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ABSTRACT
We consider a switched network, a fairly general constrained
queueing network model that has been used successfully to
model the detailed packet-level dynamics in communication
networks, such as input-queued switches and wireless net-
works. The main operational issue in this model is that
of deciding which queues to serve, subject to certain con-
straints. In this paper, we study qualitative performance
properties of the well known α-weighted scheduling policies.
The stability, in the sense of positive recurrence, of these
policies has been well understood. We establish exponential
upper bounds on the tail of the steady-state distribution of
the backlog. Along the way, we prove finiteness of the ex-
pected steady-state backlog when α < 1, a property that
was known only for α ≥ 1. Finally, we analyze the excur-
sions of the maximum backlog over a finite time horizon for
α ≥ 1. As a consequence, for α ≥ 1, we establish the full
state space collapse property [17, 18].

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Packet Switch-
ing Networks; G.3 [Probability and Statistics]: Markov
Processes, Queueing Theory, Stochastic Processes

General Terms
Algorithms, Performance, Theory

Keywords
Switched Network, Maximum Weight-α, Markov Chain, Ex-
ponential Bound, State Space Collapse

1. INTRODUCTION
This paper studies various qualitative stability and perfor-

mance properties of the so-called α-weighted policies, as ap-
plied to a switched network model (cf.[22, 18]). This model
is a special case of the“stochastic processing network model”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’10, June 14–18, 2010, New York, New York, USA.
Copyright 2010 ACM 978-1-4503-0038-4/10/06 ...$10.00.

(cf.[10]), which has become the canonical framework for the
study of a large class of networked queueing systems, in-
cluding systems arising in communications, manufacturing,
transportation, financial markets, etc. The primary reason
for the popularity of the switched network model is its abil-
ity to faithfully model the behavior of a broad spectrum
of networks at a fine granularity. Specifically, the switched
network model is useful in describing packet-level (“micro”)
behavior of medium access in a wireless network and of the
input-queued switches that reside inside Internet routers.
This model has proved tractable enough to allow for sub-
stantial progress in understanding the stability and perfor-
mance properties of various control policies.

At a high level, the switched network model involves a col-
lection of queues. Work arrives to these queues exogenously
or from another queue and gets serviced; it then either leaves
the network or gets re-routed to another queue. Service at
the queues requires the use of some commonly shared con-
strained resources. This leads to the problem of scheduling
the service of packets queued in the switched network. To
utilize the network resources efficiently, a properly designed
scheduling policy is required. Of particular interest are the
popular Maximum Weight or MW-α policies, introduced in
[22]. They are the only known simple and universally appli-
cable policies with performance guarantees. In addition, the
MW-α policy has served as an important guide for design-
ing implementable algorithms for input-queued switches and
wireless medium access (cf.[14, 21, 8, 7, 16]). This motivates
the work in this paper, which focuses on certain qualitative
properties of MW-α policies.

Related Prior Work.
Because of the significance of the α-weighted policies, there

is a large body of research on their properties. We provide
here a brief overview of the work that is most relevant to
our purposes.

The most basic performance question concerns through-
put and stability. Formally, we say that an algorithm is
throughput optimal or stable if the underlying network Markov
chain is positive recurrent whenever the system is under-
loaded. For the MW-α policy, under a general enough stochas-
tic model, stability has been established for any α > 0 (cf.
[22, 15, 6, 1]).

A second, finer, performance question concerns the evalu-
ation of the average backlog in the system, in steady-state.
Bounds on the average backlog are usually obtained by con-
sidering the same stochastic Lyapunov function that was
used to prove stability, and by building on the drift inequal-



ities established in the course of the stability proof; see,
e.g., [5]. Using this approach, it is known that the average
expected backlog under α-weighted policies is finite, when
α ≥ 1 ([12]). However, such a result is not known when
α ∈ (0, 1).
An important performance analysis method that has emerged

over the past few decades focuses on the heavy traffic regime,
in which the system is loaded near capacity. For the switched
model, heavy traffic analysis has revealed some intriguing
relations between the policy parameter α and the perfor-
mance of the system through a phenomenon known as state
space collapse. In particular, in the heavy traffic limit and
for an appropriately scaled version of the system, the state
evolves in a much lower-dimensional space (the state space
“collapses”). The structure of the collapsed state space pro-
vides important information about the system behavior (cf.
[11, 17, 18]). Under certain somewhat specific assumptions,
a complete heavy traffic analysis of the switched network
model has been carried out in [19, 4]. However, for the
more general switched network model, only a weaker result
is available, involving a so-called multiplicative state space
collapse property [18, 17]. State space collapse results are
related to understanding certain transient properties of the
network, such as the evolution of the queues over a finite
time horizon. To the best of our knowledge, a transient
analysis of the switched network model is not available.
A somewhat different approach focuses on tail probabili-

ties of the steady-state backlog and the associated large de-
viation principle (LDP). This approach provides important
insights about the overflow probability in the presence of fi-
nite buffers. There have been notable works in this direction,
for specific instances of the switched network model, e.g.,
[20]. In a similar setting, the reference [13] has also estab-
lished a LDP for the MW-1 policy, using Garcia’s extended-
contraction principle for quasi-continuous mappings. More
recently, [23, 24] has announced a characterization of the
precise tail behavior of the (1 + α)-norm of the backlog,
under the MW-α policy. However, in these works, the LDP
exponent is only given implicitly, as the solution of a compli-
cated, possibly infinite dimensional optimization problem.

Our Contributions.
We establish various qualitative performance bounds for

α-weighted policies, under the switched network model. In
the stationary regime, we establish finiteness of the expected
backlog, and an exponential upper bound on the steady-
state tail probabilities of the backlog. In the transient regime,
we establish a maximal inequality on the queue-size pro-
cess, and the strong state space collapse property under α-
weighted policies, when α ≥ 1. Our analysis is based on drift
inequalities on suitable Lyapunov functions. Our methods,
however, depart from prior work because they rely on dif-
ferent classes of Lyapunov functions, and also involve some
new techniques.
In more detail, we begin by establishing the finiteness of

the steady-state expected backlog under the MW-α policy,
for any α ∈ (0, 1). Instead of the traditional Lyapunov func-
tion ‖ · ‖α+1

α+1, we rely on a Lyapunov function which is a

suitably smoothed version of ‖ · ‖2α+1.
We continue by deriving a drift inequality for a “norm” or

“norm-like” Lyapunov function, namely, ‖ · ‖α+1 or a suit-
ably smoothed version. Using the drift inequality, we es-
tablish exponential tail bounds for the steady-state backlog

distribution under the MW-α policy, for any α ∈ (0,∞).
Our method builds on certain results from [3] that allow us
to translate drift inequalities into closed-form tail bounds;
it yields an explicit bound on the tail exponent, in terms
of the system load and the total number of queues. This
is in contrast with the earlier work in [20, 24]. That work
provides an exact but implicit characterization of the tail
exponents, in terms of a complicated optimization problem,
and provides no immediate insights on the dependence of
the tail exponents on the system parameters, such as the
load and the number of queues. Furthermore, in contrast
to the sophisticated mathematical techniques used in [20,
24], our explicit bounds are obtained through elementary
methods. For some additional perspective, we also consider
a special case and compare our upper bound with available
lower bounds. This comparison is reported in the Appendix
of the full version of this paper [25].

Finally, we provide a transient analysis under MW-α poli-
cies, for the case where α ≥ 1. We use a Lyapunov drift
inequality to obtain a bound on the probability that the
maximal backlog over a given finite time interval exceeds a
certain threshold. This bound leads to the resolution of the
strong state space collapse conjecture for the switched net-
work model when α ≥ 1. This strengthens the multiplicative
state space collapse results in [17, 18].

Organization of the Paper.
The rest of the paper is organized as follows. In Section

2, we define the notation we will employ, and describe the
switched network model. In Section 3, we provide formal
statements of our main results. In Section 4, we establish
a drift inequality for a suitable Lyapunov function, which
will be key to the proof of the exponential upper bound on
tail probabilities. In Section 5, we prove the finiteness of
steady-state expected backlog when α ∈ (0, 1). We prove
the exponential upper bound in Section 6. The transient
analysis is presented in Section 7. We start with a general
lemma, and specialize it to obtain a maximal inequality un-
der the MW-α policy, for α ≥ 1. We then apply the latter
inequality to prove the full state space collapse result for
α ≥ 1. We conclude the paper with a brief discussion in
Section 8.

2. MODEL AND NOTATION

2.1 Notation
We introduce here the notation that will be employed

throughout the paper. We denote the real vector space of
dimension M by R

M and the set of nonnegative M -tuples
by R

M
+ . We write R for R

1, and R+ for R
1
+. We let Z be

the set of integers, Z+ the set of nonnegative integers, and
N the set of positive integers.

For any vector x ∈ R
M , and any α > 0, we define

‖x‖α =

(

M
∑

i=1

|xi|
α

)1/α

.

For any two vectors x = (xi)
M
i=1 and y = (yi)

M
i=1 of the same

dimension, we let x · y =
∑M

i=1 xiyi be the dot product
of x and y. For two real numbers x and y, we let x ∨
y = max{x, y}. We also let [x]+ = x ∨ 0.We introduce the
Kronecker delta symbol δij , defined as δij = 1 if i = j, and



δij = 0 if i 6= j. We let ei = (δij)
M
j=1 be the i-th unit vector

in R
M , and 1 the vector of all ones. For a set S, we denote

its cardinality by |S|, and its indicator function by IS . For
a matrix A, we let AT denote its transpose. We will also
use the abbreviations “RHS/LHS” for “right/left-hand side,”
and “iff” for “if and only if.”

2.2 Switched Network Model

The Model.
We adopt the model in [18], while restricting to the case of

single-hop networks, for ease of exposition. However, our re-
sults naturally extend to multi-hop models, under the“back-
pressure” variant of the MW-α policy.
Consider a collection of M queues. Let time be discrete:

timeslot τ ∈ {0, 1, . . .} runs from time τ to τ + 1. Let
Qi(τ) denote the (nonnegative integer) length of queue i ∈
{1, 2, . . . ,M} at the beginning of timeslot τ , and let Q(τ)
be the vector (Qi(τ))

M
i=1. Let Q(0) be the vector of initial

queue lengths.
During each timeslot τ , the queue vector Q(τ) is offered

service described by a vector σ(τ) = (σi(τ))
M
i=1 drawn from

a given finite set S ⊂ {0, 1}M of feasible schedules. Each
queue i ∈ {1, 2, . . . ,M} has a dedicated exogenous arrival
process (Ai(τ))τ≥0, whereAi(τ) denotes the number of pack-
ets that arrive to queue i up to the beginning of timeslot τ ,
and Ai(0) = 0 for all i. We also let ai(τ) = Ai(τ+1)−Ai(τ),
which is the number of packets that arrive to queue i dur-
ing timeslot τ . For simplicity, we assume that the ai(·) are
independent Bernoulli processes with parameter λi. We call
λ = (λi)

M
i=1 the arrival rate vector.

Given the service schedule σ(τ) ∈ S chosen at timeslot τ ,
the queues evolve according to the relation

Qi(τ + 1) =
[

Qi(τ)− σi(τ)
]+

+ ai(τ).

In order to avoid trivialities, we assume, throughout the
paper, the following.

Assumption 2.1. For every queue i, there exists a σ ∈ S
such that σi = 1.

An example: Input Queued (IQ) Switches.
The switched network model captures important instances

of communication network scenarios (see [18] for various ex-
amples). Specifically, it faithfully models the packet-level
operation of an input-queued (IQ) switch inside an Internet
router. For an m-port IQ switch, it has m input and m
output ports. It has a separate queue for each input-output
pair (i, j), denoted by Qij ,

1 for a total of M = m2 queues.
A schedule is required to match each input to exactly one
output, and each output to exactly one input. Therefore,
the set of schedules S is
{

σ = (σij) ∈ {0, 1}m×m :

m
∑

k=1

σik =

m
∑

k=1

σkj = 1, ∀ i, j

}

.

We assume that the arrival process at each queue Qij is an
independent Bernoulli process with mean λij .

1Here we deviate from our convention of indexing queues by
a single subscript. This will ease exposition in the context
of IQ switches, without causing confusion.

Capacity Region.
We define the capacity region Λ of a switched network as
{

λ ∈ R
M
+ : λ ≤

∑

σ∈S

ασσ, ασ ≥ 0, ∀ σ ∈ S,
∑

σ∈S

ασ < 1

}

.

It is called the capacity region because there exists a policy
for which the Markov chain describing the network is pos-
itive recurrent iff λ ∈ Λ. We define the load induced by
λ ∈ Λ, denoted by ρ(λ), as

ρ(λ) = inf

{

∑

σ∈S

ασ : λ ≤
∑

σ∈S

ασσ, ασ ≥ 0, ∀ σ ∈ S

}

.

Note that ρ(λ) < 1, for all λ ∈ Λ.

The Maximum-Weight-α Policy.
We now describe the so-called Maximum-Weight-α (MW-

α) policy. For α > 0, we use Q(τ)α to denote the vector
(Qα

i (τ))
M
i=1. We define the weight of schedule σ ∈ S to be

σ · Q(τ)α. The MW-α policy chooses, at each timeslot τ , a
schedule with the largest weight (breaking ties arbitrarily).
Formally, during timeslot τ , the policy chooses a schedule
σ(τ) that satisfies

σ(τ) ·Q(τ)α = max
σ∈S

σ · Q(τ)α.

We define the maximum α-weight of the queue length vector
Q by wα(Q) = maxσ∈S σ · Qα. When α = 1, the policy is
simply called the MW policy, and we use the notation w(Q)
instead of w1(Q). We take note of the fact that under the
MW-α policy, the resulting Markov chain is known to be
positive recurrent, for any λ ∈ Λ (cf. [15]).

3. SUMMARY OF RESULTS
In this section, we summarize our main results for both

the steady-state and the transient regime. The proofs are
given in subsequent sections.

3.1 Stationary regime
The Markov chain Q(·) that describes a switched network

operating under the MW-α policy is known to be positive
recurrent, as long as the system is underloaded, i.e., if λ ∈ Λ
or, equivalently, ρ(λ) < 1. It is not hard to verify that
this Markov chain is irreducible and aperiodic. Therefore,
there exists a unique stationary distribution, which we will
denote by π. We use Eπ and Pπ to denote expectations and
probabilities under π.

Finiteness of Expected Queue-Size.
We establish that under the MW-α policy, the steady-

state expected queue-size is finite, for any α ∈ (0, 1). (Recall
that this result is already known when α ≥ 1.)

Theorem 3.1. Consider a switched network operating un-
der the MW-α policy with α ∈ (0, 1), and assume that ρ(λ) <
1. Then, the steady-state expected queue-size is finite, i.e.,

Eπ [‖Q‖1] < ∞.

Exponential Bound on Tail Probabilities.
For the MW-α policy, and for any α ∈ (0,∞), we obtain

an explicit exponential upper bound on the tail probabilities



of the queue-size, in steady-state. Our result involves two
constants defined by

ν̄ = E
[

‖a(1)‖α+1

]

, γ =
1− ρ

2M
α

α+1

,

where ρ = ρ(λ).

Theorem 3.2. Consider a switched network operating un-
der the MW-α policy, and assume that ρ = ρ(λ) < 1. There
exist positive constants B and B′ such that for all ℓ ∈ Z+:

(a) if α ≥ 1, then

Pπ

(

‖Q(τ)‖α+1 > B + 2M
1

α+1 ℓ
)

≤

(

ν̄

ν̄ + γ

)ℓ+1

;

(b) if α ∈ (0, 1), then

Pπ

(

‖Q(τ)‖α+1 > B′ + 10M
1

α+1 ℓ
)

≤

(

5ν̄

5ν̄ + γ

)ℓ+1

.

Note that Theorem 3.1 could be obtained as a simple
corollary of Theorem 3.2. On the other hand, our proof
of Theorem 3.2 requires the finiteness of Eπ [‖Q‖1], and so
Theorem 3.1 needs to be established first.
In the Appendix of the full version of this paper [25], we

comment on the tightness of our upper bounds by comparing
them with explicit lower bounds that follow from the recent
large deviations results in [24].

3.2 Transient regime
Here we provide a simple inequality on the maximal ex-

cursion of the queue-size over a finite time interval, under
the MW-α policy, with α ≥ 1.

Theorem 3.3. Consider a switched network operating un-
der the MW-α policy with α ≥ 1, and assume that ρ(λ) < 1.
Suppose that Q(0) = 0. Let Qmax(τ) = maxi∈{1,...,M} Qi(τ),
and Q∗

max(T ) = maxτ∈{0,1,...,T} Qmax(τ). Then, for any
b > 0,

P (Q∗
max(T ) ≥ b) ≤

K(α,M)T

(1− ρ)α−1bα+1
, (1)

for some positive constant K(α,M) depending only on α and
M .

As an important application, we use Theorem 3.3 to prove
a full state space collapse result,2 for α ≥ 1, in Section 7.3.
The precise statement can be found in Theorem 7.7.

4. MW-α POLICIES: A USEFUL DRIFT IN-
EQUALITY

The key to many of our results is a drift inequality that
holds for every α > 0 and λ ∈ Λ. In this section, we shall
state and prove this inequality. It will be used in Section 6
to prove Theorem 3.2. We remark that similar drift inequal-
ities, but for a different Lyapunov function, have played an
important role in establishing positive recurrence (cf. [22])
and multiplicative state space collapse (cf. [18]).
We will be making extensive use of a second-order mean

value theorem [2], which we state below for easy reference.

2This is strong state space collapse and not full diffusion
approximation.

Proposition 4.1. Let g : RM → R be twice continuously
differentiable over an open sphere S centered at a vector x.
Then, for any y such that x+y ∈ S, there exists a θ ∈ [0, 1]
such that

g(x+ y) = g(x) + yT∇g(x) +
1

2
yTH(x+ θy)y, (2)

where ∇g(x) is the gradient of g at x, and H(x) is the Hes-
sian of the function g at x.

We now define the Lyapunov function that we will employ.
For α ≥ 1, it will be simply the (α + 1)-norm ‖x‖1+α of
a vector x. However, when α ∈ (0, 1), this function has
unbounded second derivatives as we approach the boundary
of R

M
+ . For this reason, our Lyapunov function will be a

suitably smoothed version of ‖ · ‖α+1.

Definition 4.2. Define fα : R+ → R+ to be fα(r) = rα,
when α ≥ 1, and

fα(r) =

{

rα, if r ≥ 1,
(α− 1)r3 + (1− α)r2 + r, if r ≤ 1,

when α ∈ (0, 1). Let Fα : R+ → R+ be the antiderivative
of fα, so that Fα(r) =

∫ r

0
fα(s) ds. The Lyapunov function

Lα : RM
+ → R+ is defined to be

Lα(x) =

[

(α+ 1)
M
∑

i=1

Fα(xi)

]
1

α+1

.

We will make heavy use of various properties of the func-
tions fα, Fα, and Lα, which we summarize in the following
lemma. The proof is elementary and is omitted.

Lemma 4.3. Let α ∈ (0, 1). The function fα has the fol-
lowing properties:

(i) it is continuously differentiable with fα(0) = 0, fα(1) =
1, f ′

α(0) = 1, and f ′
α(1) = α;

(ii) it is increasing and, in particular, fα(r) ≥ 0 for all
r ≥ 0;

(iii) we have rα − 1 ≤ fα(r) ≤ rα + 1, for all r ∈ [0, 1];

(iv) f ′
α(r) ≤ 2, for all r ≥ 0.

Furthermore, from (iii), we also have the following property
of Fα:

(iii’) rα+1 − 2 ≤ (α+ 1)Fα(r) ≤ rα+1 + 2 for all r ≥ 0.

We are now ready to state the drift inequality.

Theorem 4.4. Consider a switched network operating un-
der the MW-α policy, and assume that ρ = ρ(λ) < 1. Then,
there exists a constant B > 0, such that if Lα(Q(τ)) > B,
then

E[Lα(Q(τ+1))−Lα(Q(τ)) | Q(τ)] ≤ −
1− ρ

2
M

1
α+1

−1. (3)

The proof of this drift inequality is quite tedious when α 6= 1.
To make the proof more accessible and to provide intuition,
we first present the somewhat simpler proof for α = 1. We
then provide the proof for the case of general α, by consid-
ering separately the two cases where α > 1 and α ∈ (0, 1).

We wish to draw attention here to the main difference
from related drift inequalities in the literature. The usual



proof of stability involves the Lyapunov function ‖Q‖α+1
α+1;

for instance, for the standard MW policy, it involves a quadratic
Lyapunov function. In contrast, we use ‖Q‖α+1 (or its
smoothed version), which scales linearly along radial direc-
tions. In this sense, our approach is similar in spirit to [3],
which employed piecewise linear Lyapunov functions to de-
rive drift inequalities and then moment and tail bounds.

4.1 Proof of Theorem 4.4: α = 1
In this section, we assume that α = 1. As remarked ear-

lier, we have Lα(x) = ‖x‖2.
Suppose that ‖Q(τ)‖2 > 0. We claim that on every sam-

ple path, we have

‖Q(τ + 1)‖2 − ‖Q(τ)‖2 ≤
Q(τ) · δ(τ) + ‖δ(τ)‖22

‖Q(τ)‖2
, (4)

where δ(τ) = Q(τ + 1) −Q(τ). To see this, we proceed as
follows. We have

(

‖Q(τ)‖2 +
Q(τ) · δ(τ) + ‖δ(τ)‖22

‖Q(τ)‖2

)2

≥ ‖Q(τ)‖22 + 2
(

Q(τ) · δ(τ) + ‖δ(τ)‖22
)

≥ ‖Q(τ)‖22 + 2Q(τ) · δ(τ) + ‖δ(τ)‖22

= ‖Q(τ) + δ(τ)‖22 = ‖Q(τ + 1)‖22. (5)

Note that

‖Q(τ)‖22 +Q(τ) · δ(τ) + ‖δ(τ)‖22

=

∥

∥

∥

∥

Q(τ) +
δ(τ)

2

∥

∥

∥

∥

2

2

+
3

4
‖δ(τ)‖22 ≥ 0.

We divide by ‖Q(τ)‖2, to obtain

‖Q(τ)‖2 +
Q(τ) · δ(τ) + ‖δ(τ)‖22

‖Q(τ)‖2
≥ 0.

Therefore, we can take square roots of both sides of (5),
without reversing the direction of the inequality, and the
claimed inequality (4) follows.
Recall that |δi(τ)| ≤ 1, because of the Bernoulli arrival

assumption. It follows that ‖δ(τ)‖2 ≤ M1/2. We now take
the conditional expectation of both sides of (4). We have

E

[

‖Q(τ + 1)‖2 − ‖Q(τ)‖2

∣

∣

∣
Q(τ)

]

≤ E

[

Q(τ) · a(τ)−Q(τ) · σ(τ) +M

‖Q(τ)‖2

∣

∣

∣
Q(τ)

]

=

∑M
i=1 Qi(τ)E [ai(τ)]−Q(τ) · σ(τ) +M

‖Q(τ)‖2

=

∑M
i=1 Qi(τ)λi − w(Q(τ)) +M

‖Q(τ)‖2

≤
M − (1− ρ)w(Q(τ))

‖Q(τ)‖2
. (6)

The last inequality above is justified as follows. From the
definition of ρ = ρ(λ), there exist constants ασ ≥ 0 such
that

∑

σ∈S ασ ≤ ρ, and

λ ≤
∑

σ∈S

ασσ. (7)

Therefore,
∑

i

Qi(τ)λi = Q(τ) · λ ≤
∑

σ∈S

ασQ(τ) · σ

≤
∑

σ∈S

ασw(Q(τ)) ≤ ρw(Q(τ)). (8)

Let Qmax(τ) = maxM
i=1 Qi(τ). Then,

‖Q(τ)‖2 ≤ (MQ2
max(τ))

1
2 = M

1
2Qmax(τ).

From Assumption 2.1, we have

w(Q(τ)) ≥ Qmax(τ).

Therefore, the RHS of (6) can be upper bounded by

−(1− ρ)M−1/2 +
M

‖Q(τ)‖2
≤ −

1

2
(1− ρ)M−1/2,

when ‖Q(τ)‖2 is sufficiently large.

4.2 Proof of Theorem 4.4: α > 1
We wish to obtain an inequality similar to (6) for Lα(Q(·)) =

‖Q(·)‖1+α under the MW-α policy, and we accomplish this
using the second-order mean value theorem (cf. Proposition
4.1). Throughout this proof, we will drop the subscript α+1
and use the notation ‖ · ‖ instead of ‖ · ‖α+1.

Consider the norm function

g(x) = ‖x‖ = (xα+1
1 + . . .+ xα+1

M )
1

α+1 .

The first derivative is

∇g(x) = ‖x‖−α(xα
1 , . . . , x

α
M ) =

xα

‖x‖α
.

Let H(x) = [Hij(x)]
M
i,j=1 be the second derivative (Hessian)

matrix of g. Then,

Hij(x) =
∂2g

∂xi∂xj
(x) = δij

αxα−1
i

‖x‖α
−

αxα
i x

α
j

‖x‖2α+1
,

where δij is the Kronecker delta. By Proposition 4.1, for
any x,y ∈ R

M
+ , and with δ = y− x, there exists a θ ∈ [0, 1]

for which

g(y) = g(x) + δ
T∇g(x) +

1

2
δ
TH(x+ θδ)δ

= g(x) + ‖x‖−α

(

∑

i

δix
α
i

)

+
α

2
‖x+ θδ‖−α

(

∑

i

(xi + θδi)
α−1δ2i

)

−
α

2
‖x+ θδ‖−1−2α

(

∑

i,j

(xi + θδi)
α(xj + θδj)

αδiδj

)

= g(x) + ‖x‖−α

(

∑

i

δix
α
i

)

+
α

2
‖x+ θδ‖−α

(

∑

i

(xi + θδi)
α−1δ2i

)

−
α

2
‖x+ θδ‖−1−2α

(

∑

i

(xi + θδi)
αδi

)2

.



Using x = Q(τ), y = Q(τ +1) and δ(τ) = Q(τ +1)−Q(τ),
we have

‖Q(τ + 1)‖ = ‖Q(τ)‖+

[
∑

i δi(τ)Q
α
i (τ)

‖Q(τ)‖α

]

+
α

2

[
∑

i(Qi(τ) + θδi(τ))
α−1δ2i (τ)

‖Q(τ) + θδ(τ)‖α

]

−
α

2

[

(
∑

i(Qi(τ) + θδi(τ))
αδi(τ)

)2

‖Q(τ) + θδ(τ)‖1+2α

]

. (9)

Therefore, using the fact that δi(τ) ∈ {−1, 0, 1}, we have

‖Q(τ + 1)‖ − ‖Q(τ)‖

≤

[
∑

i δi(τ)Q
α
i (τ)

‖Q(τ)‖α

]

+
α

2

[
∑

i(Qi(τ) + θδi(τ))
α−1

‖Q(τ) + θδ(τ)‖α

]

. (10)

We take conditional expectations of both sides, given Q(τ).
To bound the first term on the RHS, we use the definition
of the MW-α policy, the bound (7) on λ, and the argument
used to establish (8) in the proof of Theorem 4.4 for α = 1
(with w(Q(τ)) replaced by wα(Q(τ))). We obtain

E

[
∑

i δi(τ)Q
α
i (τ)

‖Q(τ)‖α

∣

∣

∣
Q(τ)

]

≤ −(1− ρ)
wα(Q(τ))

‖Q(τ)‖α
. (11)

Note that

‖Q(τ)‖α ≤
(

MQmax(τ)
α+1)

α

α+1

= M
α

α+1Qα
max(τ), (12)

and

wα(Q(τ)) ≥ Qα
max(τ).

Therefore,

E

[
∑

i δi(τ)Q
α
i (τ)

‖Q(τ)‖α

∣

∣

∣
Q(τ)

]

≤ −(1− ρ)M− α

1+α . (13)

Consider now the second term of the conditional expec-
tation of the RHS of Inequality (10). Since α > 1, and
δi(τ) ∈ {−1, 0, 1}, the numerator of the expression inside
the bracket satisfies

∑

i

(Qi(τ) + θδi(τ))
α−1 ≤ M (Qmax(τ) + 1)α−1 ,

and the denominator satisfies

‖Q(τ) + θδ(τ)‖α ≥
(

[Qmax(τ)− 1]+
)α

,

where we use the notation [c]+ = 0 ∨ c. Thus,

α

2

[
∑

i(Qi(τ) + θδi(τ))
α−1

‖Q(τ) + θδ(τ)‖α

]

≤
α

2
·
M(Qmax + 1)α−1

([Qmax(τ)− 1]+)α
.

Now if ‖Q(τ)‖ is large enough, Qmax(τ) is large enough, and
α
2
· M(Qmax+1)α−1

([Qmax(τ)−1]+)α
can be made arbitrarily small. Thus, the

conditional expectation of the second term on the RHS of
(10) can be made arbitrarily small for large enough ‖Q(τ)‖.
This fact, together with Inequality (13), implies that there
exists B > 0 such that if ‖Q(τ)‖ > B, then

E

[

‖Q(τ + 1)‖ − ‖Q(τ)‖
∣

∣

∣
Q(τ)

]

≤ −
1− ρ

2
M− α

1+α .

4.3 Proof of Theorem 4.4: α ∈ (0, 1)
The proof in this section is similar to that for the case

α > 1. We invoke Proposition 4.1 to write the drift term
as a sum of terms, which we bound separately. Note that
to use Proposition 4.1, we need Lα to be twice continuously
differentiable. Indeed, by Lemma 4.3 (i), fα is continuously
differentiable, so its antiderivative Fα is twice continuously
differentiable, and so is Lα. Thus, by the second order mean
value theorem, we obtain an equation similar to Equation
(9):

Lα(Q(τ + 1))− Lα(Q(τ))

=

[
∑

i δi(τ)fα(Qi(τ))

Lα
α(Q(τ))

]

+
1

2

[
∑

i f
′
α(Qi(τ) + θδi(τ))δ

2
i (τ)

Lα
α(Q(τ) + θδ(τ))

]

−
α

2

[

(
∑

i δi(τ)fα(Qi(τ) + θδi(τ)))
2

L2α+1
α (Q(τ) + θδ(τ))

]

. (14)

Again, using the fact δi(τ) ∈ {−1, 0, 1},

Lα(Q(τ + 1))− Lα(Q(τ)) ≤ T1 + T2,

where

T1 =

∑

i δi(τ)fα(Qi(τ))

Lα
α(Q(τ))

,

and

T2 =
1

2

[
∑

i f
′
α(Qi(τ) + θδi(τ))

Lα
α(Q(τ) + θδ(τ))

]

.

Let us consider T2 first. For α ∈ (0, 1), by Lemma 4.3
(iv), f ′

α(r) ≤ 2 for all r ≥ 0. Thus

T2 ≤
1

2

[

2M

Lα
α(Q(τ) + θδ(τ))

]

=
M

Lα
α(Q(τ) + θδ(τ))

.

which becomes arbitrarily small when Lα(Q(τ)) is large
enough.

We now consider T1. Since fα(r) ≤ rα + 1 for all r ≥ 0
(cf. Lemma 4.3 (iii)), and δi(τ) ∈ {−1, 0, 1},

T1 ≤

∑

i δi(τ)Q
α
i (τ)

Lα
α(Q(τ))

+
M

Lα
α(Q(τ))

.

When we take the conditional expectation, an argument sim-
ilar to the one for the case α > 1 yields

E

[
∑

i δi(τ)Q
α
i (τ)

Lα
α(Q(τ))

∣

∣

∣
Q(τ)

]

≤ −(1− ρ)
wα(Q(τ))

Lα
α(Q(τ))

. (15)

Again, as before, wα(Q(τ)) ≥ Qα
max(τ). For the denomi-

nator, by Lemma 4.3 (iii’), for any r ≥ 0, we have (α +
1)Fα(r) ≤ rα+1 + 2. Thus

Lα(Q(τ)) ≤

[

∑

i

(Qi(τ) + 2)α+1

] 1
α+1

≤
(

M(Qmax(τ) + 2)α+1)
1

α+1

= M
1

α+1 (Qmax(τ) + 2).

Therefore,

E

[
∑

i δi(τ)Q
α
i (τ)

Lα
αQ(τ)

∣

∣

∣
Q(τ)

]

≤ −(1−ρ)M− α

α+1
Qα

max(τ)

(Qmax + 2)α
.

If Qmax(τ) is large enough, we can further upper bound the

RHS by, say, − 3
4
(1− ρ)M− α

α+1 .



Putting everything together, we have

E

[

Lα(Q(τ + 1))− Lα(Q(τ))
∣

∣

∣
Q(τ)

]

≤ −
3

4
(1− ρ)M− α

1+α +
M

Lα
α(Q(τ))

+ E[T2 | Q(τ)], (16)

if Qmax(τ) is large enough. As before, if Lα(Q(τ)) is large
enough, then Qmax(τ) is large enough, and T2 and M

Lα

α
(Q(τ))

can be made arbitrarily small. Thus, there exists B > 0
such that if Lα(Q(τ)) > B, then

E

[

Lα(Q(τ + 1))− Lα(Q(τ))
∣

∣

∣
Q(τ)

]

≤ −
1

2
(1− ρ)M− α

1+α .

5. PROOF OF THEOREM 3.1
In this section, we fix some α ∈ (0, 1) and prove that

the MW-α policy induces finite steady-state expected queue
lengths. The key to our proof is the use of the Lyapunov
function Φ(x) = L2

α(x). This is to be contrasted with the
use of the standard Lyapunov function,

∑

i x
1+α
i , in the lit-

erature, or the “norm”-Lyapunov function Lα(x) that we
used in establishing the drift inequality of Theorem 4.4.
Throughout the proof, we drop the subscript α from Lα,

Fα, and fα, as they are clear from the context. We also
use ‖x‖ to denote the (α + 1)-norm of the vector x, again
dropping the subscript.
As usual, we consider the conditional expected drift at

time τ ,

D(Q(τ)) = E

[

Φ(Q(τ + 1))− Φ(Q(τ))
∣

∣

∣
Q(τ)

]

.

Recall the notation Qmax(τ) = max{Q1(τ), . . . , QM (τ)}.
Since for Qmax < 2, D(Q(τ)) is bounded by a constant,
we assume throughout the proof that Qmax(τ) ≥ 2. As in
the proof of Theorem 4.4 for the case α ∈ (0, 1), we shall use
the second order mean value theorem to obtain a bound on
D(Q(τ)). Using the definition Φ(x) = L2(x), we have

[∇Φ(x)]i = 2L(x)
∂L(x)

∂xi
= 2f(xi)L

1−α(x), (17)

and

∂2Φ

∂xi∂xj
(x) = 2

∂L(x)

∂xi
·
∂L(x)

∂xj
+ 2L(x)

∂2L(x)

∂xi∂xj

= 2
f(xi)f(xj)

L2α(x)
+ 2L(x)

(

δij
f ′(xi)

Lα(x)
−

αf(xi)f(xj)

L2α+1(x)

)

= 2(1− α)
f(xi)f(xj)

L2α(x)
+ 2δijf

′(xi)L
1−α(x).

(18)

Using the second order mean value theorem and the notation
Q(τ + 1) = Q(τ) + δ(τ), we have, for some θ ∈ [0, 1],

Φ(Q(τ + 1))− Φ(Q(τ))

≤ 2L1−α(Q(τ))

(

∑

i

f(Qi(τ))δi(τ)

)

+ L1−α(Q(τ) + θδ(τ))

(

∑

i

f ′(Qi(τ) + θδi(τ))

)

+ (1− α)

(
∑

i f(Qi(τ) + θδi(τ))δi(τ)
)2

L2α(Q(τ) + θδ(τ))
. (19)

Let us denote the three terms on the RHS of (19) as T̄1, T̄2

and T̄3 respectively, so that

T̄1 = 2L1−α(Q(τ))

(

∑

i

f(Qi(τ))δi(τ)

)

,

T̄2 = L1−α(Q(τ) + θδ(τ))

(

∑

i

f ′(Qi(τ) + θδi(τ))

)

,

and T̄3 = (1− α)

(
∑

i f(Qi(τ) + θδi(τ))δi(τ)
)2

L2α(Q(τ) + θδ(τ))
.

We consider these terms one at a time.

a) By Lemma 4.3 (iii), f(r) ≤ rα + 1. Using the fact that
δi(τ) ∈ {−1, 0, 1}, we obtain

T̄1 ≤ 2L1−α(Q(τ))

(

M +
∑

i

Qα
i (τ)δi(τ)

)

.

When we take a conditional expectation, an argument sim-
ilar to the one in earlier sections yields

E

[

∑

i

Qα
i (τ)δi(τ)

∣

∣

∣
Q(τ)

]

≤ −(1− ρ)wα(Q(τ)).

Thus,

E

[

T̄1

∣

∣

∣
Q(τ)

]

≤ −2(1− ρ)wα(Q(τ))L1−α(Q(τ))

+2ML1−α(Q(τ)).

In general, for r, s ≥ 0 and β ∈ [0, 1],

(r + s)β ≤ rβ + sβ . (20)

Now, by Lemma 4.3 (iii’), rα+1−2 ≤ (α+1)F (r) ≤ rα+1+2,
so
∑

i

xα+1
i − 2M ≤ (α+ 1)

∑

i

F (xi) ≤
∑

i

xα+1
i + 2M.

We use inequality (20), with r = xα+1
i , s = 2M , and β =

(1− α)/(1 + α) ∈ (0, 1), to obtain

L1−α(x) =

(

(α+ 1)
∑

i

F (xi)

)
1−α

1+α

≤

(

2M +
∑

i

xα+1
i

)
1−α

1+α

≤ (2M)
1−α

1+α +

(

∑

i

xα+1
i

)
1−α

1+α

= (2M)
1−α

1+α + ‖x‖1−α.

A similar argument, based on inequality (20), with r = (α+
1)F (xi) and s = 2M , yields

‖x‖1−α − (2M)
1−α

1+α ≤ L1−α(x).

We also know that

wα(Q(τ)) ≥ Qα
max(τ) ≥ M− α

α+1 ‖Q(τ)‖α.



Putting all these facts together, we obtain

E

[

T̄1

∣

∣

∣
Q(τ)

]

≤ −2(1− ρ)wα(Q(τ))L1−α(Q(τ)) + 2ML1−α(Q(τ))

≤ −2(1− ρ)M− α

α+1 ‖Q(τ)‖α
(

‖Q(τ)‖1−α − (2M)
1−α

1+α

)

+ 2M
(

(2M)
1−α

1+α + ‖Q(τ)‖1−α
)

= −2(1− ρ)M− α

α+1 ‖Q(τ)‖+ 2M‖Q(τ)‖1−α

+ 2
2

1+α (1− ρ)M
1−2α

1+α ‖Q(τ)‖α + (2M)
2

1+α . (21)

b) We now consider the term T̄2. Since α ∈ (0, 1), we
have f ′(r) ≤ 2 for all r ≥ 0. Since we also have θ ∈ [0, 1]
and δi(τ) ∈ {−1, 0, 1}, and using the fact that L1−α(x) ≤

(2M)
1−α

1+α + ‖x‖1−α, we have

T̄2 ≤ 2ML(Q(τ) + θδ(τ))1−α

≤ 2M
(

(2M)
1−α

1+α + ‖Q(τ) + θδ(τ)‖1−α
)

= (2M)
2

1+α + 2M‖Q(τ) + θδ(τ)‖1−α.

Now ‖Q(τ) + θδ(τ)‖ ≤ ‖Q(τ) + 1‖ ≤ ‖Q(τ)‖ + ‖1‖ =

‖Q(τ)‖ +M
1

α+1 . Since α ∈ (0, 1), we have 0 < 1 − α < 1,
and so

‖Q(τ) + θδ(τ)‖1−α ≤
(

‖Q(τ)‖+M
1

α+1

)1−α

≤ ‖Q(τ)‖1−α +M
1−α

α+1 .

Putting everything together, we have

T̄2 ≤ (2M)
2

1+α + 2M
(

‖Q(τ)‖1−α +M
1−α

α+1

)

= (2 + 2
2

1+α )αM
2

1+α + 2M‖Q(τ)‖1−α. (22)

c) We finally consider T̄3. For notational convenience, we
write x = Q(τ) + θδ(τ), and let xmax = max{x1, . . . , xM}.
Note that since δi(τ) ∈ {−1, 0, 1}, θ ∈ [0, 1], and we assumed
that Qmax ≥ 2, we always have xmax ≥ 1. We consider the
numerator and the denominator separately. First use the
facts that f(r) ≥ 0 for all r ≥ 0 (cf. Lemma 4.3 (ii)), and
δi(τ) ∈ {−1, 0, 1}, to obtain

(

∑

i

f(xi)δi(τ)

)2

≤

(

∑

i

f(xi)

)2

.

Since f is increasing in r (cf. Lemma 4.3 (ii)),
(

∑

i

f(xi)

)2

≤ (Mf(xmax))
2 = M2f2(xmax).

Thus,
(

∑

i

f(xi)δi(τ)

)2

≤ M2f2(xmax).

Next, since F (r) =
∫ r

0
f(s) ds and f ≥ 0, we have F ≥ 0 as

well. Thus,

L2α(x) =

(

(α+ 1)
∑

i

F (xi)

) 2α
α+1

≥ ((α+ 1)F (xmax))
2α

α+1 ,

and so

T̄3 ≤ (1− α)
M2f2(xmax)

((α+ 1)F (xmax))
2α

α+1

.

We will show that T̄3 is bounded above by a positive con-
stant, whenever xmax ≥ 1. Indeed, by Lemma 4.3 (iii) and
(iii’), as xmax → ∞,

f2(xmax)

x2α
max

→ 1 and
((α+ 1)F (xmax))

2α
α+1

x2α
max

→ 1,

so

(1− α)
M2f2(xmax)

((α+ 1)F (xmax))
2α

α+1

→ (1− α)M2

as xmax → ∞. Using the continuity of f and F for xmax ≥
1, it follows that there exists a constant K̃ > 0 such that

T̄3 ≤ (1− α)
M2f2(xmax)

((α+ 1)F (xmax))
2α

α+1

≤ K̃, (23)

whenever xmax ≥ 1.
Putting together the bounds (21), (22), and (23) for T̄1,

T̄2, and T̄3, respectively, we conclude that, for xmax ≥ 1,

D(Q(τ)) ≤ −2(1− ρ)M− α

α+1 ‖Q(τ)‖+ 2M‖Q(τ)‖1−α

+ 4(1− ρ)M
1−2α

1+α ‖Q(τ)‖α + (2M)
2

1+α

+ (2 + 2
2

1+α )αM
2

1+α + 2M‖Q(τ)‖1−α + K̃

= −Ā‖Q(τ)‖+ C1‖Q(τ)‖1−α + C2‖Q(τ)‖α +K,
(24)

for some positive constants Ā, C1, C2 and K. Since α ∈
(0, 1), the ‖Q(τ)‖ term dominates. In particular, there exist
positive constantsA andD such that as long as maxi Qi(τ) ≥
D, we have

D(Q(τ)) ≤ −A‖Q(τ)‖+K. (25)

On the other hand, on the bounded set where maxi Qi(τ) ≤
D, the drift D(Q(τ)) is also bounded by a constant. By
suitably redefining the constant K, we conclude that Eq.
(25) holds for all possible values of Q(τ).

The drift condition (25) is the standard Foster-Lyapunov
criterion for the Lyapunov function Φ and implies the pos-
itive recurrence of the Markov chain Q(·) under the MW-α
policy, for α ∈ (0, 1). The irreducibility and aperiodicity
of the underlying Markov chain implies the existence of a
unique stationary distribution π as well as ergodicity. Let
Q∞ be a random variable distributed according to π. Then
Q(τ) converges to Q∞ in distribution. Using Skorohod’s
representation theorem, we can embed the random vectors
Q(τ) in a suitable probability space so that they converge to
Q∞ almost surely. With this embedding, ‖Q(τ)‖ → ‖Q∞‖,

and (
∑T−1

τ=0 ‖Q(τ)‖)/T → ‖Q∞‖, almost surely. Using Fa-
tou’s Lemma, we have

E [‖Q∞‖] = E

[

lim inf
T→∞

1

T

T−1
∑

τ=0

‖Q(τ)‖

]

≤ lim inf
T

E

[

1

T

T−1
∑

τ=0

‖Q(τ)‖

]

.

On the other hand, the drift inequality (25) is well known
to imply that the RHS above is finite; see, e.g., Lemma 4.1
of [7]. This proves that E [‖Q∞‖] < ∞. By the equivalence
of norms, the result for ‖Q‖1 follows as well.



6. EXPONENTIAL BOUND UNDER MW-α
In this section we derive an exponential upper bound on

the tail probability of the stationary queue-size distribution,
under the MW-α policy.

6.1 Proof of Theorem 3.2: α ≥ 1
The proof of Theorem 3.2 relies on the following proposi-

tion, and the drift inequality established in Theorem 4.4.

Proposition 6.1. Consider a switched network operat-
ing under the MW-α policy with α ≥ 1, and arrival rate
vector λ with ρ = ρ(λ) < 1. Let π be the unique stationary
distribution of the Markov chain Q(·). Suppose that for all
τ ,

∣

∣

∣
‖Q(τ + 1)‖α+1 − ‖Q(τ)‖α+1

∣

∣

∣
≤ νmax.

Furthermore, suppose that for some constants B > 0 and
γ > 0, and whenever ‖Q(τ)‖1+α > B, we have

E[‖Q(τ + 1)‖α+1 − ‖Q(τ)‖α+1

∣

∣

∣
Q(τ)] ≤ −γ.

Then for any ℓ ∈ Z+,

Pπ

(

‖Q(τ)‖α+1 > B + 2νmaxℓ
)

≤
( ν̄

ν̄ + γ

)ℓ+1

.

Proposition 6.1 follows immediately from the following Lemma,
which is a minor adaptation of Lemma 1 of [3]. An interested
reader may refer to the proof of Theorem 1(a) in [3] to see
how Lemma 6.2 leads to the bound claimed in Proposition
6.1.

Lemma 6.2. Under the same assumptions in Proposition
6.1, and for any c > B − νmax,

Pπ (‖Q(τ)‖α+1 > c+ νmax)

≤

(

ν̄

ν̄ + γ

)

Pπ (‖Q(τ)‖α+1 > c− νmax) . (26)

Proof. Since this Lemma is a minor adaptation of Lemma
1 in [3], we only indicate the changes to the proof of Lemma
1 in [3] that lead to our claimed result. First let us point
out that the proof in [3] makes use of the finiteness of the
expected value of the Lyapunov function under the station-
ary distribution π. In our case, the Lyapunov function in
question is ‖ · ‖α+1, and the finiteness follows from Theorem
3.1 by noticing that all norms are equivalent.
As in the proof of Lemma 1 in [3], define Φ̂(x) = max{c, ‖x‖α+1}.

Note that the maximal change in Φ(x) in one time step
is at most νmax. As in [3], we consider all x satisfying
c− νmax < ‖x‖α+1 ≤ c+ νmax. Then,

E
[

Φ̂(Q(τ + 1))|Q(τ) = x
]

− Φ̂(x)

≤
∑

x′:‖x′‖>‖x‖

p(x,x′)(‖x′‖ − ‖x‖)

≤ E
[

‖a(τ)‖
]

= ν̄.

The proof of Lemma 1 in [3] esentially used νmax as an upper
bound on ν̄. For our result, we keep ν̄ and then proceed as
in the proof in [3].

Completing the Proof of Theorem 3.2 (α ≥ 1).
Now the proof of Theorem 3.2 follows immediately from

Proposition 6.1 by noticing that Theorem 4.4 provides the
desired drift inequality, and the maximal change in ‖Q(τ)‖1+α

in one time step is at most νmax = M
1

1+α , because each
queue can receive at most one arrival and have at most one
departure per time step.

6.2 Proof of Theorem 3.2: α ∈ (0, 1)
The proof for the case α ∈ (0, 1) is entirely parallel to that

in the previous section and we do not reproduce it here.

7. TRANSIENT ANALYSIS
In this section, we present a transient analysis of the MW-

α policy with α ≥ 1. First we present a general maximal
lemma, which is then specialized to the switched network. In
particular, we prove a drift inequality for the Lyapunov func-
tion L̃(x) = 1

α+1

∑

i x
α+1
i . We combine the drift inequality

with the maximal lemma to obtain a maximal inequality for
the switched network. We then apply the maximal inequal-
ity to prove full state space collapse for α ≥ 1.

7.1 The Key Lemma
Our analysis relies on the following lemma:

Lemma 7.1. Let (Fn)n∈Z+
be a filtration on a probability

space. Let (Xn)n∈Z+
be a nonnegative Fn-adapted stochastic

process that satisfies

E[Xn+1 | Fn] ≤ Xn +Bn (27)

where Bn’s are nonnegative random variables (not necessar-
ily Fn-adapted) with finite means. Let X∗

n = max{X0, . . . , Xn}
and suppose that X0 = 0. Then, for any a > 0 and any
T ∈ Z+,

P(X∗
T ≥ a) ≤

∑T−1
n=0 E[Bn]

a
.

This lemma is a simple consequence of the following stan-
dard maximal inequality for nonnegative supermartingales
(see for example, Exercise 4, Section 12.4, of [9]):

Theorem 7.2. Let (Fn)n∈Z+
be a filtration on a prob-

ability space. Let (Yn)n∈Z+
be a nonnegative Fn-adapted

supermartingale, i.e., for all n,

E[Yn+1 | Fn] ≤ Yn.

Let Y ∗
T = max{Y0, . . . , YT }. Then,

P(Y ∗
T ≥ a) ≤

E[Y0]

a
.

Proof of Lemma 7.1. First note that if we take the con-
ditional expectation on both sides of (27), given Fn, we have

E[Xn+1 | Fn] ≤ E[Xn | Fn] + E[Bn | Fn]

= Xn + E[Bn | Fn].

Fix T ∈ Z+. For any n ≤ T , define

Yn = Xn + E

[

T−1
∑

k=n

Bk

∣

∣

∣
Fn

]

.



Then

E[Yn+1 | Fn] = E[Xn+1 | Fn]

+E

[

E

[

T−1
∑

k=n+1

Bk

∣

∣

∣
Fn+1

]

∣

∣

∣
Fn

]

≤ Xn + E[Bn | Fn] + E

[

T−1
∑

k=n+1

Bk

∣

∣

∣
Fn

]

= Yn.

Thus, Yn is an Fn-adapted supermartingale; furthermore,
by definition, Yn is non-negative for all n. Therefore, by
Theorem 7.2,

P(Y ∗
T ≥ a) ≤

E[Y0]

a
=

E

[

∑T−1
k=0 Bk

]

a
.

But Yn ≥ Xn for all n, since the Bk are nonnegative. Thus

P(X∗
T ≥ a) ≤ P(Y ∗

T ≥ a) ≤
E

[

∑T−1
k=0 Bk

]

a
.

We have the following corollary of Lemma 7.1 in which we
take all the Bn equal to the same constant:

Corollary 7.3. Let Fn, Xn and X∗
n be as in Lemma

7.1. Suppose that

E[Xn+1 | Fn] ≤ Xn +B,

for all n ≥ 0, where B is a nonnegative constant. Then, for
any a > 0 and any T ∈ Z+,

P(X∗
T ≥ a) ≤

BT

a
.

7.2 The Maximal Inequality for Switched Net-
works

We employ the Lyapunov function

L̃(x) =
1

α+ 1

M
∑

i=1

xα+1
i , (28)

to study the MW-α policy. This is the Lyapunov function
that was used in [15] to establish positive recurrence of the
chain Q(·) under the MW-α policy. Below we fine-tune the
proof in [15] to obtain a more precise bound.

Lemma 7.4. Let α ≥ 1. For a switched network model
operating under the MW-α policy with ρ = ρ(λ) < 1, we
have:

E
[

L̃(Q(τ + 1))− L̃(Q(τ))
∣

∣ Q(τ)
]

≤
K̄(α,M)

(1− ρ)α−1
, (29)

where K̄(α,M) is a constant depending only on α and M .

Proof. We employ the same strategy as in previous sec-
tions. By the second-order mean value theorem, there exists
θ ∈ [0, 1] such that

L̃(Q(τ + 1))− L̃(Q(τ))

=
1

α+ 1

M
∑

i=1

((Qi(τ) + δi(τ))
α+1 −Qα+1

i (τ))

=
M
∑

i=1

Qα
i (τ)δi(τ) +

M
∑

i=1

α(Qi(τ) + θδi(τ))
α−1δ2i (τ).

Let us bound the second term on the RHS. We have

M
∑

i=1

α(Qi(τ) + θδi(τ))
α−1δ2i (τ)

≤
M
∑

i=1

α(Qi(τ) + θ)α−1 ≤
M
∑

i=1

α(Qi(τ) + 1)α−1

≤ α
M
∑

i=1

(2α−1Qα−1
i (τ) + 1) = α2α−1

M
∑

i=1

Qα−1
i (τ) + αM

≤ α2α−1MQα−1
max (τ) + αM.

The third inequality follows because whenQi(τ) ≥ 1, (Qi(τ)+
1)α−1 ≤ (2Qi(τ))

α−1 = 2α−1Qα−1
i (τ), and when Qi(τ) = 0,

(Qi(τ) + 1)α−1 = 1.

Let us now take conditional expectations. From Section 4,
we know that

E

[

M
∑

i=1

Qα
i (τ)δi(τ)

∣

∣ Q(τ)

]

≤ −(1− ρ)wα(Q(τ))

≤ −(1− ρ)Qα
max(τ).

Thus, if we combine the inequalities above, we have

E
[

L̃(Q(τ + 1))− L̃(Q(τ))
∣

∣Q(τ)
]

≤ −(1− ρ)Qα
max(τ) + α2α−1MQα−1

max (τ) + αM. (30)

It is a simple exercise in calculus to see that the RHS of (30)
is maximized at Qmax(τ) = (α − 1)2α−1M/(1 − ρ), giving
the maximum value

(α− 1)α−12α(α−1)Mα

(1− ρ)α−1
+ αM = O((1− ρ)1−α).

Proof of Theorem 3.3.
Let b > 0. Then

P (Q∗
max(T ) ≥ b) = P

(

1

α+ 1

(

Q∗
max(T )

)α+1
≥

1

α+ 1
bα+1

)

≤ P

(

max
τ∈{0,...,T}

L̃(Q(τ)) ≥
1

α+ 1
bα+1

)

.

Now, by Lemma 7.4 and Corollary 7.3,

P

(

max
τ∈{0,...,T}

L̃(Q(τ)) ≥
1

α+ 1
bα+1

)

≤
(α+ 1)K̄(α,M)T

(1− ρ)α−1bα+1

=
K(α,M)T

(1− ρ)α−1bα+1
,

where K(α,M) = (α+ 1)K̄(α,M).

7.3 Full State Space Collapse for α ≥ 1
Throughout this section, we assume that we are given

α ≥ 1, and correspondingly, the Lyapunov function L̃(x) =
1

α+1

∑M
i=1 x

α+1
i . To state the full state space collapse result

for α ≥ 1, we need some preliminary definitions and the
statement of the multiplicative state space collapse result.

Let Σ be the convex hull of S (the set of feasible schedules),
and let Λ̄ be defined by

Λ̄ =
{

λ ∈ R
M
+ : λ ≤ σ

′ componentwise, for some σ
′ ∈ Σ

}

.



Note that this is the closure of the capacity region Λ defined
earlier. Recall the definition of the load ρ(λ) of an arrival
rate vector λ. It is clear that λ ∈ Λ̄ iff ρ(λ) ≤ 1. Define ∂Λ
the set of critical arrival rate vectors:

∂Λ = Λ̄−Λ =
{

λ ∈ Λ̄ : ρ(λ) = 1
}

.

Now consider the linear optimization problem, named DUAL(λ)
in [18]:

maximize ξ · λ
subject to maxσ∈S ξ · σ ≤ 1,

ξ ∈ R
M
+ .

For λ ∈ ∂Λ, the optimal value of the objective in DUAL(λ)
is 1 (cf.[18]). The set of optimal solutions to DUAL(λ) is a
bounded polyhedron, and we let S∗ = S∗(λ) be the set of
its extreme points.
Fix λ ∈ ∂Λ. We then consider the optimization problem

ALGD(w):

minimize L̃(x)
subject to ξ · x ≥ wξ for all ξ ∈ S∗(λ),

x ∈ R
M
+ .

We know from [18] that ALGD(w) has a unique solution.
We now define the lifting map:

Definition 7.5. Fix some λ ∈ ∂Λ. The lifting map ∆λ :

R
|S∗(λ)|
+ → R

M
+ maps w to the unique solution to ALGD(w).

We also define the workload map Wλ : RM
+ → R

|S∗(λ)|
+ by

Wλ(q) = (ξ · q)ξ∈S∗(λ).

Fix λ ∈ ∂Λ. Consider a sequence of switched networks
indexed by r ∈ N, operating under the MW-α policy (recall
that α ≥ 1 here), all with the same number M of queues and
feasible schedules. Suppose that λr ∈ Λ for all r, and that
λr = λ − Γ/r, for some Γ ∈ R

M
+ . For simplicity, suppose

that all networks start with empty queues. Consider the
following central limit scaling,

q̂r(t) = Qr(r2t)/r, (31)

where Qr(τ) is the queue size vector of the rth network at
time τ , and where we extend the domain of Qr(·) to R+ by
linear interpolation in each interval (τ − 1, τ).

We are finally ready to state the multiplicative state space
collapse result (Theorem 8.2 in [18]):

Theorem 7.6. Fix T > 0, and let

‖x(·)‖ = sup
i∈{1,...,M},0≤t≤T

|xi(t)|.

Under the above assumptions, for any ε > 0,

lim
r→∞

P

(

‖q̂r(·)−∆λ(Wλ(q̂r(·)))‖

‖q̂r(·)‖ ∨ 1
< ε

)

= 1.

We now state and prove the full state space collapse result.

Theorem 7.7. Under the same assumptions in Theorem
7.6, and for any ε > 0,

lim
r→∞

P

(

‖q̂r(·)−∆λ(Wλ(q̂r(·)))‖ < ε
)

= 1.

Proof. First note that since λr = λ − Γ/r, the cor-
responding loads satisfy ρr ≤ 1 − C/r, for some positive
constant C > 0. By Theorem 3.3, for any b > 0,

P

(

max
τ∈{0,1,...,r2T}

Qr
max(τ) ≥ b

)

≤
K(α,M)r2T

(1− ρ)α−1bα+1

≤
K(α,M)r1+αT

Cα−1bα+1
.

Then with a = b/r and under the scaling in (31),

P
(

‖q̂r(·)‖ ≥ a
)

≤
K(α,M)

Cα−1

T

aα+1
,

for any a > 0.

For notational convenience, we write

D(r) = ‖q̂r(·)−∆λ(Wλ(q̂r(·)))‖.

Then, for any a > 1,

P
(

D(r) ≥ ε
)

≤ P

(

D(r)

‖q̂r(·)‖
>

ε

a
or ‖q̂r(·)‖ ≥ a

)

≤ P

(

D(r)

‖q̂r(·)‖
>

ε

a

)

+ P
(

‖q̂r(·)‖ ≥ a
)

.

Note that by Theorem 7.6, the first term on the RHS goes
to 0 as r → ∞, for any a > 0. The second term on the
RHS can be made arbitrarily small by taking a sufficiently
large. Thus, P(D(r) ≥ ε) → 0 as r → ∞. This concludes
the proof.

8. DISCUSSION
The results in this paper can be viewed from two differ-

ent perspectives. On the one hand, they provide much new
information on the qualitative behavior (e.g., finiteness of
expected backlog, bounds on steady-state tail probabilities
and finite-horizon maximum excursion probabilities, etc.) of
MW-α policies for switched network models. On the other
hand, at a technical level, our results highlight the impor-
tance of choosing a suitable Lyapunov function: even if a
network is shown to be stable by using a particular Lya-
punov function, different choices may lead to more powerful
bounds.

The methods and results in this paper extend in two di-
rections. First, all of the results, suitably restated, remain
valid for multihop networks under backpressure-α policies.
Second, the same is true for flow-level models of the type
considered in [11]. These extensions will be reported else-
where.
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