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Abstract

We discuss an application of neuro~dynamic program-
ming techniques to the optimization of retailer inven-
tory systems. We describe a specific case study involv-
ing a model with thirty-three state variables. The enor-
mity of this state space renders classical algorithms of
dynamic programming inapplicable. We compare the
performance of solutions generated by neuro—dynamic
programming algorithms to that delivered by optimized
s—type (“order—up-to”) policies. We are able to gener-
ate control strategies substantially superior, reducing
inventory costs by approximately ten percent.

1 Introduction

Many important problems in engineering and opera-
tions research involve sequential decision-making under
uncertainty, or stochastic contrel. Dynamic program-
ming (Bertsekas, 1995) provides a general framework
for studying such problems, as well as a suite of al-
gorithms for-computing optimal decision policies. Un-
fortunately, the overwhelming computational require-
ments of these algorithms render them inapplicable to
most realistic problems. As a result, complex stochas-
tic control problems that arise in the real world are
usually addressed using drastically simplified analyses
and/or heuristics.

An exciting new alternative that is more closely tied
to dynamic programming is being developed in the
emerging field of neuro-dynamic programming (Bert-

sekas and Tsitsiklis, 1996). This approach makes use of
ideas from artificial intelligence involving simulation-
based algorithms and functional approximation tech-
niques such as neural networks. The outcome is a
methodology for approximating dynamic programming
solutions without demanding the associated computa-
tional requirements.

Over the past few years, neuro-dynamic programming
methods have generated several notable success stories.
Examples include a program that plays Backgammon
at the world champion level (Tesauro, 1992), an eleva-
tor dispatcher that is more efficient than several heuris-
tics employed in practice (Crites and Barto, 1996}, and
an approach to job shop scheduling (Zhang and Diet-
terich, 1996). Additional case studies reported by Bert-
sekas and Tsitsiklis (1996) further demonstrate signif-
icant promise for neuro-dynamic programming. How-
ever, neuro-dynamic programming is a young field, and
the algorithms that have been most successful in appli-
cations are not fully understood at a theoretical level.
Furthermore, there is a large conglomeration of algo-
rithms proposed by researchers in the field, and each
one is complicated and parameterized by many values
that must be selected by a user. It is unclear which al-
gorithms and parameter settings will work on a partic-
ular problem, and when a method does work, it is still
unclear which ingredients were actually necessary for
success. Because of this, application of neuro-dynamic
programming often requires trial and error, in a long
process of parameter tweaking and experimentation.

In. this paper, we provide a brief overview of work di-
rected towards developing a neuro-dynamic program-
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Figure 1: Schematic diagram of a retailer inventory sys-
tem. the squares represent buffers at which
inventory can be located at any given time.
Buffers are associated with the warehouse,
stores, and transportation delays.

ming approach for optimizing performance of retailer
inventory systems (Nahmias and Smith, 1993). This
is the problem of ordering and positioning retailer in-
ventory at warehouses and stores in order to meet cus-
tomer demands while simultaneously minimizing stor-
age and transportation costs. This problem can also
be viewed as a simple example from the broad class of
multi-echelon inventory control problems that has re-
ceived significant attention in the field of supply-chain
management (Lee and Billington, 1993). Our presen-
tation will brief and coarse, and we refer the interested
reader to our full-length report (Van Roy, et al., 1997)
for a more detailed account.

2 A Model of Retailer Inventory Systems

In this section we sketch the general structure of the
model that is fully described in (Van Roy, et al., 1997).
The characteristics of our model are largely motivated
by the studies of (Nahmias and Smith, 1993) and (Nah-
mias and Smith, 1994). The general structure is illus-
trated in Figure 1 and involves several stages:

1. Transportation of products from manufacturers

2. Packaging and storage of products at a central
warehouse

3. Delivery of products from the warehouse to stores

4. Fulfillment of customer demands using either
store or warehouse inventory

Stochastic demands materialize at each store during
each time period. Each unit of demand can be viewed
as a customer request for the product. If inventory
is available at the store, it is used to meet ongoing
demands. In the event of a shortage, the customer
will, with a certain probability, be willing to wait for a
special delivery from the warehouse. If the customer is
in fact willing to wait, the demand is filled by inventory
from the warehouse (if it is available).

At the end of each day, the warehouse orders additional
units of inventory from the manufacturers, and the
stores place orders to the warehouse. The warehouse
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manager fills store orders as much as possible given cur-
rent levels of inventory. As materials travel from man-
ufacturers to the warehouse and from the warehouse to
the stores, they are delayed by transportation times.
Coupled with the uncertainty of future demands, these
delays create the need for storage of inventory at stores.

The differing impact of inventory at the warehouse on
costs and service performance makes it desirable to also
maintain stock there. For example, inventory stored at
the warehouse provides a greater degree of flexibility
than that maintained at a single store. In particular,
inventory stored at the warehouse can be used to fill
special orders made by customers at any store (for in-
dividual customers who are willing to wait), and can
also be sent to any store in the advent of a shortage
of goods. On the other hand, a surplus of inventory at
one store cannot be used to compensate for a shortage
at another. Furthermore, storage costs at stores are
often higher than at the warehouse.

3 Heuristic Policy

A heuristic policy for controlling the retailer inventory
system was implemented and used as a baseline for
comparison against neuro-dynamic programming ap-
proaches. The type of heuristic used is known as an
stype, or “order-up-to,” policy and is accepted as a
reasonable approach to problem formulations that have
independent identically distributed demands. Exam-
ples of research where such policies are the focus of
study are discussed in (Nahmias and Smith, 1993) and
include (Nahmias and Smith, 1994).

The s-type policy we implemented is parameterized by
two values: a warehouse order-up-to level and a store
order-up-to level. Essentially, at each time step the
inventory manager tries to order inventory such that all
inventory at and expected to arrive at the warehouse
is equal to the warehouse order-up-to level and all the
inventory at or expected to arrive at any particular
store is equal to the store order-up-to level.

4 Dynamic Programming Formulation

Let S be the state space of the retailer inventory sys-
tem (each element corresponds to a particular combi-
nation of inventory levels in stores, the warehouse, as
well as in transport). We associate two states z;,y € S
to any nonnegative integer time t. We refer to x; as
the “pre-decision state” and y; as the “post-decision
state.” These variables identify the system state just
before and just after orders are placed. The orders
are represented as a decision u; selected from a finite
set U at each time step. The state evolves accord-
ing to two difference equations: z;41 = fi(y:, w:) and



vt = fa(xy,us), where fi and fo are some functions de-
scribing the system dynamics and w; is a random noise
term taken from a fixed distribution, independent from
all information available up to time ¢. There is a cost
g(yr, we) associated with the system affected by a noise
term w; while the post-decision state is y;. This func-
tion takes into account storage as well as transportation
costs.

A policyis amapping s : S — U that determines a deci-
sion as a function of pre-decision state, i.e., u; = p(a;).
The goal in stochastic control is to select an optimal
policy (i.e., one that minimizes long-term costs). We
express the long-term cost to be minimized as the ex-
pectation of a discounted infinite sum of future costs,
as a function of an initial post-decision state, i.e.,

(o}
THy) = B > o*g(ys, wi)lyo = y, 1

t=0

Here, o € (0,1) is a discount factor and J#(y) de-
notes the expected long-term cost given that the sys-
tem starts in post-decision state y and is controlled by
a policy p. An optimal policy p* is one that minimizes
J# simultaneously for all initial post-decision states,
and the function J#*, known as the value function, is
denoted by J*. In our case studies, we chose to use a
discount factor of & = 0.99. The reason is that policies
will be evaluated in terms of average costs and setting
the discount factor close to one makes the discounted
problem resemble the average cost problem.

5 Neuro-Dynamic Programming

The main idea in neuro-dynamic programming is to ap-
proximate the mapping J* : S +— R using an approx-
imation architecture. An approximation architecture
can be thought of as a function J : § x ®* — ®. NDP
algorithms try to find a parameter vector r € $* such
that the function J(-,r) closely approximates J*.

5.1 On-Line Temporal-Difference Learning
Variants of the temporal-difference algorithm (Sutton,
1988; Tsitsiklis and Van Roy, 1996) have been applied
successfully to several large scale applications of NDP.
The algorithm updates the parameter vector of an ap-
proximation architecture during each step of a single
endless simulation. In particular, we start with an ar-
bitrary parameter vector ro and generate a sequence r;
using the following procedure:

1. Given the initial pre-decision state zg of the sim-
ulator, generate a control ug by letting

%o = arg rréirrjlj(fz(wo, u), To);
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2. Run the simulator using control ug to obtain the
first post-decision state

yo = fa(xo, uo);

3. More generally, at time ¢, run the simulator using
control u; to obtain the next pre-decision state

Tit1 — fl(yty wt),

and the cost g(y:, wy);
4. Generate a control u;y1 by letting

Uy = AIg 11‘1&1} T(fa(@ig1,u),m0);

5. Run the simulator using control u;4; to obtain
the post-decision state

Y41 = f2($t+1 ) Ut+1);

6. Update the parameter vector via

Tip1 = Tt (g(yt, wy) + j(yt+1,7’t)
—f(yz,rz))Vrf(y:,n),

where v, is a small step size parameter;
7. Return to step (3).

5.2 Active Exploration

In the case studies we will describe, performance de-
pends critically on the incorporation of “active explo-
ration” into the temporal-difference method. Note
that the algorithm described in the previous section al-
ways updates She parameter vector to tune the approx-
imate values J(#,r) at states z visited by the current
policy, which in turn are determined by the parameter
vector r. In some sense, the exploration here is pas-
sive, 1.e., only states that naturally occur on the basis
of the current approximation to the value function are
visited. By active exploration, we refer to a mechanism
that brings about some tendency to visit a larger range
of states.

Except for the steps involving generation of control de-
cisions, the temporal-difference algorithm that we used
with active exploration follows the same routine as that
without active exploration. In particular, the algorithm
can be described by the steps enumerated in the previ-
ous section, except with the equations of Steps (1) and
(4) replaced by

Up = ng + arg {féirr}j(fz(mo’ u), o),
and _
Urp1 = Ny + arg gréi[r]l J(fo(eq1,u), ),

respectively, where each n; is a noise term. Note that
the only difference is the addition of a noise term. The
structure of the noise term is described on a case-by-
case basis in the next section.



6 Results With the NDP Approach

In this section, we present the results obtained from
applying the NDP approaches we developed to the re-
tailer inventory management problem. Through our
development, much of which occurred in the process of
experimentation, we arrived at an approach that was
successful relative to the heuristic s-type policies.

6.1 Initial Experiments With a Simple Problem
The first set of experiments involved optimization of a
very simple retailer inventory system. The purpose of
these experiments was to debug the software packages
developed in the initial stages of research and also to
ensure that the NDP methodologies worked reasonably
well on a simple problem, before moving to complex
situations.

The system included only one store in addition to the
warehouse. There was no delay for goods ordered by
the warehouse, and there was a delay of only one time
unit between the warehouse and the store. There were
therefore only three state variables involved (each cor-
responding to the quantity of goods within a buffer).
The list of parameter settings for this problem are pro-
vided in the table below.

number of stores 1
delay to stores 1
delay to warehouse 0
production capacity 10
warehouse capacity 50
store capacity 50
probability of customer waiting | 1
cost of special delivery 10
warehouse storage cost 1
store storage cost 2
mean demand 6.2
demand stdev 6.2
shortage cost 50

As a baseline for comparison, we developed an s
type policy, optimizing the order-up-to levels associ-
ated with the warehouse and store. The optimal order-
up-to levels turned out to be 10 for the warehouse and
16 for the store. The corresponding average cost was
51.7.

We used an approximation architecture consisted of a
multilayer perceptron with ten hidden nodes in a single
hidden layer. Three features were taken as input to the
network, each a normalized version of one of the state
variables.

Next, we tried adding a small degree of exploration to
the on-line temporal difference method. In particular,

4055

& 8 &

sverage cost over previous 10000 steps
-]

70|
65,
80
55|

(] [ 1 3 2 25 3 38 4
number of atepe

Figure 2: A demonstration of the importa;me of explo-
ration. The two plots show the evolution of av-
erage cost using the on-line temporal-difference
method with (lower plot) and without (higher
plot) exploration.

each time a decision was generated using the approxi-
mation architecture j, a noise term was added to the
decision. Recall that there are two decision variables:
the warehouse order and the store order. The noise
term was generated by adding a unit normal random
variable to each decision variable, rounding off to the
closest integer in each case, and then making sure the
decision variables stayed within their limits. That is, if
the noise term made a variable negative, the variable
was set to zero, and if the noise term made a variable
too large (e.g., having a warehouse order greater than
the production capacity), then the variable was set to
its maximum allowable value.

With the extra exploration term, the on-line temporal-
difference method essentially matched the performance
of the heuristic (which is probably close to optimal,
given the simplicity of the problem at hand). Figure 2
displays the evolution of average cost as the algorithm
progresses in tuning the parameters of the multilayer
perceptron, in experiments performed both with and
without active exploration. In both cases, a step size
v = 0.01 was used for the first 2 x 107 time steps, and
a step size v; = 0.001 was used for the next 2 x 107
time steps.

Note that in the graph of Figure 2 associated with the
exploratory version of the algorithm, the average cost
is computed during the execution of the algorithm, and
is thus affected by the active exploration. In particular,
a policy based on the final approximate value function
without any exploratory term should perform better
than the policy with active exploration (the exploration
is there to improve the “learning and discovery” pro-
cess that the algorithmn goes through, rather than to
improve performance of a policy at any given time). In-
deed, a simulation employing a non-exploratory policy
based on the final approximate value function gener-
ated an average cost of 52.6, which was slightly better
than average costs sampled during execution of the ex-
ploratory on-line algorithm. '



6.2 Case Study

With the success of the on-line temporal-difference
method on a simple problem, a subsequent set of ex-
periments was conducted on a more complex test bed.
The parameters used for the retailer inventory manage-
ment problem of this case study are given in the table
below.

number of stores 10
delay to stores 2
delay to warehouse 2
production capacity 100
warehouse capacity 1000
store capacity 100
probability of customer waiting | 0.8
cost of special delivery 0
warehouse storage cost 3
store storage cost 3
mean demand 8.6
demand stdev 9.8
shortage cost 60

Once again, an s-type heuristic policy was developed
by optimizing over order-up-to levels. Since the prop-
erties of all stores were identical, we assumed that the
order up-to-levels of all stores should be the same, and
there were again only two variables to optimize: a ware-
house order-up-to level and a store order-up-to level.
The optimal order-up-to levels were 330 for the ware-
house and 23 for each store. The corresponding average
cost was 1302.

In the simple problem of the previous section, there
were only two inventory sites for which orders had to
be placed. In the more complex problem of this section,
on the other hand, there are eleven inventory sites, and
exhausting all possible combinations of orders that can
be made for these eleven sites would take too long.
In particular, the minimizations carried out in steps
(1) and (4) of the on-line temporal-difference method
would be essentially impossible to carry out. Because
of this, we constrained the decision space to a more
manageable subset.

First of all, we represented decisions in terms of two
variables: a warehouse order and a store order-up-to
level. Given particular values for the two variables, the
individual store orders would be set to exactly what the
s—type policy would set them to given the store order-
up-to level. Note, however, that unlike the case of the
heuristic s-type policy, the store order-up-to-level here
is chosen at each time step, rather than taken to be a
fixed constant.

The approximation architectures employed in this case v

study involved the use of 22 features, given by normal-
ized versions of the following variables:
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(1) total inventory at stores

(2) total inventory to arrive at stores in one time step
(3) total inventory to arrive at stores in two time steps
(4) inventory at warehouse

(5) inventory to arrive at warehouse in one time step
(6) inventory to arrive at warehouse in two time steps
(7) inventory to arrive at warehouse in three time steps
(8)-(14) the squares of (1)-(7)

(15) variance among stores of inventory levels

(16) variance among stores of inventory levels plus in-
ventory to arrive in one time step

(17) variance among stores of inventory levels plus in-
ventory to arrive within two time steps

(18) the product of (1) and (4)

(19) the product of (4) and the sum of (1) through (3)
(20) the sum of (4) through (7) times the sum of (1)
through (3)

(21) the sum of (4) through (6) times the sum of (1)
through (3)

(22) the product of (3), (4), and (7)

By variance among stores (as in features (15) through
(17)), we mean the average among stores of the square
of the difference between quantities associated with
each store and the average of such quantities over the
stores.

For active exploration, noise terms were added to the
decisions generated using the approximate value func-
tion at each step of the temporal-difference algorithm.
The way noise terms were added is completely analo-
gous to the method employed in the previous section,
except that this time the noise term added to the ware-
house order involved a normal random variable with a
mean of zero and a standard deviation of five. Further-
more, the noise terms added to the store orders were
independent from one another.

We began by using an architecture that was linear
in the features. This architecture delivered promising
performance. Two variations on the initial architec-
ture/algorithm were explored. One involved replacing
the linear function approximator with a multilayer per-
ceptron with a single hidden layer of ten nodes. The
other variation used the original linear architecture,
but with an increased degree of exploration. Here the
random noise term added to the warehouse order in-
volved a normal random variable with a standard devi-
ation of ten, and that added to the store orders involved
a normal random variable with a standard deviation of
two. Figure 3 charts the evolution of average cost dur-
ing the execution of the temporal-difference algorithm
in all three of these cases. In the two cases involv-
ing linear architectures, the step size was maintained
at v; = 0.0001, while with the multilayer perceptron-
based architecture, the step size was v; = 0.0001 during
the first 1.5 million steps and v; = 0.00001 thereafter.
These step size schedules were chosen after some trial
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and error.

All three variants of on-line temporal-difference meth-
ods generated policies superior to the heuristic. In par-
ticular, the linear architectures generated policies with
average costs of 1179 (less active exploration) and 1181
{more active exploration), while the multilayer percep-
tron architecture led to an average cost of 1209. Hence,
the best policy cut costs by about ten percent relative
to the heuristic.

7 Conclusions

Through this study, we have demonstrated that NDP
can provide a viable approach to advancing the state-
of-the-art in retailer inventory management. The
method we have developed outperformed -a well-
accepted heuristic approach in two case studies.

Though the problems we solved in this research were
truly complex from a technical standpoint, not much
effort was directed at ensuring that the models reflected
all the practical issues inherent in real-world retailer in-
ventory systems. Further research is required to trans-
late the methods we have developed into those that
could be truly beneficial in a real-world application.
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