’(t) = Tavel) in the special case  agqmption 1: {D(t)},>¢ is a stationary and ergodic se-
where for any node, D;;(t) = 1/2 and Dy;(t) = 1/2 for  quence of stochastic matrices with positive diagonals, and
one nodg chosen i.i.d. uniformly at random. As a key remarkE[D] is irreducible.
note that herdD(t) is not doubly stochastic. The algorithm islrreducibility means that the graph formed by eddésj)
synchronous and it workg on complete graphs w_ithou_t routing,ch thatP[D;; > 0] > 0 is connected, which requires the
and on other graphs with routing. We show in this pap@pnnectivity of the network. Note that i.i.d. sequences are
that the idea works with many more sequences of matric&gtionary and ergodic. Stationarity implies ti4D] does not
{D(#)}+>0 than just the one used in Uniform Gossip. depend ort. Positive diagonals means that each node should

I1l. WEIGHTED GOSSIP always keep part of its sum and weight, ¢, D;;(t) > 0.

We call Weighted Gossip the class of gossip-based alqRI_Theorem 4.1 (Main Theorem): Under  Assumption 1,

rithms following the sum and weight structure of Uniform .?r']ghteg Gbﬁ).fSIlp .USWIQD(t)}D% cgnvergles 10 & consensus
Gossip described above (Eq. (1) and (2)). A weighted gos probability 1, i.€. lim; o0 £(t) = Tavel. .
) ) : y A prove Th. 4.1, we will start by upper bounding the
algorithm is entirely characterized by the distribution itsf : . i .
A . error ||x(t) — zqell| ., With @ non-increasing functiorf (¢)
diffusion matrices{D(t)};>o. Let P(s,t) := D(s)D(s + : Qo n
1)...D(t) and letP(t) := P(1,t). Then (Lemma 4.1): let);;(1) = Py (t)—> 5, Pji(t)/n = Pji(t)—

’ v w;(t)/n, then f is defined asf(t) = maxi<i<y, fi(t), where
st = z(0)7P(), () fi(t) = X0y [mji(t)] /wi(t). Then, we will prove thatf(t)
w®T = 17P(@). (4) Vvanishes to0 by showing thatn;;() vanishes to0 (weak

) ) _ ) ergodicity argument of Lemma 4.3) and tha(¢) is bounded

If a weighted gossip algorithm is asynchronous, the%way from0 infinitely often (Lemma 4.4).

D;;(t) = 1 and D j+i(t) = 0 for the nodesi that do not | emma 4.1: If {D(t)},~0 is a sequence of stochastic ma-

contribute to iteratiort. If Di;(t) # 0, then nodei sends tices, then the functiorf(¢) is non increasing. Furthermore,
(D;j(t)s;(t—1), D;;(t)w;(t — 1)) to nodej, which adds the

received data to its own sus)(t—1) and weightw; (t—1). At 1%(8) = Zavellloe < [%(0)lloc £(2). )
any iterationt, the estimate at nodeis x;(t) = s;(t)/w.(t). Proof: By Eq. (3), for any node,
Becausel” D(t) # 17, sums and weights do not reach a S Pt (0)
consensus. However, becauBét)1 = 1, sums and weights |z;(t) — zqve| = et B A AV
are conserved: at any iteration wi(t)
n n [ X (wilt) /4 myi(t))z;(0)
Z S; (t) = Z x; (O) = NZTgye, (5) - w; (t) — Tagve
=1 =1
" [ mi(t)2;(0)
Zwi(t) = n (6) - wi(t)
=1
This implies that Weighted Gossip is a class of non-biased < |x(0)]| ijl ;i (1)
estimators for the average (even thoudll' | ;(¢) is not N > wi(t)

conserved through time!): = [x(0)] fi(®),



which proves Eq (7). Next, we need to prove thfdt) is a Lemma 4.3 (Weak ergodicity): Under ~ Assumption 1,
non-increasing function. For any nodeby Eq. (1) and (2), {D(¢)}:>1 is weakly ergodic.
Weak ergodicity means that whengrows, P(¢) tends to

filt) = Z i (D] _ Z |ZI;L:1 1k (t = 1)Dri(?)] have identical rows, which may vary with It is weaker than
= wilt) o Y wk(t = 1)Drki(1) strong ergodicity, wher®(¢) tends to a matrix«”, wherer
%S (t — 1) D (8) does not vary witht. Interestingly, simple computations show
< Z k=1 11k ) b that if P(¢) has identical rows, then consensus is reached. All
j=1 2 k=1 wi(t = 1)Dii(t) we need to know in this paper is that weak ergodicity implies
 Yhe1 g me(t — 1) Dy (t) that n
> opeq wr(t — 1)Dyi(t) Jim H}é}xz [Pi(t) — Pj(t)] =0,
- > i1 Injk(t = 1)| Dyi(t) 8 o k=l
S max wi(t— 1)Dyi(t) () andwe suggest [10] for further reading about weak ergadicit
S gt — 1)) Proof: Let Q be a stochastic matrix. The Dobrushin
— max ==L coefficients(Q) of matrix Q is defined as:
k wi(t—1)
— 1) = f(f— 1 -
= max fy(t—1) = f(t—1), 5(Q) = in%mz 1Qix — Qi -
T k=1

which implies thatf(¢) < f(t — 1). Eqg. (8) comes from the

following equality: for any{a}1<p<n > 0, {by}1<pen >0, ON€ can show [10] thab < 46(Q) < 1, and that for any

stochastic matrice€); and Q.,

Lio ey Pt L HQiQ2) < 5(Q1AQ2) ©
k=1 o1 2ej=1"Yi

Another useful fact is that for any stochastic maigx

1 -4(Q) > maxmin Q;; > min Q;;. (10)
i i i,J

[ |
The following lemma is useful to prove Lemmas 4.3
and 4.4.
Lemma 4.2: Under Assumption 1, there is a deterministi
time 7' and a constant such that

A block criterion for weak ergodicity [10] is based on Eq.:(9)
?D(t)}tzl is weakly ergodic if and only if there is a strictly
increasing sequence of integdrs; }s>1 such that
PD(1)D(2)...D(T) > c] > 0, o0

> (1= 8(P (ks + 1, kay1))) = o0. (11)
s=1

where A > ¢ means that every entry oA is larger thare.

Proof: The proof of this lemma can be found in [8]. FORye ise this criterion withk, — sT, whereT was defined in
the case wherd D(t)}:~¢ is i.i.d., a simpler proof can be Lemma 4.2

folund in [9]. Note that the theorems proven in [8] and [9] are p joint consequence of Lemma 4.2 and of Birkhoff's
slightly different than our lemma because the authors miylti ergodic theorem [11], [8] (in the i.i.d. case, one can use

matrices on the "?“'_ Wherea_s we multiply them on the ”grﬁ‘le strong law of large numbers instead) is that the event
However the multiplication s!de (_jo_es not ch_ange the proof_. D(k, + 1)D(ks + 2) ...D(kss1) > ¢} happens infinitely
For completeness and simplicity, we give the proof 'éften with probability 1. Hence, using Eq. (10), the event
Fhe |.|.q. case.E[D] bqng_ irreducible and ha_vmg @ POS(1 _ 5(P(k, 4 1,k,+,)) > ¢} happens infinitely often with
itive diagonal, it is primitive as well: there is am > 5 papility 1. We can thus conclude that the block crite-
0 such thatE[D]™ > 0 (elementwise).{D({)}:>1 1S 1jon (11) holds with probabilityl and that {D(t)}:>1 is
ii.d.,, henceE[D(1)D(2)...D(m)] = E[D]™ > 0, and weakly ergodic. ~ m
P |(D(1)D(2)...D(m)),; > 0} > 0 for any entry (i,j).  The next lemma shows that, although weights can become
For any timet, the diagonal coefficients dD(¢) are non- arbitrarily small, they are uniformly large enough infimjte
zero, thus, if the(i,j)!" entry of P(k,k + m — 1) = often.
D(k)D(k+1)...D(k+m — 1) is positive, thenP;;(t) > 0 Lemma 4.4: Under Assumption 1, there is a constamt
forall t > k+ m — 1. Now takeT = n(n — 1)m. The such that, for any time, with probability 1, there is a time
probability thatP(T") > 0 is larger than or equal to the joint¢; > ¢ at whichmin; w;(t1) > a.
probability thatP152(1,m) > 0, Pi3(m + 1,2m) > 0, ..., Proof: As mentioned in the proof of Lemma 4.3, the event
P,n—1(T —m+1,T) > 0. By independence ofD(¢)};>1, {D(ks + 1)D(ks + 2) ...D(ksy1) > c}, wherek, = sT,
happens infinitely often with probability. Let ¢; be the
PIP(T) > 0] = P[Pi2(1,m) > O0P[P1s(m +1,2m) > 0] fist time larger thart such thatD(¢t; — T+ 1)D(t; — T +
------ PP n1(T—m+1,T)>0]>0. 2)...D(t;) > c. Then the weights at time, satisfy

Therefore, there is a > 0 such tha?’[D(1)D(2)...D(T) > wt)? = wti—T)'Dt, —T+1)...D(ty)
] >0. u > cw(ty —T)'117,



because weights are always positive. Now, because the sBmDescription of One-Way Averaging

of weights is equal to, w(t; — 7)1 = n. Hencew(t1)" > Each node initializes its sums; (0) = z;(0) and its weight

cnl”. Taking o = cn concludes the proof. B ,,(0) = 1. For any iteratiornt > 0, let i be the node whose
To prove Theorem 4.1, it remains to show tlfét) converges cjock rings. Node draws a targeZ according to distribution
to 0. Z; and a number{ > 2 of hops according to distribution

Proof: (Theorem 4.1) For any > 0, according to

X ; ‘H,. Node: chooses uniformly at random a neighbor which is
Lemma 4.3, there is a timg such that for any > ¢,

closer to the targef than itself. If there is no such neighbor
i then the iteration terminates. If such a neighbaxists, then
H}?J“-XZ P (t) = Pji(t)] <e. node: divides its sums;(t — 1) and its weightw, (¢t — 1) by
k=1 H and sendgs;(t — 1), w;(t — 1)) « (H — 1)/H to nodej.
As a consequend®;x (t) — P ()| < e foranyi, j, k. Hence |t ais0 sends the remaining numb&r — 1 of hops and the
Injk(t)| < e as well. Indeed, target Z. Node j adds the received sum and weight to its
sums;(t — 1) and its weightw; (¢t — 1). Then it performs the
same operation as nodg¢owards a node that is closer to the

n

3 Pji(t) — Pir(t)

k()] =

i=1 i=1 target, except that it divides its new sum and weighttby- 1
N Pk(t) —Piu(t)] e instead ofH (formally, H « H — 1). Messages are greedily
- Z n < no sent towards the target] being decremented at each hop. The

i=1 i=1

. iteration ends wheit/ = 1 or when a node does not have any
Therefore, for any > to and anyl <i < mn,

neighbor to forward a message to. At any time, the estimate

fi(t) < %, of any node is the ratio between its sum and its weight.
Wi
and therefore C. Diffusion Matrices
f(t) < SRR Suppose that at roun¢, a whole route of nodes is
min; w;(t)

generated. Then, after re-indexing nodes starting with the
Using Lemma 4.4, there is a constansuch that, with prob- nodes in the route, the diffusion matr(¢) can be written
ability 1, there is a time; > to at whichmin; w;(¢1) > a. gas:
Then, for anye’, it suffices to takez = ae’/n to conclude

that there is a time; with probability 1 such thatf(t,) < ¢’ 1/0H 1/(111/,1? 1) o 1/(117/[11 1) 1/(111/,12 1) 8

Since f is non increasing (Lemma 4.1), for all tinte> ¢,

f(t) < €'; in other wordsf(t) converges to0. Using (7) 0 0 : : : 0

concludes the proof. [ | 0 0 0 1/2 1/2 0o |
Remark: A similar convergence result can be proved with 0 0 0 0 1 0

out Assumption 1 (stationarity and ergodicity of the matri\ 0 0 0 0 0 Id

cesD(1)), in a setting where the matrices are chosen N fhereld denotes the identity matrix. If the route stops early

perhaps adversarial manner. One needs only some m‘”"gﬁb has for example only nodes whileH = 4, then, after
connectivity assumptions, which then guarantee that th(—‘fre ' '

exists a finite numbefl’ such that, for allt, all entries of €indexing the noded)(t) can be written as:
D(t+1)---D(t+T) are bounded below by a positive constant 1/4 1/4 1/2 0
c (see, e.g., Lemma 5.2.1 in [12]). 0 1/3 2/3 0
0 0 1 0

V. ONE-WAY AVERAGING 0 0 0o Id

In this section, we describe in detail a novel weighted gossi

a|gorithm’ which we call One_Way Averaging. Note thatD(t) is indeed stochastic for alf. It is upper-
triangular as well: One-Way Averaging does not require to

A. Assumptions and Notations route information backwards along the path. Furthermore,
Assume that the network is a random geometric graph onypy(¢)1,. , verifies Assumption 1. FirstD(¢)},0 is an i.i.d.
convex aread, with a connection radius(n) large enough sequence. SecondD(t)}:~, have positive diagonals. Third,
to enable geographic routing [3]. For every nodelet 7; i the network is connected and if the routes generated by
be a distribution of points outside of the areh and let distributions{ Z; }1<i<,, and{H;}1<i<» connect the network,
H; be a distribution of integers larger thah Each node thenE[D] is irreducible. Therefore, One-Way Averaging is a
has an independent local exponential random clock of rajgccessful distributed averaging algorithm. Finally,tesucan

A, and initiates an iteration when it rings. Equivalentlyné  cross each other without corrupting the algorithm (the tiegy
is counted in terms of a global and virtual exponential clockiffusion matrices are still stochastic).

of rate n\. Each time the global clock rings, a node wakes )

up independently and uniformly at random. In the analysisP- Simulation

indicates how many times the global clock rang. A detailed One-Way Averaging and Path Averaging were run (Matlab)
analysis of this time model can be found in [2]. on random geometric graphs on the unit square, using the



same routes for a fair comparison. At each iteratiprthe

160001 >
number H(t) of hops was generated with{ uniform in o One-Way Averaging 0,/'
[[1/v/2r(n)], [v2/r(n)]] and the targeZ(t) was drawn in 140001 | o _path Averaging
the following way: let/ be the coordinates of the woken node, ~a;5000!
and letU be a point drawn uniformly at random in the unit =
square, then 5 1oooor
U—1I 5. s000l
Z(t)=1+3 ¢, 8000

U =11,

Let C(t1,t2) be the message cost of a given algorithm
from iteration ¢; to iteration t,. For One-Way Averaging,

C(t1,t2) = Y02, R(t), whereR(t) < H(t) is the effective 20001
route length at iteratiornt. Because Path Averaging routes
information back and forth, the cost of one iteration is tat@ %400 600
be equal to twice the route lengt@(t;,t2) = 2 Z?:tl R(t).
Let €(t) = x(t) — Zavel. The empirical consensus cost is

60001

40001

1 I()ﬁ 1200 1400 1600 1800 2000

860
network sizen

Fig. 1. Comparison of the consensus cost for One-Way Avegagnd Path

defined as: Averaging in random geometric graphs of increasing sizeShe connection
Cl(ty,ts) radius scales ag(n) = /6 log n/n. Display of C*™P(t1, t5) averaged over
C™P(ty,tq) = ! , 15 graphs andt simulation runs per graph.
log [|€(t1)]| — log [l€(t2) ||
so that

C(ty,t2) robust than Path Averaging, and it surprisingly consumesife
l[e(t2)]l = lle(t1)]l exp (—m) ‘ messages on simulations. Also, double stochasticity fcdif
. ) . ’ to enforce in a distributed manner in directed graphs using
In Fig. 1, we display the empirical consensus cost of bofthigirectional communications. With Weighted Gossip, one
algorithms, witht, = 750 andt, growing linearly withn. We o4 easily build averaging algorithms for directed neto
can see that One-Way Averaging performs better than P&ty are reliable enough not to require acknowledgements.
Averaging on this example. Although One-Way Averaging The next step of this work is to compute analytically the
converges slower in terms of iterations, spending twiceems fgneeq of convergence of Weighted Gossip. In classical Gossi
messages per iteration is sufficient here to outperform Pl pje stochasticity would greatly simplify derivatiortsyt

Averaging. this feature disappears in Weighted Gossip, which makes the
The speed of convergence depends on the network B‘r‘&blem more difficult.

also on {Z;}1<i<n, and {H;}1<i<n, Which we have not

optimized. It would be interesting in further work to comgut REFERENCES
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