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ABSTRACT

This paper presents the results of an investigation of the problem of fringe acquisition (FA) as it applies to high-precision
space-based optical interferometers. The POINTS (for Precision Optical INTerferometry in Space) instrument concept, being
developed in a collaborative effort between the Smithsonian Astrophysical Observatory and the Jet Propulsion Laboratory
(JPL) as a wide-band space-based optical interferometer dedicated to astrometry, is used as a test baseline. In this study we
analyze three candidate FA algorithms: linear correlation techniques (CT); nonlinear least squares (NLS); and, a discrete
Bayes approach (DBA). Analytical methods of evaluating the probability of detection for the NLS are developed which
enable a multi-parametric study of the FA problem. Among other parameters, the study examines the effects of varying the
magnitude of the electronic readout noise of the focal plane detector cells (assumed to be CCD's), of increasing the
bolometric magnitude of the target stars, of allowing constant drifts of the optical path difference (OPD), and of co-adding
CCD cells to reduce readout noise. A signal-to-noise measure is selected that exhibits a high correlation with the FA
performance and a study of the a posteriori probability density space reveals insights into the nonlinear nature of the
interferometric measurement function. The study concludes with selected Monte Carlo simulations to confirm the analytical
predictions and to compare the performance and robustness of the CT and NLS to those attainable with the DBA.
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1. PROBLEM STATEMENT

The fringe acquisition (FA) problem can be succinctly defined as the problem of estimating the initial angle that the -
interferometer optical axis makes with a target star after the spacecraft attitude control system (and possibly a fine pointing
system) has brought the telescopes to bear on the star with a pre-specified "coarse” precision. The goal of the fringe
acquisition algorithms is to successfully estimate the true off-axis angle to within a specified "finer" accuracy. This estimate
can then be handed over as the initial estimate for a tracking algorithm.

In order to better understand the nature of the problem and its fundamental limitations, we start by analyzing a simplified
model wherein the spacecraft/instrument ensemble is assumed static (i.e., no drift or dynamic motion of the off-axis angle).
Sensor noise, readout times, and stellar intensities are allowed to vary. Three "classes" of algorithms are analyzed and
implemented: Nonlinear Least Squares method; Correlation or Matched Filter techniques; and, Discrete Bayesian estimation
based on a Markov state approach.
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The goal of this work is to perform a multi-parametric study of the fringe acquisition performance. The following issues
are to be explored:

- Cell grouping as a tradeoff between readout noise and resolution in optical frequency

- Dynamic changes in the off-axis angle (constant or linear drift)

- Stellar bolometric magnitude

- Connection between fringe acquisition and fringe tracking (how much should uncertainty be reduced after fringe
acquisition in order to start stable tracking)

- Tradeoff between optimality and robustness in the estimation algorithms

This paper puts the emphasis on the analytical evaluation of the FA nonlinear estimation problem without involving time-
consuming Monte Carlo simulations, although some amount of simulation is used to validate the analytical predictions.

2. INTERFEROMETER SYSTEMS UNDER STUDY

2.1 The channelled spectrum

The baseline configuration studied for the FA problem consists of an instrument "staring” at a target star with an off-axis
angle 5, related to the Optical Path Difference (OPD) by OPD = L-3, where L is the instrument baseline (see Refs. 1,2).
Constant or linear drift in the OPD is considered in the study. There are nominally 512 CCD detector cells per beamsplitter
output port at the focal plane (there are two ports, plus and minus, for a total of 1024 CCD detector cells). The CCD
detectors in the focal plane are subject to electronic readout noise. For this study it is assumed normally-distributed with
zero mean and nominal standard deviation of 3 electrons per readout. To reduce the effect of electronic noise, the CCD
detector cells can be grouped in larger configurations at the expense of lower resolution in optical frequency. This tradeoff -
will be considered in this paper.

The measurement equation for POINTS (see Refs. 1,2) has the following form accounting for the effect of loss in
visibility due to OPD drift:

Y, =E[Y,] =Atpn(v)Av,

where xlv =sinc[uLAvi8], x: =sinc[uLvi8 At._z_ccn]
c

o 2%
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Eq. (1) is written for each cell i, where + stands for plus and minus port respectively; Aty is the readout time interval;
n(v) is the envelope of the spectrum and is dependent on the stellar bolometric magnitude and stellar temperature; Av; is the
optical frequency bandwidth of cell i; A is the fringe visibility; v; is the central optical frequency at cell i; L is the
interferometer baseline; c is the speed of light; and, L3 is the optical path difference (OPD). In the dynamic case, the off-
axis angle 3 and its time derivative § are related to the middle of the CCD readout interval. The rate & is assumed to be
constant over the CCD interval. It is assumed for this study that |8| < 5x10rad/sec which would correspond to a 1 arc
sec/sec drift in the Attitude Control System (ACS). The assumptions used in the derivation of the measurement equation
(Eq. (1) ) are valid for relatively small CCD intervals (the nominal interval is 0.01 seconds). The fringe acquisition is
performed from a sequence of CCD readouts. The number of these readouts is chosen to have a detection time within 1
second.

2.2 Drift model

Define t, as the initial time and t,, k = 1, ..., K as the middle points of subsequent CCD readout intervals, the number
of which is equal to K and the duration of each interval is equal to At.cp. Then the following linear equation can be used
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to model the OPD dynamics:
8t =0t 1,)0(ty) 0))

where 0 is the vector of parameters to be estimated, and @ is the transition matrix. Approximating the dynamic motion of
the spacecraft by a second-order polynomial model (linear drift), we have:

® 1 At Az_‘z

0 =|8], ®@A) = 3
0 1 At
8 0 0 1

where the off-axis angle 3, its rate 8, and constant acceleration 8 are to be estimated. In the case of a first-order model
(constant drift) Eq. (3) is simplified by excluding the acceleration component.

The vector of initial conditions 8, = 6(ty) is chosen as a vector for direct estimation. The estimates of 6, = 6(t,) can
be obtained from the prediction equation (Eq. (3) ). Combining Equations (1), (2) and (3) we have the nonlinear regression
model for estimation, which exposes the relationship between measurements and parameters to be estimated:

Y.&) =Y,q.1..8,). i=l,...m, k=l,..K @

A dynamic model based on stochastic state space equations will be used in tracking. However, for the fringe acquisition
problem, the regression model is justified due to the relatively short observation interval and lower accuracy required and
because it provides a convenient framework for performance analysis.

2.3 Standing assumptions
For easy reference and to highlight the scope of this paper, the standing assumptions are listed:

- Stellar temperature of 7000 deg. Kelvin

- Stellar bolometric magnitude of 10 (nominal) - Range for study: 20.0 to 10.0
- Collection mirror of 35 cm diameter

- Visibility of 0.85

- Detection probability of 0.15 in the optics (efficiency in capturing photons)
- Transmission probability of 1.0

- Optical bandwidth of 0.25 to 0.9 pm

- Nonlinear dispersion

- 512 CCD detector cells per beamsplitter output port, 1024 total

- Cell grouping enabled

- CCD readout time of 0.01 sec (nominal) - Range for study: 0.001 to 0.01

- "Normally-distributed" readout noise

-  Standard deviation of readout noise of 3 electrons (nominal) - Range for study: 0 to 4
- Maximum- initial uncertainty in the OPD of 2.42 x 10" rad

- Initial uncertainty in the drift of 5 x 10 rad/sec (nominal)

- Initial uncertainty in the acceleration of 1 x 10" rad/sec (nominal)

Under the nominal assumptions, the expected number of photons per second per port is 69700. This results in 697 photons
per port per nominal readout of 0.01 sec. It is important to realize that most high optical frequency cells only receive 0 or
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1 photon which would then be "buried” by the electronic CCD readout noise. The maximum number of photons expected
in any cell is 8 and it occurs at low frequencies (~ 333 THz).

Assumptions on the maximum uncertainties in the drift of the OPD and its acceleration result in an OPD change of 5
x 10°® rad per one readout (Ateep = 0.01 sec ) and 5 x 10 rad during the detection time (within 1 second). This indicates
that the main contribution of the OPD dynamics to the degradation of the fringe acquisition performance comes from residual
errors in the estimation of the drift and acceleration during the detection time rather than from loss in visibility due to
dynamic effects at a given CCD interval.

3. CANDIDATE FRINGE ACQUISITION ALGORITHMS

Three classes of algorithms are studied. The first two assume continuous noise statistics. The Nonlinear Least Squares
(NLS) method allows for the tuning of the filter to the expected intensity of the sensor noise. The Matched or Correlation
filter (falling under the rubric of correlation techniques or CT) is a simplification of the NLS and only assumes the form of
the measurement equations.

The third and most complex algorithm studied is a discrete Bayesian estimator based on a Markov chain approach
(dubbed the Discrete Bayesian Approach or DBA). This algorithm results from Bayes' conditional probability density
equations and its generality allows for the treatment of discrete and non-Gaussian noise sources in an exact manner. The
Markov chain framework allows extension of the DBA to the case in which the off-axis angle varies in time and evolution
equations must be included in the filter equations to extract maximum performance.

3.1 Nonlinear least squares method (NLS)

The NLS method is one of the most common techniques used to fit noisy data with parametric models (see Refs. 3,
4). For the FA problem, application of the NLS consists of minimizing the following cost function with respect to 0, :

F®y =iwilAi(eo)l2 =§:Wi|Yi'9i393I2 ®
id i

where
Y, =[Yt,) - Y(t)]
Y,0,) =[Y,(1.5,.9,) - Y;(ix,10,0.) ((3)
8;,(8,) =[4;(t,4,,8,) - A(t,1,,8,)]

are 1 x K vectors with K components corresponding to the K readouts. Y(t,) is the number of detected photons over the

k-th CCD readout interval in the i-th cell; Yii tk,to,Goi is the expected mean number of photons over the k-th CCD readout

interval in the i-th cell for the parameter vector 0, under a nominal model (see Egs. 1-4); A((t,, t,, 8,) is the i-th residual
Y (t,) - Y.(4.1,.5,) and m is the number of sensor cells.

(2t -]

Additionally, in Eq. (5) the notation k[P stands for the 2- norm of the vector x, i.e. k[P = xxT; w; is a weight associated
with the cost of the i-th residual A(6 ) (assumed to be equal for all readouts). The following weighting function was chosen
as a baseline:

w; =(Ni +c,2‘°i“)" @
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where N; =Y;(0) is the Poisson variance (or spectrum in the i-th cell) when the OPD is zero, and O oise is the variance of
the discrete Gaussian electronic readout noise. This weighting does not depend on the OPD to be estimated.

3.2 Conmelation techniques (CT)

The CT can be considered a numerical simplification of the NLS. In the case under study the CT cost function is:

F(8,) = },.,: Y (8,) ®)
i

where:

Y; =[Y;(t) ... Y; ()] [0))
fi(eo) =[fi(t] ,to,eo) r--yfi(t](atoaeo)]

are again 1 x K vectors each component of which corresponds to the k-th readout. Y(t,) is defined as above, and f(t,, t,,
6,) is the correlation function for the i-th cell evaluated at the vector of initial conditions 6, and corresponding to the k-th

readout. The correlation function assumes the form of the measurement equation, i.e., f(-) = ‘7(-).

The maximization of the CT cost instead of the minimization of the NLS cost is justified when the quadratic term
E IY;(6,) P is approximately the same for all 6. This is true for large values of the first component of the vector 0,

the off-axis angle 5,. However, when the correlation function f;(6 ) is nearly linear in one of the components of 6, (e.g.,

for the small values of the drift 80 and acceleration §_, or in the case of small values for 5,) neglecting the quadratic term
leads to the degenerated problem of maximizing a linear cost. In other words, the CT estimator is effective in handling
nonlinearities and loses its detection capabilities in the linear range. This property can be used to determine at what level
of accuracy the fringe acquisition problem turns into a fringe tracking problem.

3.3 Discrete Bayes approach (DBA)

The Discrete Bayes Approach (DBA) provides the possibility of solving the simplified POINTS estimation problem under
study without invoking any approximations. The DBA is capable of handling the nonlinearity of the measurement model
and non-Gaussian statistics (i.e., Poisson distribution of photon arrivals and discrete Gaussian electronic readout noise). The
resulting solution allows one to explore the limit in interferometric accuracy and assess how other approximation-based
techniques compare with this ultimate limit. The main idea behind the DBA is to interpret the estimation problem in terms
of numbers of photons detected rather than treating electron counts as continuous variables. The mathematical framework
for the realization of this approach in the general case is the fundamental Bayes formula in its different forms (see Refs.
4-6) and the theory of discrete processes (Markov chains) (see Ref. 7). The estimation of 6, is defined as the process of

finding the 00 that is most likely given the measured data and the known statistical models for 6, and the measurements.
First, form hypotheses by discretizing the space of 6, Let hypothesis H; represent the event that the vector of true

parameters 6, =(3_ 8 8 )T is inside a cube:
- )
H, =16,:60") < 0, < 60} (10)
where the vectors 8,9 and 6,9’ define the vertices of the cube. On the set H, define probabilities: P ={P,, ..., P, }.
We will distinguish between a priori and a posteriori probabilities. The apriori probabilitiesP* = {P},...,P}}, P =P(H,)
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are available before taking new measurements, e.g., from the previous readout. The DBA estimation algorithm transforms

these probabilities into a posteriori ones P = { f-’l y s 15n } ., f’j =PH; /A), by taking into account the data (event A)
and the problem's statistics.

The transformation is based on Bayes formula:

PMH) - P(A/H,
PH, /A) = — &) - PO ,jd, .. n an
Y PMH) - P(A/H))
ksl

To evaluate Eq. (8), one has to compute the probabilities P(A/H)). The elaborate formulas for those probabilities are based
on Poisson and Gaussian laws as well as on the nonlinear model of the interferometric measurement function (see Refs. 8,

9).

The implementation of the DBA is based on the genetic Markov chain: First, set a low-resolution net in the space of
parameters and calculate the a posteriori probabilities of the hypotheses H; (see Eq. (10)) using the DBA algorithm; once
the search is localized, redefine a higher resolution net within the selected hypotheses. For bright stars the probability of
detecting the true hypothesis will be close to one and it will be possible to localize further searches, i.c., the genetic chain
has only one direction for evolution. In the case of dimmer stars, it is possible to continue the estimation process in a few
directions (branches of the genetic tree). This is the so-called multiple-hypotheses tracking. At a certain level of the star
dimness, the lack of information can be so significant that it will be of no use to increase the initial low resolution.

It is possible to precalculate the P(A/H)). This information can then be stored in the so-called detection matrix S for
each readout: S,; (wherek=(q-1) xm + 1,q=0,..,N;j=1,..,n,L =@ +1) x m) is a probability of detection of the
event #q (corresponding to the number of photons) in the cell i when the parameter vector 8, satisfies the hypothesis j. The
detection matrix S directly accounts for the discrete nature of the interferometer measurement. After the (integer) numbers
of photons are detected in each cell, it is possible to take the corresponding elements of S and use them in the Bayes formula
(see Refs. 8, 9).

A formulation of the DBA that is robust to the uncertainties in model parameters and statistical characteristics can be
developed by implementing a general philosophy in designing robust algorithms. It is based on simple averaging of the
solution mechanism over the uncertainties in the problem's characteristics. In this case the detection matrix S should be
averaged over the uncertain parameters. This can be done either analytically using perturbations techniques or numerically
(through numerical integration for a small number of parameters or through Monte Carlo simulation). Physically, this
averaging makes the detection matrix S "flatter” or "less tuned". In the case of complete uncertainty all elements of S will
be equal, and the DBA will lose its detection capabilities. In practice it is necessary to find the best tradeoff between
optimality and robustness, depending on how much uncertainty is actually present in the model.

Implementation of the DBA for processing measurement information from multiple readouts can be performed by using

Bayes formula recursively. In this case, the a posteriori probabilities P = P(H; /A) obtained at the previous readout are used
as the a priori probabilities at the next readout.

4. ANALYSIS OF FRINGE ACQUISITION PERFORMANCE

4.1 Limitations of the Cramer-Rao bound

In the framework of the NLS it is possible to estimate the lower bound for the variance of the estimation error. This
bound was derived by Cramer and Rao (see Ref. 5). In the present case of multi-parametric estimation, it can be written for
the error covariance matrix: .
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P, =E[(8, -6,)(6, -6,)]
K
2[Ss + Y G, - (Ko BN - G(6)17

k=l

12)

where 6, is the estimate for the vector of initial conditions 6, = (3,8,8,)7,C,(8,) is the m x 3 matrix of first-order
sensitivities at the k-th readout:

LB a3)

Cu(8y) = ——=—1, e,

K A,(éo) is the covariance matrix of measurement errors at the k-th readout:

K, (8,) =diag {Y;(4.1,,6,) *+0hu. !} 14)

S is the inverse a priori covariance matrix with zero off-diagonal elements and diagonal [0 D, D;'] where D, is the a

priori variance of the rate 5 and D; is the a priori variance of the acceleration 8. The introduction of the matrix S, is
needed as a regularization procedure to provide full rank to the matrix on the right-hand side of Eq. (10) starting from the
first readout. The variances D, and D, should correspond to the expected level of uncertainty in the drift and acceleration.

The Cramer-Rao lower bound establishes the limit in accuracy which can be achieved by using the NLS under condition
of Gaussian error statistics. Therefore, the art in designing a nonlinear filter will be in the ability to stay close to this
accuracy limit. It is worth noting that an estimator which accounts directly for non-Gaussian statistics (Poisson distribution,
discreteness of detected photons, etc.) can provide accuracy better than what the Cramer-Rao lower bound predicts. In this
paper we will exploit the fact that the Cramer-Rao bound practically coincides with the actual covariance matrix P when

the estimation errors are localized in the vicinity of the estimate 6. In this case Eq. (12) is also called the Fisher information
matrix (see Refs. 3-6).

4.2 Global nonlinear mechanism of loss of lock

In order to go beyond the Cramer-Rao bound in the analysis of FA performance, we first illustrate the global
nonlinear mechanism of detecting the OPD. Figure 1 represents the cost of all considered techniques (NLS, CT, DBA). All
three cost functions are linearly transformed into one-dimensional maximized functions to allow a qualitative comparison.
In different realizations the cost functions are random (with larger variations for a shorter CCD interval). In Figure 1, for
Atccp = 0.003 [sec], we plot three cost functions averaged over 2000 realizations. Figure 1 reveals approximately the same
locations of the primary and secondary peaks in the NLS, CT and DBA cost functions. These correspond to the most
probable candidates for estimates of 5. The structure revealed is inherently nonlinear: the existence of two "mirror image"
sets of similar spectra for the values of the off-axis angle under consideration. The first set groups symmetrically around
the true 8 = 5" with the maximum in the center and decaying peaks at both sides. The second set groups around the "mirror
image” point, 8 = -3"; but relative locations of the peaks are switched with the minimum points from the first set. Figure
2 demonstrates the physics involved by showing the information rate (spectra multiplied by squared optical frequency) for
four & values: true (1.12e-6), "mirror” (-1.12e-6), "left mirror" (-1.33e-6), and "right mirror” (-1.08¢-6). The information
rates of the true and "mirror" &'s significantly differ from each other. This facilitates discrimination between the
corresponding & values. On the other hand, the information rates of the "left mirror" and "right mirror” &'s very much
resemble that of the true 5, particularly in the most informative low optical frequency sensor cells where the signal to noise
ratio per detector cell is highest (maximum of information rate). This makes the detection process more difficult for low
SNR situations.

SPIE Vol. 2477 /53

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/10/2017 Terms of Use: http://spiedigitallibrary.or g/ss'ter msofuse.aspx



4.3 Transformation of the NLS cost for analysis

Consider two NLS costs evaluated at the true parameter 90' and a free parameter O, (see Eq. (5)):

F8,) =Y wlY; - Y;(6) PP
i

as
m
F(8,) =Y wlY; - V)P
ik
For the a priori analysis, consider the ensemble of all possible realizations of the measurement vector Y;:
Y, =Y(6,) +4 e

where the residuals 1 x K vectors A; combine for form the random m x K matrix A (measurement error matrix for all cells
and readouts). All elements of this matrix have zero mean, are statistically independent, and the variance of the [k, i]-th
element is the following (see Eq. (14)):

B0 =Y (4.1,.0) + O @

Consider the difference of the two NLS costs (Eq. (14)):

AF(8.,8,) =F(8) -F(8,) as)

Substituting Eq. (16) into the NLS costs and doing some algebra, we obtain the following form of Eq. (18):
. < * T < -
AF(6,,8,) =2 w,(Y;(8)) - Y;(8,)) - & - Y w1V, (8 - Y;(6) I 19
iq is

It is important to note for the analysis that follows that AF (6,", 6,) is linear in the random factors A despite the quadratic
cost of the NLS. Equation (19) can be easily generalized for the case when there are various mismatches between the model
and the true system (e.g., in spectrum visibility, noise characteristics, etc.). All model uncertainties can be included now in
the random factors A.

4.3.1 Calculation of the probability of detection

The NLS performance cost attains its minimum value at the vector of true parameters 6", so that the probability of
detecting the true parameters 0, value instead of some parameters 6, is:
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p(e..6,) =Pr{AF(6,,6,) <0} e))

In practice we are interested in evaluating the probability of detecting the true parameters 6, within a given range of
accuracy:

pa(6) =Prild, -0]| <<} Q@1

where éo is the estimate for 6, and ¢ is the vector specifying the criterion of detection. It should be noted that in the fringe
acquisition problem it is enough to consider only the first component of the vector 6, i.e. the off-axis angle 5, since the
nonlinearities in this direction are the most significant.

It is clear that the event D ={,: Iéo N <€}  can be considered an intersection of the events Roq=1,..,
N where:

R, =16%: AF(6],6%) < 0,16® -0;| >3} @2

and the number of all possible free parameters 90(’) is sufficiently large. In other words, to detect the true parameter 90'
we must not mix it up with any free parameter outside the interval {6, : Ieo N |<3 ).

The events R, are not independent since the cost difference AF(®,", 8,9) contains the same random factor A for
different q. This significantly complicates the statistical analysis. Introduce for brevity the vector:
AF(6.,6{")

. (23)

AF(6.,6%")

The vector Z is Gaussian and its mean m, and covariance matrix P, can be easily calculated from Egs. (17) and (19).

After the statistical characteristics of the vector Z are calculated, the detection probability p,®,") can be evaluated as
the solution of the following probabilistic problem: ’

P4(6)) =Pr{Z < 0} =Pr{max Z, <0}, ZeNim,,P;} 249
q

A tractable formula for the detection probability pd(9°°) can be obtained by taking advantage of the interferometer
physics. Combining "global" and "local" events (which are mutually dependent), the probability of detection can be
determined as:
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p4(0)) =P,{z<0, a8 |<5,} (€]

where A8 , is the "local" estimation error, and c; is the first element of the vector ¢ in Eq. (21).

Now, if we introduce the extended vector
-2 26)
Z = ASo]

with the computed statistics and assume it has Gaussian characteristics (invoking the central limit theorem), the probabilistic
problem can be solved by using the techniques from Ref. 10. Note that for the "global" effects, it is enough to consider 10
to 12 "remote points” (i.e., N = 10 or 12, see Ref. 9).

4.4 A signal to noise mtio measure for the channelled spectrum

The statistical analysis of the fringe acquisition performance is accompanied by a simpler Signal-to-Noise Ratio (SNR)
analysis. After some numerical experiments, we defined the following SNR measure:

SNR = $ , § =argmax v: Y0 (¢2))
ﬁ_—k:,( ) + KO 1
x

where k is the current number of readouts, Y,(k) = E Y.(t) i(tj) is the number of expected photons in the i-th cell after k

readout intervals, and G, is the Standard Deviation (STD) of the electronic readout noise. The maximum operation in Eq.
(27) emphasizes the most informative part of the spectrum (vi Yi being defined as the information rate at cell i.)

The correlation of the simple SNR analysis with more elaborate statistical analysis and Monte Carlo simulation is of great
interest. It turns out (see the simulation results, Section 5) that the proposed SNR exhibits a high level of correlation with
the FA performance (probability of detection) when k = 1. For k > 1, however, the magnitude of the SNR is overly
conservative, i.e., the given probability of detection actually can be reached with a lower SNR. The reason for this is the
fact that estimation techniques utilize more information (by processing k independent measurements separately) than the SNR
analysis which accounts only for the integral effect. It is possible to correct for this fact empirically by multiplying the SNR
with a function of the number of readouts, f(k)=k*, where the index o depends on the detection criterion.

5. PARAMETRICAL STUDIES
All calculations of the performance characteristics are based on using analytical formulas with N = 10 (see Section 4).
It should also be noted that the computational expense for the statistical analyses is reduced 2 to 3 orders of magnitude
through the use of the NLS-based analytical predictive tool by eliminating the need for Monte Carlo runs.

Figure 3 presents the probability of detection as a function of m;,, and At.cp. As can be seen, reliable detection from
one readout is possible with Atecp close to 0.01 sec and my; = 10-11. An increase in my; dramatically (in an exponential
way) impedes the detection process.

Figure 4 illustrates the dependence of FA performance on the off-axis angle 8. First, it was encountered that in the
situation when there are enough photons to localize the detection errors in the vicinity of the true OPD, the FA performance
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(in terms of quantile! corresponding to the probability 0.97) is the worst in two points symmetric about the origin &, = -
0.6784 x 10" 7 rad and 8, =-0.6784 x 10° 7 rad (see Fig. 4). There is a simple physical explanation of this fact. In Figure
4 the measurement function (for a few cells in the negative port) and its first-order sensitivities are plotted. It can be seen
that at the point &, the sensitivities in all cells are close to 0; at the point 8, the situation is even worse since the
measurement function itself is also close to O (for the positive port the points 8, and 8, will be switched). For other values
of the off-axis angle the balance of low and high sensitivities is approximately equal for different cells. The low sensitivities
in the presence of sufficiently intensive noise is a serious impediment for improving detection accuracy. Performance

deteriorates with increasing readout noise intensity, as expected.

It is interesting to note that the sensitivities in Figure 4, which are exactly equal to 0, do not correspond to the cells with
the lowest frequencies (where the average photon rate with § = 0 is maximal). There is a shift to higher frequencies with
the exact "zero" point occurring around 500 THz. However, if we plot the information rate (measurement function weighted

with V12 where v, is optical frequency), the zero sensitivities correspond exactly with the most informative photon rate at
8, and 5,.

The situation where there is a lack of detected photons (e.g., for my,; = 11.2) has provided an additional physical
interpretation on the dependence of the FA performance on the OPD. Figure 5 shows the probability of detection within
1x10%and 1 x 107 rad. For the criterion of detection 1 x 10°® rad the FA performance is again worst at the points 3,
and 8,. But, from analyzing the "global” and "local" probabilities (see Figure 5) it follows that the drop in the FA
performance is caused by local effects (due to low sensitivities). At the same time, the "global” probabilities are the largest
at the points 3, and 5,. So, for the criterion of detection 1 x 10”7 rad, when global effects dominate, the FA performance
is the best at the points 3, and 8,. As we shall see, this result correlates well with the SNR analysis which accounts for
the number of detected photons but not for the sensitivities with respect to OPD.

Another parameter for study is the number of cells grouped or co-added before readout. Cell grouping can be considered
a technical measure to reduce the effect of readout noise. In effect, this is equivalent to having larger cells at the focal plane
output ports. For simplicity, we consider the situation when the cells' configuration is represented by a single scalar
parameter - the number of original cells grouped into one "enlarged” cell. Figure 6 takes a look at the FA performance
(quantile with probability 0.97) for different OPD's and number of cells grouped. It is typical, for the given nominal
parameters, that up to 10 cells can be grouped into one cell providing a significant noise reduction without involving
noticeable loss in optical resolution. For remote OPDs the FA performance gets degraded already after grouping more than
10 cells while for OPDs close to the origin the cell grouping is more "flexible®.

5.1 Conelation of FA performance with SNR analysis

Figure 7 summarizes all sets of parameters studied (including ones not mentioned in the paper) to reveal a close
correlation between the FA performance (probability of detection for the criterion 1 x 10”7 rad) and the SNR. The parameter
sets are split into four groups: multiple readouts (o), different STDs of electronic noise (+), cell grouping (*) and everything
else (x). It was suggested in Section 4.4 that the SNR (Eq. (27)) should be multiplied by k* where k is the number of
readouts and a = -0.08 (for criterion of detection 1 x 10”7 rad). This correction is already done in Figure 7. It is worth
noting that for parameter sets with different cell grouping schemes there are "nonlinear features” in the correlation which
result from the fact that the SNR analysis is incapable of predicting performance degradation due to a loss in optical
resolution. The least correlated sets of runs combine the effects of the multiple readouts with uncertainties in OPD dynamics.

For a detection criterion of 1 x 10°® rad, effects due to sensitivities and estimation mechanisms destroy the nice correlation
with SNR exhibited by the 1 x 10”7 rad criterion.

5.2 Connection Between Fringe Acquisition and Fringe Tracking

The results of the previous sections suggest that the criterion of detection within 1 x 10”7 rad has certain advantages over

! Quantile is defined as the rms accuracy achieved by a certain percentage of the samples, e.g., 0.97 quantile corresponds
to about 2.17 G in the Gaussian approximation.
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the criterion within 1 x 10® rad. Detection within 1 x 10”7 rad not only shows good correlation with the SNR analysis for
FA, but allows for the use of low resolution gridding in the FA search algorithm. This offers a convenient way to separate
the FA and fringe tracking (FT) tasks. For relatively bright stars, and using this criterion of detection, it is not necessary
to account for drifts, uncertainties in the spectrum, statistics etc. in the FA problem. Furthermore, a simple FA algorithm
(e.g., CT) can be used involving only one-parameter gridding.

Fringe acquisition can be considered an initial step to "localize” nonlinearities and start a high-precision refinement of
the estimates by a tracking algorithm. Note that for the case of very dim stars there is little distinction between the fringe
acquisition and tracking problems. In this case the whole process can be considered as multiple-hypotheses tracking and the
DBA can be used as a framework to design a fringe tracker (Ref. 11).

6. MONTE CARLO SIMULATIONS

In this memo the purpose of Monte Carlo simulation is three-fold: 1) to verify the results of the analytical predictions
of the FA performance; 2) to compare different estimation techniques (NLS, CT, and DBA); and 3) to study robustness
issues. We limit ourselves to the set of parameters when the electronic noise is present, its statistical characteristic o,;,, is
uncertain (20% of the nominal) and there are uncertainties in the spectrum (10%) and visibility (20%) as well. The latter
two uncertainties are modelled as Gaussian independent variables for each cell. Figure 8 demonstrates that the analytical
prediction of the FA performance corresponds quite accurately to the actual FA performance of the NLS obtained through
Monte Carlo simulation. The DBA can provide a significant improvement of the FA performance. For example, a star can
be up to one bolometric magnitude dimmer, but the probability of its detection by the DBA is the same as by the NLS or
CT. In its turn, the NLS outperforms the CT due to its robustness and excellent filtering properties (within Gaussian
approximation).

7. CONCLUSIONS

In this paper three methods of solving the Fringe Acquisition (FA) problem have been studied: CT, NLS, and DBA.
Selected Monte Carlo runs were performed to study the performance attainable using all three selected techniques as well
as their robustness.

The DBA outperforms the other two methods because it directly accounts for the discrete Poisson distribution of photon
arrivals. This results in its ability to observe dimmer (at about 1 bolometric magnitude) stars with the same performance
as the NLS. In turn, the NLS outperforms the CT due to exploiting not only a "correlation” mechanism of estimation but
also the "filtering” mechanism. As can be seen, the "filtering” mechanism provides high robustness properties for the NLS
in the case when there is a mismatch in the statistical characteristics of the readout noise. The robustness is high both in
terms of stability (i.e., not losing lock) and performance. The results presented also indicate that the DBA can be efficiently
robustified to uncertainties in the statistical characteristics of the electronic readout noise.

A method of analytical prediction of the FA performance was developed within the framework of the NLS . This method
accounts for the physical nonlinear mechanism of fringe detection which consists of both "global" and "local” effects. The
method calculates the probability of detecting the "true” OPD within the specified interval by analyzing the multiple peaks
of the a posteriori density of probabilities. The STD of the "local" error is computed through the conventional covariance
relations (Cramer-Rao bond). The accuracy of the analytical predictions was verified by Monte Carlo simulations.

The multi-parametric studies performed using the NLS-based analytical tool made possible a number of principal
observations. Two symmetrical regions near zero OPD were identified where loss of sensitivity in the cells with the highest
information content leads to reduced fringe acquisition accuracy. At the same time, those regions can be detected with the
highest probability (within 1 x 10”7 rad) due to their unique spectra. The multi-parametric studies also led to the conclusion
that dynamical effects (e.g., drift in OPD) can be ignored for the bright star Fringe Acquisition task and can relegated to the
Fringe Tracking stage. Finally, a signal-to-noise ratio ( SNR) measure was devised which exhibits a high degree of
correlation with the probability of fringe acquisition (within 1 x 107 rad).
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Averaged Cost Function of NLS, CT, and DBA from 2000 Realizations

Figure 1 Global Nonlinear Mechanism of Detection
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Figure 2 Information Rates at Different OPDS
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x 10 Estimation Error at Different OPDs
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Figure 6 Dependence of Detection Probability on OPD and Cells Grouping
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Figure 8 Monte Carlo Simulations and Analytical Predictions
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