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We present a simple characterization of the maximum 
possible rank of the product of several real matrices, when 

certain entries of the matrices are constrained to be zero. Our 
result relates this ‘generic rank’ to the maximum number of 

independent ‘information paths’ through the matrices, and has 
as corollaries, besides several previous attempts at this prob- 

lem, a new characterization of structurally fixed modes for 
linear time-invariant dynamical systems. Furthermore, our 

characterization translates immediately to an 0( n”*) algo- 

rithm for calculating the generic rank (and therefore detecting 
fixed modes), by solving a network flow problem (here n is the 

sum of the dimensions of the matrices). 

Kqvwords: Structurally fixed modes, Maximum flow. Generic 

rank, Decentralized systems. 

1. Introduction 

A property of linear systems is called structural 
if it can be deduced solely from the presence of 
zeroes at certain entries of the matrices of the 
system. aIn physical terms, the presence of zeroes in 
the matrices of the system indicates the absence of 
specified interconnections, and is therefore indica- 
tive of the structure of the system. Structural con- 
trollability has been studied for both single- and 
multi-input linear systems [4,10,3]. Subsequently, 
this was extended to the concept of structurally 
fixed modes [6,9], th e structural counterpart of the 
notion of decentralized fixed modes [ll] of sys- 
tems subject to decentralization constraints. A 
characterization of fixed modes was obtained in 
[9]; however, this characterization suggests pro- 
hibitively inefficient algorithms (for example, the 
algorithm proposed in [6] is exponential in the 
number of control stations involved). 

In this note, we obtain a new characterization 
of structurally fixed modes, which admits an ap- 
pealing intuitive interpretation in terms of the 

information capacity of the system. Furthermore, 
our characterization reduces the problem of detect- 
ing structurally fixed modes to simple graph-theo- 
retic problems, with extremely efficient algorithms 
[5]. In particular, our result suggests an O(n5/*) 
algorithm for computing the generic rank or de- 
tecting fixed modes, where n is the sum of the 
dimensions of the matrices involved. Interestingly, 
this reduces the complexity of the structural prob- 
lem below that of the unstructured case, in which 
the actual matrices are given, and to the same 
complexity level as determining the generic rank of 
a single structured matrix. All previous algorithms 
proposed for fixed modes [6] were exponentially 
slow. 

From a purely algebraic point of view, we solve 
the more general problem of finding the maximum 
rank of the product IIf-,Mi of matrices, subject to 
the constraints that certain entries of the matrices 
M, be equal to zero. We present this result in the 
next section. In Section 3, we discuss its conse- 
quences in Control Theory, and some related 
problems, as well as pose an interesting open 
question. 

2. The main result 

A structured m X n matrix is a set &’ of pairs 
(i, j), where 1 < i I m and 1 5 j I n. Viewed a 
little differently, &’ is the set of all m X n matrices 
A such that Aij = 0 whenever (i, j) E&. We shall 
use the latter viewpoint for the most part of this 
paper. We represent structured matrices as actual 
matrices, with entries 0 and * , where * represents 
any real. 

Let yUi, i= l,..., k, be a sequence of struc- 
tured matrices, where M, is n, X ni+l. The generic 

rank of the product Illk_idi, denoted p(IIf-iMi), 
is the maximum rank of any product n,“,iM,, 
where Mj E.,#?~, i = 1,. . . ,n. In this section, we 
give a simple graph-theoretic characterization of 
the generic rank. 

Given the sequence Mi of structured modes, 
we define a directed graph G = (V, E) as follows. 
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ThenodesinVare{x/: i=l,..., k; i=l,..., n,}; 
that is, we have a node for every row of a matrix 
(or column of the previous one). We have an arc 
from node xp to node xp+, if the (p, q)th entry of 
A, is *. This completes the construction of G. 

An information path is a path in G from a node 
with subscript 1 to one with subscript k + 1. A set 
of information paths is independent if they are 
node-disjoint, as paths of G. 

Theorem. ~(ll,-~ k Ai) is equal to p, the maximum 
number of independent information paths in G. 

Proof. We use E’J to denote a matrix which is 1 at 
its (i, j)th entry, and 0 everywhere else (the di- 
mensions will be implied by context). Suppose that 
there are p independent information paths in G. 
Then, with each such path P, = ( x;‘~,. . . ,x:; 1.1) we 
associate the sequence of matrices E’1~‘2~,. . . , 
Ei~l’l*l.~, where the ith such matrix has dimensions 

n, X n,+ I’ Next, we make the following simple 
observations: 

(i) If P, and P, are two of the p independent 
information paths, then the two products 

E’i,‘z, x . _ . x E’A,‘A+I.,, EIII’II x . . . x E’A”’ I 1.1 

have a single non-zero (in fact, unit) entry each; 
these two entries are in different rows and in 
different columns. 

(ii) Since the p paths are independent, we have 

This follows, since extra terms in the right-hand 
side would mean that two matrices Eilli,*l.l, E’l”l*l,~ 
share the same row or column (that is, either 
iii = ii, or i- 

l+l.J = ‘,+l.! 
) or, equivalently, that two 

information paths PJ, P, share a node, contrary to 
our assumption. 

(iii) Let us finally observe that, for each i, the 
matrix 

j-1 

This is because the i th level of graph G was 
constructed to reflect the structure of di. 

From (i) we have that the right-hand side of (ii), 
which by (iii) equals the product nf-,M,, has rank 
at least p. From (iii) we have that each M, is in the 

structured matrix A,, and so it follows that 
P(l-If’_,“q 2 P. 

For the other direction, we need a lemma: 

iemma. Suppose that two sequences of structured 
matrices A,, A,‘, i = 1,. . . , k, differ only in that, for 
some i I k, A,’ is just .A,, with one row (or column) 
made zero. Then, 

Proof. Let M, , . . . , Mk be the matrices that achieve 

PO-v..= ,A,). Let us write the ith matrix as M, = M,’ 
+ RI, where M,’ is the matrix M, with the Ith row 
made 0, and R: is the matrix that is 0 everywhere, 
except the Ith row, which agrees with M, (the 
argument with columns is identical). Then we write 
the product 

k 
nM,=M,M,...M,-,M/M,+,...M, 
i-l 

+M,M, ... M,-,R;M,+, ... Mk. 

Now, the rank of the left-hand side is p(llfi=,A,), 
the rank of the first term of the right-hand side is 
at most p(lJ,“- ,.A’ ,), and that of the second term is 
at most one. The lemma now follows from the 
subadditivity of the rank. 0 

It follows from the lemma that p(llF-,X,) is 
less than or equal to the minimum number of zero 
lines that we have to add to the structured matrices 
A,, in order to obtain a zero product. However, 
adding a zero line anywhere in the given struc- 
tured matrices corresponds to deleting a vertex 
of G; also, a product is zero iff the first and 
last layers of G are disconnected. Therefore, 
PO-r- ,A,) is less than the minimum number of 
nodes of G that we have to remove in order to 
disconnect its first and last layer; by Menger’s 
Theorem, this is equal to p, the maximum number 
of information paths. q 

Corollary 1. We can determine the generic rank of 
the product of structured matrices with sum of di- 
mensions n = C;“,‘ln i in time 0( n512). 

Proof. To determine p, we construct a flow net- 
work as follows: For each node u of G we have 
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two nodes ur, uz and the arc (ui, 0,); we also have 
two new nodes S, t. If u is a node of G at the first 
level, then we add the arc (s, u,). Similarly, if II is 
a node in the last level, we have the arc (uz, t). 
Finally, for each arc (u, u) of G, we add to the 
network the arc (u,, u,). All capacities are one. 
Notice that this network is simple in that the 
capacities are all one, and all nodes have either 
indegree or outdegree one or zero. The algorithm 
in [2] then constructs the maximum flow in time 
O(n’/‘) (see [S] for an exposition). The maximum 
flow is, by the theorem, equal to the generic rank 
of the product. •I 

It is quite interesting to note that determining 
the generic rank of a single structured matrix 
involves solving a bipartite matching problem, and 
the best algorithm known for this has the same 
complexity 0( n ‘j2) Also, to determine the rank of . 
a single (ordinary) matrix by Gaussian elimination 
takes even longer: O(n3). The same holds for a 
simple probabilistic algorithm for determining the 
generic rank: Pick the non-zero entries of the 
matrices at random (with a suitably large preci- 
sion), perform the matrix multiplications, and 
calculate the rank of the product: The result is 
very likely to be the generic rank of the product. If 
Gaussian elimination is used in the last step, then 
the overall complexity of the probabilistic algo- 
rithm is O(n3), worse than the deterministic one 
proposed here. The new asymptotically fast meth- 
ods for matrix multiplication improve this perfor- 
mance to O(n2.48...), but are of rather theoretical 
value. 

3. Applications, implications, and extensions 

The main motivation of structured matrices 
comes from Control Theory. In particular, a de- 
centralized linear system can be defined as a 
quadruple L = (A, B, C, Y ), where A, B, and C 
are n x n, m x n, and n x p, respectively, and Z 
is an m x p structured matrix. The three matrices 
define the linear system 

x=Ax+ Bu, y= cx, 

and X determines the set of allowed feedbacks. If 
a complex number X is an eigenvalue of A + BKC 

for all KEY, then we say that X is a fixed mode 
of system L. NOW, define a structured decentral- 
ized linear system to be a quadruple of structured 
matrices 9 = (,rB, 8, V, X ). Finally, we say that 
S’has a structurally fixed mode if the system L = 
(A, B, C, X) has a fixed mode for all A E.x~, 
Bs.93, CE V. 

In [6,9] we find some interesting results con- 
cerning structurally fixed modes. In particular, let 
S= {iI,. ..,ik} be a subset of {l,..., n}. Let Bi be 
the i th column of B, and Let C/ be the jth row of 
C. Given the set S, we define the set {jr,. . . ,j,) = 
{ j: there is an i P S such that X,, = * }. Finally, 
let 

c, 

Bs= [B ,,,..., Bill, Cs= 

H 

; . 

Ci, 

Then it is shown in [6,9] that the system J?’ has a 
structurally fixed mode iff one of the following 
conditions hold: 

(I) There is a set S and a permutation matrix 
P such that, for all A ES&“, B E .4?, C E W, 

P’AP= A,, A,, 0 , [ 1 A 13 4, 4, 

0 
P’BS= 0 , [ 1 CsP=[Cf 0 01, 

Bs 

where the dimension of A,, must be non-zero. 
(II) For all A EZZ’, BE 9, CE V, K EX, the 

matrix A + BKC is singular. (Actually, this condi- 
tion was stated slightly differently in [9].) 

Note that the above two cases (to be called 
structurally fixed modes of type I and II, respec- 
tively) are fairly different qualitatively. Such a 
dichotomy is present even in the much simpler 
problem of structural controllability [4,10]. For 
this reason, it makes sense to apply a different 
algorithm to each of the two cases. Let us first deal 
with the simpler type I. Given a system 3 = 
( JZ?, 9, V, S), we create a directed graph G = 
(V, E ). The nodes in V are 
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As for E, it contains an arc (xi, x,) iff di, = *, an 
arc (xi, u,) iff qji = *, an arc ( yi, uI) iff X”,, = *, 
and an arc ( ujr xi) iff .%,; = *. The proof of the 
following proposition is omitted as straight-for- 
ward: 

Proposition 1. 9 has a structurally fixed made of 
type I i’f there is a node xi of G such that every 
directed cycle through xi avoids all the y and u 
nodes. q 

Given the above proposition, an O(n2) algo- 
rithm for testing wether a system has a structurally 
fixed mode is suggested immediately: First find 
the strong/y connected components of G, that is, the 
equivalence classes on the nodes defined when we 
think of two nodes as equivalent whenever they 
are traversed by the same cycle. This can be done 
in O(n2) time [l]. We then check whether there is 
an equivalence class consisting solely of x nodes. 

Corollary 2. We can test whether a system has 
structurally fixed modes of type I in 0( n2) time. q 

For structurally fixed modes of type II, we need 
to compute the generic rank of the expression 
s?+ .S?X%?g; however, let us observe that this is the 
same as computing the generic rank of the product 
d&t?, where 

.a= [Y, ii?], 3= [;I, 
and 

Here 9 is the unit structured matrix, with *‘s on 
the diagonal and O’s every where else, and @J is the 
zero structured matrix, with no *‘s. The dimen- 
sions are implicit, as usual. 

Corollary 3. We can test whether a system has a 
structurally fixed mode of fype II in time 0( n512). 
Cl 

Finally, we notice that our technique can be 
extended to compute the generic rank of sums of 
monomials, whose indeterminates are distinct 
structured matrices; 

is an example. We do not understand completely 
yet the case with repeated occurrences of the same 
structured matrix. As an example of a problem of 
this nature, what is the generic rank of d2, where 
&’ is a given structured matrix? We conjecture that 
it is the same as the generic rank of s’&‘, where 
J@ and &’ are identically structured (but no 
longer constrained to obtain identical non-zero 
entries) matrices. 

4. Postscriptum 

After this paper was written, two other papers 
with related results appeared [7,8]. In the first 
paper, the authors of [6] describe an improved 
graph-theoretic necessary and sufficient condition 
for structurally fixed modes. Their condition is a 
more complicated version of the specialization of 
our theorem to the problem of structurally fixed 
modes, as outlined in the proof of Corollary 3 
above. The complication stems from the fact that 
the authors of [7] use node-disjoint cycles, instead 
of our simpler information paths. Essentially the 
same condition as in [7] was obtained indepen- 
dently in [8], as an aside of its interesting treat- 
ment of the combinatorial nature of the unstruc- 
tured case. Neither of these articles observes the 
connection to network flows, suggests an efficient 
algorithm for implementing the criterion, or gener- 
alizes the criterion to the more difficult problem of 
the generic rank of a product of structured 
matrices. These are the main contributions of the 
present paper. 
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