
440 IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. AC-30. NO. 5 ,  MAY 1985 

On the Complexity of Decentralized Decision 
Making and Detection Problems 

Abstract-We study  the  computational  complexity of the discrete 
versions of some  simple but basic decentralized decision problems. These 
problems are variations  of the classical ‘‘team decision problem” and 
inclnde  the problem of decentralized detection whereby a central 
processor  is  to select one of two hypotheses. based on l-bit messages from 
two noncommonicating  sensors. Our results point to the  inherent 
diff~cdty of decentralized decision making and suggest that optimality 
may be an elusive goal. 

T 
I. INTRODUCTION 

HE field of decentralized (distributed) decision making has 
been an active area of research for more than two decades 141, 

[ 1 11, [ 121. In the meantime, it has been realized that decentralized 
decision problems are qualitatively different from the correspond- 
ing decision problems with centralized information. The classical 
“counterexample” of Witsenhausen [SI, [17] in decentralized 
stochastic control best illustrates this point. It is safe to conjecture 
that the prohibitive factor in decentralized problems is not so 
much the inadequacy of the mathematical tools presently been 
used, but rather the inherent complexity (in the broad sense of the 
term) ofthe problems that have usually  been formulated. However, 
there  are very few [3], [ 181 precise mathematical results on the 
nature of this ever-present complexity. The present paper, which 
follows the line of research of [lo], should be viewed as a 
contribution in this direction. We focus on finite versions of some 
simple but fairly typical decentralized decision-making problems 
and characterize their complexity by using the tools of the theory 
of computational complexity [ 2 ] ,  [9]. Keeping with the tradition 
of this theory, we consider “easy” those problems that can be 
solved by a polynomial algorithm, whereas we consider NP- 
complete (or worse) problems to be “hard.” In our opinion, such 
an approach is: 1) more satisfying intellectually, and 2)  given the 
present state of the theory of decentralized decision making, it will 
&OW us to systematically identify hard problems ana redirect 
research efforts to heuristic and approximate algorithms or 
possibly easier special cases. 

Overview 

The main issue of interest in decentralized systems may be 
loosely phrased as  “who should communicate to whom, what, 
when, etc.” From a purely logical point of view, however, there 
is a question which precedes the above: “Are there any 
communications necessary?” Section II addresses the difficulty of 
the problem of deciding whether any communications are neces- 
sary for a given decentralized system. We  use a formulation of 
this problem introduced in [ 101. We impose some additional 
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structure on this problem, and we are able to determine the 
boundary between easy and hard cases. In Section JII, we 
formulate the discrete version of the decentralized detection 
problem and prove that  it is, in general, a hard one. In Section IV, 
we present and discuss a few problems related to the problem of 
Section II, including the team decision problem. Section V 
contains our conclusions. All proofs may  be found in the 
Appendix. 

n. A PROBLEM OF SILENT COORDINATION 

Let { 1, - - e ,  M }  be a set of processors (decision makers). Each 
processor i obtains an ObseNaiion yi f Yi,  where Yj is a finite Set. 
Then processor i chooses a decision ui belonging to a finite set U, 
of possible decisions according to a rule u; = yi(y i )  where yi is 
some function from Y; into U;. The M tuple (y , ,  * . , yb,) is the 
total information available and may be viewed as the “state of the 
environment.” For each state of the environment, we assume that 
only certain M tuples (ul, . * * ,  u , ~ )  of decisions accomplish a 
given, externally specified goal.  More precisely, for each (yl, - * * , Y , ~ )  E Y I  X * * X Yw, we are given a set S ( y l ,  . * , Y . ~ )  
C U, X . - * X U, of satisficing (using the term introduced by 
Simon) decisions. So S may  be  viewed as a function from Yl 

decision rules y;:  Yi -+ U, (involving no communications) which 
always lead to satisficing decisions. This problem was f i s t  
introduced (for the case M = 2)  in [lo] and may be formalized as 
follows. 

Problem DS: Given finite sets Y , ,  . . e ,  Y&, U,,  . * . , U, and a 
function S: Y I  X - * - X ylM + 2 C 1 x  ’ ”  x L ‘ ~ .  are there functions 
yi: Y, -+ Ui, i = 1, . . , M such that 

x ... X Y,w into 2 c ’1 X . . ’ X C i  ~ w .  We then ask whether there exist 

(-rl(Yl), . * 9 Y.dY.M)) E W I ,  ’ . * I  Y.d .  

V(JJl ,  * . -, y,w) E Y ,  x . . x YM? (2.1) 

We  are assuming above that the function S is easily comput- 
able; for exampie, it may  be given in  the form of a table. Also 
note that the centralized counterpart of DS would  be to allow the 
decision ui of each processor to depend on the entire  set of 
observations, in which case the problem would become trivial. 
Since DS has a trivial centralized counterpart, any diffkulty 
inherent in DS is only caused by the fact that information is 
decentralized. In this sense, DS captures the essence of coordi- 
nated decentralized decision making (silent coordination). 

The following were shown in [ 101. 
1) The problem DS with two processors (M = 2) and 

restricted to instances for which the cardinality of the decision sets 
is 2(1 Uil = 2, i = 1 ,  2) may be solved in polynomial time. 

2) The problem DS with two processors (M = 2) is NP- 
complete even if we restrict to instances for which 1 UI 1 = 2 ,  1 U21 
= 3. 

An extension of the above results is the following. 
Proposition 2.1: The problem DS with three or more 

processors (M 2 3) is NP-complete even if  we restrict to 
instances for which I Ujl = 2, Vi. 

’ ”or any finite set A.  we  let IAl denote its cardinality. 
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We may therefore conclude that the problem DS is, in general, 
a hard combinatorial problem, except for the special case in which 
there are only two processors and each one has to make a binary 
decision. It should be noted that the difficulty is  not caused by an 
attempt to optimize with respect to a cost function because no cost 
function is introduced. 

We now turn to special cases of DS by introducing some more 
structure (reflecting the nature of typical practical problems) with 
the aim of determining the dividing line between easy and hard 
special cases. Moreover, we restrict to the case of  only two 
processors (M = 2). (Certainly, problems with M > 2 cannot be 
easier.) 

In the formulation of DS that we introduced earlier, all pairs 
(y , ,  y2)  E Yl X Y2 are likely to occur. So the information of 
different processors is completely unrelated; their coupling is 
caused only  by the structure of the satisficing sets S(y,, y2).  In 
most practical situations, however, information is  not completely 
unstructured: when processor 1 observes y,, he is often able to 
make certain inferences about the value of the observation y2  of 
the other processor and exclude certain values. We now formalize 
these ideas. 

Definition: An information structure Z is a subset of Yl x 
Y2. We say that an information structure Z has degree (Dl ,  Dz), 
(D l ,  D2 are positive integers) if 

1) for each yI E Yl there exist at most Dl distinct elements of 
Y2 such that (y , ,  y2)  E Z 

2 )  for each y2 E Y2 there exist at most D2 distinct elements of 
Y,  such that (y , ,  y2) E Z 

3 )  D l ,  D2 are the smallest integers satisfying 1)  and 2) .  

We now intepret this definition. The information structure Z is 
the set of pairs ( y I ,  y2)  of observations that may occur together. If 
Z has degree (Dl ,   DJ ,  processor 1 may  use his observation y1 to 
decide which elements of Y2 may have been observed by 
processor 2 .  In particular, he may exclude all elements except for 
(at most) D,  of them. The situation faced by processor 2 is 
symmetrical. 

If Dl = 1 and processor 1 observes y,, there is only one 
possible value for yz, So processor 1 knows the observation of 
processor 2 .  (The converse is true when D2 = 1 . )  We could call 
this a nested information structure because the information of one 
processor contains the information of the other. When Dl = 0 2  
= 1 ,  each processor knows the observation of the other; so their 
information is essentially shared. 

By restricting our attention only to pairs bl, y2)  E Z ,  we 
obtain the following version of DS. 

Problem DSZ: Given finite sets Y, ,  Y2, U , ,  U2, Z C Y,  X Y2 
and a function S:Z + 2"1 x u2, are there functions yi: Yi -+ Ui, i = 
1 ,  2 such that 

( n ( Y 1 h  Y2(Y2)) E x Y 1 9  Y2)r V(Y1. Y2) E R (2.2) 

Note that any instance of DSZ is equivalent to an instance of DS in 
which 

S(Y, ,  Y2)= UI x u2, W l ,  Y2 )BI .  

That is, no compatability restrictions are placed  on the decisions 
of the two processors for those (yl, y2)  that cannot occur. We now 
proceed to the main result of this section. 

Proposition 2.2: 
1 )  The problem DSZ restricted to instances satisfying any  of 

the following. 
a) One or more of IUl(,  (U21, Dl ,  D2 is equal to 1 
b) Iu11 = lu2l = 2, 

d) D l  = IU21 = 2 (0rD2 = lUll = 2)  
C) Dl = DZ = 2, 

may  be solved in polynomial time. 

2 )  The problem DSZ is NP-complete even if we restrict to 
instances for which I u, 1 =Dl = 3, I = D2 = 2.  

Note that the above result maws a precise boundary between 
polynomial and NP-complete special cases in terms of Di, I Vi! ,  i 
= 1, 2. We have seen that, in general, DSZ is NP-complete even 
if D l ,  D2 are held fixed.  There  is, however, a special case of DSZ, 
with D l ,  D2 constant, for which an efficient algorithm of the 
dynamic programming type is possible. 

Proposition 2.3: Let Y, = Y, = ( 1, 2, - - -, n} .  Let D be a 
positive integer constant. Consider those instances of DSZ for 
w h i c h ( i , j ) E Z i m p l i e s e i t h e r l i - j ( I D o r l i - j l z n - D .  
Then DSZ may be solved in time which is polynomial n. 

A condition of the type li - jl 5 D, V(i, j )  E Z is fairly 
natural in certain applications. For example, suppose that the 
observations y, and y2 are noisy measurements of an unknown 
variable x ( y i  = x + wi) where the noises wi are bounded: [ ~ i l  < 
D/2.  Similarly, the condition Ii - j l  I D or ( i  - j l  z n - D, 
v(i, j )  E Z arises if the observations y,, y2 are noisy measure- 
ments of  an unknown quantized angle: yi = 0 + wi (mod 27r) 
where the noises wi are again bounded  by 012.  

III. DECENTRALIZED DETECTION 

A basic problem in decentralized signal processing, which has 
attracted much attention recently [I], [6], [7], [13]-[15] is the 
decentralized detection (hypothesis testing) problem. In this 
section, we consider the discrete version of this problem. 

Two processors (sensors) SI and S2 receive measurements yi E 
Yi,  i = 1 ,  2 where Yi are finite sets (Fig.  1).  There  are two 
hypotheses Ho and HI  on the state of the environment with prior 
probabilities po and p l ,  respectively. For each hypothesis Hi, we 
are also given the joint probability distribution f l y , ,  y21Hi) of the 
observations, conditioned on the event that Hi is true. Upon 
receipt of yi, processor Si evaluates a binary message ui E (0, 1 )  
according to a rule ui = yi(yi) where yi: -+ (0, l }  . Then ul and 
u2 are transmitted to a central processor (fusion center) which 
evaluates uo = ulu2 and declares hypothesis Ho to be true if uo = 
0, HI  if uo = 1 .  (So we essentially have a voting scheme.) The 
problem is to select the finctions yl, y2 so as to minimize the 
probability of accepting the wrong hypothesis. (More general 
performance criteria may be also considered.) 

Most available results assume that 

W I ,  Y~II~)=P(YIIH~)P(Y~IH~), i= 1 ,  2 (3.1) 

which states that the observations of the two processors are 
independent when conditioned on either hypothesis.2 In particu- 
lar, it has been shown [15] that if (3.1) holds, then the optimal 
decision rules yi are given in terms of thresholds for the likelihood 
ratio PbiIHo) /P~i lHi) .  The optimal thresholds for the two 
sensors are coupled through a system of equations which gives 
necessary conditions of optimality. (These equations are just the 
person-by-person optimality conditions.) Few analytical results 
are available when the conditional independence assumption is 
removed [7]. The purpose of this section is precisely to explain 
this status of affairs. 

Suppose that (3.1) holds, and let Ni denote the cardinality of Yi. 
Given the results of [ 1.51, there are only Ni + 1 decision rules yi 
which are candidates for being optimal. We may evaluate the cost 
associated to each  pair of candidate decision rules and select a pair 
with least cost. This corresponds to a polynomial algorithm, and 
shows that under condition (3.1), decentralized detection is an 
easy problem. Without the conditional independence assumption 
( 3 . 1 ) ,  however, there is no guarantee that optimal decision rules 
can be defined in terms of thresholds for the likelihood ratio. 
Accordingly, a solution by exhaustive enumeration could require 

signal in independent noise, but is typically  violated in problems of detection 
Such an assumption is reasonable  in  problems of detection of a  known 

of an  unknown signal. 
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Fig. I .  A structure for decentralized detection. 

the examination of as many as 2N1+1v2 pairs of decision rules. One 
might expect that  a substantially faster (Le., polynomial) al- 
gorithm is possible. However, the main result of this section 
(Proposition 3.1 below) states that decentralized detection is NP- 
complete even if we restrict to instances for which perfect 
detection (zero probability of error) is possible for the correspond- 
ing centralized detection problem. 

We now present formally a suitable version of the problem. 
Decentralized Detection  (DD): We are given finite sets Y,, 

Y2; a rational number K ;  a rational probability mass function p :  Y ,  
x Y2 -, Q; and a partition {Ao, A , ]  of Yl x Y2. Do there exist 
yi:Yi --i (0, l}, i = 1, 2 such that J(yl, 73 5 K? Here 

J(-rll Yz)= 2 P(Y1, Y2)YI(YI)Y2(Y2) 
(YIJz)EAO 

+ P(Y1. Y2)U -YI(YI)Y2(Y2)1. (3.2) 
(YIYJEAl 

Remarks: 
1) In the above definition of DD, think of Hi as being the 

hypothesis that (y,, yz) E A,. Then it is easy to see that J(y, ,  y2) 
corresponds to the probability of error associated to the decision 
rules y,, 72. Note that if  a single processor knew  both y,  and y2 
(centralized information), he could make the correct decision with 
certainty. Consequently, the above-defined problem corresponds 
to the special case of decentralized detection problems for which 
perfect centralized detection is possible. 

2) If we let K = 0, then DD is a special case of problem DS 
with IUl{ = [U2( = 2, and is therefore polynomially solvable. 

Proposition 3.1: DD is NP-complete. 
It should be pointed out that Proposition 3.1 remains valid  if the 

problem is modified so that the fusion center uses some other rule 
for combining the messages it receives (e.g., uo = u,(l - UZ)) or 
if the combining rule is unconstrained and the fusion center is 
supposed to find and use an optimal combining rule. 

Let us now interpret Proposition 3.1. Although it is, in  a sense, 
a negative result, it can be useful in suggesting meaningful 
directions for  future research: instead of looking for efficient 
exact algorithms, the focus should be on approximate ones. (In 
fact, it is an interesting research question whether polynomial 
approximate algorithms for DD exist.) Proposition 3.1 also shows 
that any necessary conditions to be developed for problem DD 
will be deficient in one of two respects: 

1) either there will be a very large number of decision rules 
satisfying these conditions or 

2) it will be hard to find decision rules satisfying these 
conditions. 

Another consequence of Proposition 3.1 is that optimal decision 
rules are not given, in general, in t e r n  of thresholds for the 
likelihood ratio because in that case, an efficient algorithm could 

be obtained. Of course, this fact can be also verified directly by 
constructing appropriate examples. When the condition (3.1) 
holds and decision rules are given in terms of thresholds, the 
decision rule of a processor can be viewed as a tentative local 
decision, submitted to the fusion center. In general, however, 
optimal decision rules are not threshold rules and this interpreta- 
tion is no more valid. Rather, DD should be viewed as a problem 
of optimal quantization of the observation of each processor. In 
that respect, Proposition 3.1 is reminiscent of the result of [3], 
namely, that the general problem ot minimum dlstortion quantiza- 
tion is NP-complete. 

W .  RELATED PROBLEMS 

The best known static decentralized problem is the team 
decision problem [&I, [ll] which admits an easy and elegant 
solution under linear quadratic assumptions. Its discrete version is 
the following. 

Team Decision Problem  (TDP): Given finite sets Y , ,  Y2, U,, 
U2, a rational probability mass function p :  Y, x Y2 + Q, and an 
integer cost function c: Y, X Y, X U, X U2 + N ,  find decision 
rules yi: Y,  .+ Ui, i = 1, 2 which minimize the expected cost 

4 Y l ,  Y2)= x C ( Y l ,  Y29 Yl(Yl>, -Y2Cvz)lP(Yl, Y2). 
Y,E y, YZE y2 

Another problem related to DS is the following. 
Maximize Probability of Satl@cing (MPS): Given finite sets 

Y , ,  Yz,  U1, Uz, aprobability mass fimctionp:Y, X Y2 .+ Q, and 
a function S: Y, x Y2 .+ 2 u1 x u2, find decision rules yi: Yi -+ Ui, i 
= 1, 2 which maximize 

J(Yl9 Y z ) = m Y l ( Y I ) ,  Y2(Y2)) E a Y l ,  Y2)) 

(which is the probability of making a satisfactory decision). 
Given an instance of TDP, let 

S(Yl, yz)={(u,, ur) : C(Y1, Y2r Ulr u2)=01. 

If  we solve TDP, we also effectively answer the question of 
whether J(yl, y2) = 0. But this is equivalent to solving the 
instance of DS associated with the above definition of S(y, ,  y2). 
Therefore, TDP cannot be easier than DS. The same argument is 
also valid for MPS. It then follows from Proposition 2.2 that 
TDP and MPS are NP-hard (that is, NP-complete or worse) even 
if we restrict to instances for which {VI I = 2, 1 U2( = 3.  
However, even more is true: it suffices to notice that the problem 
DD of the previous section is  a special case of both TDP and 
MPS, with (U,( = (U2( = 2. Using Proposition 3.2, we obtain 
the following. 

Corollary 4. I :  TDP and MPS are NP-hard even if  we restrict 
to instances for which I Ul I = I Uzl = 2. This is true even if the 
cost function c associated to TDP is restricted to take only the 
values 0 and 1. 

These results show that, unlike the linear quadratic case, the 
team decision problem is, in general, a hard combinatorial 
problem. The reason for this difference is the following: in the 
linear quadratic problem, Radner’s theorem [l 11 guarantees that, 
as a consequence of the convex structure of the problem, a person- 
by-person optimal decision rule is also team optimal. This is no 
longer true for nonconvex (for example, discrete) team problems. 
While it may be argued that finding person-by-person optimal 
decision rules is relatively easy, there is no simple criterion for 
deciding whether a person-by-person optimal decision rule is also 
team optimal, and this is really the source of the difficulty. Let us 
also stress here that difficulties arising from the possibility of 
multiple person-by-person optima are equally relevant to team 
decision problems formulated on continuous decision and proba- 
bility spaces, as is commonly done. In other words, the difficulties 
do not arise because we discretize an otherwise easy problem, but 
they are of a more fundamental nature. These issues will be 
discussed elsewhere in more detail. 
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V. CONCLUSIONS 

The general conclusion of this paper is that even the simplest 
problems of decentralized decision making are hard from an 
algorithmic viewpoint. Moreover, this difficulty does not arise by 
an attempt to optimize with respect to a cost function, but persists 
even in the face of  a qualitative (zero-one) cost criterion. Our 
results refer to discrete versions of such problems, but the 
continuous counterparts cannot be any easier, unless  we are 
dealing with special, more structured cases. Of course,  there are 
many objections to the idea that NP-completeness is an unequivo- 
cal measure of the difficulty of a problem because it is based on a 
worst case analysis, whereas the average performance of an 
algorithm may be a more relevant measure from a pragmatic point 
of view. However, such measures are hard to analyze, and an  NP- 
completeness result is often a useful guide on  what types of 
research questions should be pursued. 

On  a more specific level, since no simple algorithm could solve 
DS, and given that communications between processors are 
certainly required for those instances of DS which are “no” 
instances (i.e.,  there  are no satisficing decision rules), it would 
not be a great loss if  we allowed exchange of messages even for 
some instances for which this is not necessary. Even if these extra 
communications-being  redundant-do  not lead to better deci- 
sions, they may greatly facilitate the decision process and-from  a 
practical point of  view-remove some of the computational load. 

Concerning the problem of decentralized detection, we have 
shown that it becomes hard, once the simplifying assumption of 
conditional independence is removed; this explains why little 
progress on the general version of this problem has followed the 
work of Tenney and Sandell [ 151. 

For those decentralized decision problems for which communi- 
cations are necessary, there arises naturally the problem of 
designing a communications protocol. Again, the problem of 
designing an “optimal” protocol that guarantees satisficing while 
minimizing the number of bits transmitted is intractable [ 101 even 
in simple cases (for 1 Ull L 2, 1 U2( 2 3 ,  this follows from 
Proposition 2.2). Trying to centralize information in a “most 
efficient” manner, e.g., by using the smallest possible set of 
symbols, also leads to intractable problems [18]. Therefore, 
practical communications protocols can only be designed on a 
“good” heuristic or ad hoc basis and should not be expected to be 
optimal; approximate optimality is probably a more meaningful 
goal. Again, allowing some redundancy in on-line communica- 
tions may lead to substantial savings in off-line computations. 

APPENDIX 

We start with  a brief intuitive discussion of the essence of our 
proofs, so that the readers who are not interested in the technical 
aspects may still gain some general understanding. 

The general methodology for proving that  a certain problem PI 
is NP-complete is the following [2],  [9]. We choose a problem P2 
which is known to be NP-complete (e.g., the Traveling Salesman 
Problem; a large bank of such problems is available PI) ,  and then 
we show that PI is “harder” than P2, that is, Pz can be reduced in 
an efficient manner to P I .  

For the specific type of problems considered in this paper, we 
make the following observation: the decisions of agents may be 
represented by  a set of Boolean variables (at least one such 
variable is needed to represent the decision of an agent for each 
possible observation); each assignment of truth values (zero or 
one) to this set of Boolean variables corresponds to specifying a 
particular decision rule. Then questions of t!!e type: “Is there a 
decision rule with  a certain property?” are equivalent to questions 
of the form: “Is there an assignment of truth values to the Boolean 
variables such that  a certain set of Boolean expressions are all 
true?” We then exploit the fact that certain problems of 
propositional calculus are known to be NP-complete. However, 
for our proof to be complete, we need to demonstrate that we can 
start from an arbitrary instance of the problem of propositional 

calculus under consideration and construct, in polynomial time, 
an instance of the decision problem under consideration. Carrying 
out this construction is usually the core of the proof. 

Proof of Proposition 2.1:’ We will reduce to DS (with 1 UI 
= 2, M = 3) the satisfiability problem of propositional calculus 
with three literals per clause (3SAT) which is a known NP- 
complete problem [ 2 ] .  Given an instance of 3SA T, let Vbe the set 
of literals and C the set of clauses. We construct an instance of DS 
as follows. Let 

Yi={ l ,  2, e . . ,  IV} ,  Ui={O, I}, i = l ,  2 ,  3 .  

Let 

S(k, k ,  k)={(O, 0, O), ( 1 ,  1, 111, k = l ,  * * . ,  I v l .  
Finally, we interpret each clause in C as stating that a certain 
triple of decisions is not in the satisficing set. [For example, the 
clause (xi v ’ x j  v xk) translates to the statement that the triple 
of decisions (0, 1, 0) does not belong to S(i, j ,  k).] It is then easy 
to see that a satisfying assignment for the variables in Vexists if 
and only if the  above constructed instance of DS is  a “yes” 
instance. 0 

a> If Ul = 1 or U2 = 1, the problem is trivial. If D2 = 1, 
Proof of Proposition 2.2: 1) 

a satisficing decision rule exists if and only if 

n T I ( ~ ( Y I ,  Y ~ ) + O .  vYl E Yl 
{ h : ( Y I S Z F I )  

where al(ul, u2) P ul .  The above condition can be clearly tested 
in polynomial time (in fact, O(( Y,( 1 Y2() time). 

b) This is the result of [IO] mentioned in Section II. 
c) Possibly by renaming, let Yl ,  Y2 be disjoint sets. 

Consider the graph G = ( Yl U Y,, I ) .  (Here Yl U Y2 is the set of 
nodes and I is the set of undirected edges.) Since Dl = D2 = 2, 
each node of G has degree  at most 2. Therefore, the connected 
components of G are either isolated nodes, chains, or cycles. 
Each connected component of G defines a subproblem and these 
subproblems are decoupled. So, without loss of generality, we 
may assume that G consists of  a single connected component. We 
may also assume that G is a cycle (Fig. 2). (If  it  is  a chain, we can 
introduce an addition edge to make it  a cycle; this will  not make 
the problem any easier because a  new edge simply allows the 
presence of some more  constraints.) In that case, Yl and Y2 have 
the same number n of elements. Possibly by renumbering (see 
Fig. 2)  we may assume that 

I={ ( i ,  i): i = ~ ,  . . a ,  n}U{(i, i - 1 ) :  i=2 ,  * a * ,  n}U{(l, n)}. 

Let us defiie 

S’(1, n - l ) = { ( u l ,  uA-J E U ~ X U ~ :  3(un, u ; )  E U I X U Z  

such that 
(un, uA) E S(n, n) ,  (un, u ,LJ  E S(n, n - l), 

(Ul ,  E S(1, 4 1  
and  note  that S’(1, n - 1)  may be evaluated in O(l VI I 2 1  U2l 2, 
time. We now have the following. 

An instance of DSI is a “yes” instance e 

3(ul, u,’, . . e ,  u,, u,I)[(ui, u,’) E S(i, i), i=  1 ,  . . e ,  n and 

(ui, u / - , )  E S(i, i-I), i=2, . e . ,  n and 

@ I ,  u ; )  E S(1, @ I #  
~ ( u I ,  u;,  ’ a . 7  u n - 1 9  u;-I)[(ui, ui’) E S(i, i ) ,  

j = l ,  ,n - 1 

Throughout, we use the symbols A, V, and 7 to denote  the Boolean 
Operations logid AND, l og id  OR, negation, respectively. 
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Fig. 2. A bipartite  graph consisting of a  single cycle. 

and ( ~ 1 ,  uA-1) E S‘(1, n-l)] .  

The last expression corresponds to a new instance of DSI in which 
n has been replaced by n - 1. Proceeding in the same way, the 
problem will be solved after at most n similar stages. This is 
essentially an algorithm of the dynamic programming type, with 
complexity O( I YI I I I I U2 I 2). 

Remark: In fact, an O( I Yl 1 I VI I I U21 ( 1  Ul 1 + I & I ) )  solution is 
possible, if at each stage of the dynamic programming algorithm, 
we only eliminate one rather than two variables. Also, if G is a 
chain, an O( 1 Y, I I I U21) algorithm is obtained along the same 
lines. 

d) We now suppose that Dl = lU2( = 2. Let Y,  = { 1, 
-, m},  Y, = { 1, * e ,  n} and assume, without loss of 

generality, that for each k E Y1, there exist exactly two distinct 
elements i, j of Y2 such that (k, i )  E I ,  (k,  j )  E I .  

Note that we have a “yes” instance of DSI is and only if 

3ul, ..., u, E U23ul, .. a ,  urn E U1v(k, i) E 1 

[(Uk, u;) E S(k, ill. (A. 1) 

Consider also the statement 

3u1, ..*, u, E u2 v (i, j )  E Y2xY2 Vk E Yl 

[ [ (k,  i) E I (k, j )  E I i#j]* 

3 ~ k  E UI[(U~, u;) E S(k, i) A ( ~ k ,  uj> E S(k,  ill1 (A.2) 

which is equivalent to 

3u1, . * ,  u, E U,v(i, j) E Yz X Y2[(ui, u,) E S’(i, j)] (A.3) 

where 

S‘(& j ) = { ( u ,  u ‘ )  E u2x u2 : vk  E Y1 

[[(k, i )  E I !k, j )  E I i#J]=, 

3uk E u I [ ( u k ,  U) E S(k, i) A ( U P ,  u ’ )  E S(k, j>II}* 
(A.4) 

If (A.l) holds, then it is easy to see that (A.2) holds as well, 
with the same assignment of values to u;, u k .  Conversely, assume 
that (A.2) holds. For  each k, there exists only one pair ( i ,  j )  such 
that the condition [(k, i) E rJ A [(k, j )  E r]  A [(i # j ) ]  holds. 
Accordingly, for each k, the clause [ (uk,  u;) E S(k, i) A ( u k ,  uj) 
E S(k, j ) ]  needs to be checked only for one pair ( i ,  j ) .  Therefore, 
for each k, a value of uk which  makes (A.2) true can be chosen 
regardless of (i, j ) ,  and this value makes (A. 1) true as well. 

Therefore, we  only  need to show that the truth of  (A.2) can be 
decided in polynomial time. Note that, for each (i, j ) ,  the set S’( i ,  
j )  defined by (A.4) may be constructed in time O(l Yll VI I). 
Moreover, there are at most  min { 1 Y212, 1 Yl l )  pairs to be 
considered; so the sets S’(i, j )  may  be constructed in  time 
O(lYIJJUIJ min(lY2I2, IYll}). One S ’ ( i , j )  is constructed, the 

statement (u;, u,) E S’(i, j )  may be expressed as a set of clauses 
with two literals per clause (the literals are the Boolean variables 
ui, u,; th~s is similar to the proof of part b); see [lo]). Therefore, 
deciding the truth of (A.3) is a special case of the satisfiability 
problem of propositional calculus with two literals per clause 
(2SAT), which can be solved in linear time [9]. 

2 )  Consider the following restricted version of the satis- 
fiability problem for propositional calculus with three literals per 
clause (3SA T) .  An instance of this restricted problem (which we 
call RSA T )  consists of the following: a set of  Boolean variables F 
= Fl U F2 where Fl = {yij: i  = 1, - - a ,  m; j = 1, 2, 31, F2 = 
{x;:i = 1, * * a ,  n} . It also consists of the following set of clauses 

C. 
i) one clause for each i between 1 and m, stating that 

exactly one of the variables y j l ,   y j2 ,  yi3 is true, and 
ii) an arbitrary number of clauses of the form ( 1 yo V xk) 

or ( l y u  V -xk) .  It was shown in [ 101 that RSA T is NP- 
complete and that RSA Tis  equivalent to DS with I VI I = 3, 1 U2 I 
= 2. It will be useful to point out the reasons for the latter fact: 
think of the observation sets Yl and Y, as being equal to (1 ,  * - a ,  

m )  and { 1, - * ,  n), respectively. Which  of the variables y,,, yj2,  
yi3 is true determines whether yl(o is equd  to 1, 2 ,  3; simfi&’, 
the value of xk determines whether y2(k) is 0 or 1. Finally, a 
clause of the form ( l y i j  V xk) would indicate that a certain pair 
of decisions is incompatible, i .e., does not  belong to S(i, k). 

Let us  now introduce a graph with  nodes Fl U F2 and edges I = 

From this graph, we may obtain a new one by lumping together 
(for each i E { 1, . * a ,  n}) the three nodes y i l ,  yi2, y j3  into one 
node y,. L e t  H I  (respectively, H2) be the maximum degree of 
nodes  of type yi (respectively, x k )  in this new graph. 

We have indicated above a one-to-one correspondence between 
instances of DS and RSAT. With this correspondence, it is not 
hard to see that if  we have an instance of DS of degree (Dl, DX), 
then the numbers H I ,  H2 obtained from the associated instance of 
RSA Tare actually equal to D l ,  D2, respectively. (The converse is 
also me . )  

f(i, k): g j  Such that ( l y u  V X k )  e c Or ( ly , j  V 1 X k )  E c). 

For this reason, it  only remains to prove the following. 
Lemma .4.1: RSAT is NP-complete even if it is restricted to 

instances for which HI  = 3, H2 = 2. 
Pruo$ Given that RSA Tis NP-complete [lo], it is sufficient 

to start with a general instance of RSA T and reduce it to a new 
instance for which HI = 3, H2 = 2 holds. This is accomplished 
by creating multiple copies of each variable so that, instead of 
having the same variable appear in many clauses, distinct copies 
of  it are used. Of course, some clauses will  be  needed to create the 
multiple copies, but these can be kept to a small number. The idea 
01 Me proot 1s best shown diagramatlcally, as in Fig. 3. (A more 
formal argument may be found in [ 161, but the present one is 
easier to visualize.) 

Let yil, y ; ~ .  yi3 be variables in a given instance of RSAT. We 
introduce some new z variables, as well as some clauses which 
guarantee, for example (see Fig. 3), that z1 = yil, z2 = yi2, z3 = 
z6 = 2 7  = zlo = ~ 1 3 .  (For example, the clauses 

(124 V l Z 3 )  A ( ~ Z S  V 123) A ( 1 Z g  V Z3), 

together with a requirement that exactly one of the variables a, zsr 
z6 is me, imply z3 = z ~ . ) ~  In this way, we can effectively create 
an arbitrary number of copies of the y variables, and the same 
procedure works for the x variables as well. Note that in doing so, 
we have respected the requirement that H I  = 3, H2 = 2. Finally, 
for each clause in the original instance of RSA T,  we  may 
introduce a clause involving appropriate copies, and it is easy to 
see that the requirement H I  = 3, H2 = 2 still will  be respected, 
as long as we use a different copy each time. Moreover, since an 
arbitrary number of copies may be created by the above 

hnes  indicate that two variables  are  constrained to be equal:  a  curve  encircling 
The  arcs  in Fig. 3 indicate  the  variables  that  have  a common clause;  solid 

a triple of variables in F, indicates that these are to be merged to a  single  node. 
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F1 

F2 : 

Fig. 3. T h e  construction of copies of the original variables. 

procedure, an arbitrary number of clauses for the original instance 
of RSA  T may be. thus handled. 0 

Proof  of  Proposition 2.3: This proof is effectively a 
generalization of the dynamic programming argument in the proof 
of part IC) of Proposition 2.2. Let us assume that n 2 2 0 .  For 
any k such that 2 0  I k 5 n, let 

r(k)={(ul, V I ,  uZ, u2, uD9 UD, u k - D + l l  Uk-D+lr  

* . ' 3 u k ,  uk) E (UI x U2)m : 

a ( u D + l ,  uD+lr U k - D ,  Uk-D) E (Li ] x U 2 ) k - 2 G  

such  that 

(ui, uj) E S(i, j ) ,  v(i, j) E { I ,  . e . ,  k j 2  n I } .  

Note that r(k)  is of size at most 1 Ul I U21 20. Now assume that 
W s k s n -  l a n d l e t  

f (k+l )={(ul ,  V I ,  u23 u 2 ,  *.., uD, UDt uk-D+lr u k - D + l r  ' ' ' 9  

U k + I .  U k + J  E (U,  x u2)w+2 : 

I ( U D + l ,  u D + l .  U k - D ,   U k - D )  

E (U1 X U 2 ) k - w  such  that 

(uj, u,) E S ( i , j ) ,  v(i , j)  E { I ,  - . e ,  k+1}2nz } .  

Using the assumption Ii - jl  I D or li - jl  2 n - D, v(i, j )  
E Z ,  we can see that 

( 1 ,  "', k + l } '  n I c [{I, " * ,  k}21 n A k - 1  

where 

Assum$g that the set r ( k )  has been computed, we  may use it to 
evaluate r ( k  + 1) as follows. For each element of r ( k )  (at most 
I L;)mJU2)m elements), try each pair ( & + I ,  U k + l )  E Ul X 
U2(l Ull I Uzl pairs) and check for each (i. j )  E A k + ]  rl I ( & + I  

has at most 4D2 elements) whehler (u;, uJ E S(i,  j )  holds. 
Therefore, given r(k), we may obgin r ( k  + 1 )  in time 
O(D21U1120+11U~1w+1). Finally, from T(k + l), we  may easily 
obtain r(k + 1 )  by taking a projectio. 50 as to eliminate u ~ - ~ +  
u k - D +  This process may be repeated (for no more than n stages) 
to compute r(n) in time O(nD*I VI\ zD+ll U21 Then note that 
we have a "yes" instance of DSZ if and only  if r ( n )  # 0. 0 

Remark: The algorithm in the proof of Proposition 2.3 does 

not fmd a satisficing decision rule; it  only determines whether one 
exists. However, satisficing decision rules may be computed by 
keeping in the memory some of the intermediate results produced 
by the algorithm. 

Proof of Proposition 3.1: Consider the following problem 
of propositional calculus which  we  call P .  

Problem  P: We  are given two sets X = {xl  - a ,  x, } ,  Z = 
{zl, - e ,  z,} of Boolean variables, a set D of (distinct) clauses of 
the form xi A z, or 1 (x; A z,) (we assume that for any pair (i, j )  
at most one of the above clauses is in D),  a collection { qG:i E { 1 ,  - * - , m } ,  j E { 1, e ,  n } }  of nonnegative integers, and an 
integer K .  Is there a truth assignment for X and Z such that J 5 K 
where 

34 x q;j+ qjj, (AS) 
x, Az, = 0 

( I J ~ E A I  
x, m,= I 
( i d  E A0 

&= {(i, j )  : the  clause -I (xi A zj) is  in D } ,  

A I  = {(i, j )  : the  clause (x; A zj) is in D}?5 

Lemma A.2: Problem P is equivalent to DD. 
Proof: Think of X ,  Z as being the sets of observations of 

processors SI, S,, respectively. A truth assignment to X ,  Z 
corresponds to a choice as to what binary message to transmit to 
the fusion center, given each processor's observation. Let Ho 
(respectively, H I )  be the hypothesis that (i, j )  E A.  (respectively, 
AI).  Finally, view qij as the (unnormalized) probability that the 
pair (i, j )  of observations is obtained by the two processors. Pairs 
(i, j )  that belong to neither A .  nor AI  may be viewed as having 
zero probability and are, therefore, of no concern. Then it is easy 
to verify that J ,  as defined by (AS), is precisely the (unnorma- 
lized) probability of error. 0 

In order to complete the proof of the proposition, we need to 
show that P is NP-complete. This will be accomplished by 
reducing to P the following (maximum 2-satisfiability) problem of 
propositional calculus which is known to be NP-complete [2].  

MAX-2-SA T: Given a set U of Boolean variables, a collection 
C of (distinct) clauses over U ,  such that each clause c E C has 
exactly two variables and an intcgcr K 5 IC(, is there a truth 
assignment for U which simultaneously satisfies at least K of the 
clauses in C? (Without loss of generality, we assume that if a 
clause is in C, then its negation is  not in C.) 

Suppose that we are given an instance ( U ,  C,  K )  of MAX-2- 
SAT. We construct an instance of P as follows. Suppose that U 
= {u l ,  - * -, u,}.  Then, let X = {xjI,   xj2,   xj3:i  = 1, e ,  n} and 
2 = { z j l ,  zj2, zj3:i = 1 ,  * *., n} .  For each i E ( 1 ,  - *  e ,  n} ,  
introduce the set Di of clauses: 

- I (X~I  A ~ 1 2 1 9  (x12 A ~121,  -1(xr2 A Z i l ) ,  (x13 A ~ 1 0 . 1 ,  

~ ( X L Z  A (xi3 A Z d ,  (Xi1 A Z d ,  (Xi3 A zi3)- 

To these clauses, we assign the weights (L  is a large integer to be 
determined later): 

qi1 ,~=30L,   q~ ,n=15L,  q;z,il=4L, qi3,a=2OL 

q12,;3=8L, 4;3,;1 =2L, 4;1,0=25L, q13,,3= 1ooL. 

Next, for each clause (u; A u,), ( -I u; A u!), ( 7 uj A -I u,), (uj 
V uj), (-I uj V uj), (-I ui V 1 uj) in  C(w1th i < j ) ,  introduce 

A zj2), 1 (x;] A zj l ) ,  respectively. Denote this last set of clauses 
by Do, and assign to each one unit weight. We now let D = U ;=o 
D, and observe that X ,  2, D,  { q i j } ,  K define an instance of P.  

Note that for my  assignment for X, Z ,  the corresponding cost 

clauses (xi1 A zjl), (xi2 A Z j d ,  (xi2 A zj2)9 - 1 h 2  A zjd, -1(xi1 

' So J is the sum of the weights yo of the cisuses that  are  not satisfied. 
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(AS) may be  decomposed as 

where JI,  I E (0, 1, e ,  n }  is the sum of the  weights qu of the 
clauses in Dl which are not satisfied. 

Lemma A.3: For any i E (1, e - . ,  n } ,  we have Ji = 35L if 
and only if either of  the following is true: 

1) xil=zjl=xi3=zi3=1, xil=zi2=0 

2 )  xc=z,2=xt3=z,3=1, x,l=zil=o. 

For any  assignment to {xi,, zi,: i = 1, 2, 3 )  other than  the two 
assignments  above, J, 2 37L. 

Proof: The  proof is by direct evaluation of Ji for each 
possible  assignment.  See [ 161. 0 

In view of Lemma A.3, the  clauses in Di and their associated 
weights have  the  following interpretation: the variable xil may  be 
freely  assigned, but the  remaining  variables must  be assigned SO 
that xj2 = zi2 = l z i l  = l z j l .  For this reason,  the  clauses in Do 
are effectively the same as the original set C of clauses. 

Lemma A.4: Let L be  large  enough so that IC1 < L.  Then 
there exists a truth assignment  for U for which  at  least K clauses 
in C are satisfied if  and only if there exists a truth assignment for 
X ,  Z such  that the resulting cost J is less than or  equal to 35nL + 

Proof: a) Given an  assignment  for U, with  at  least K 
IC] - K .  

clauses satisfied, assign  the  variables in X, Z as follows: 

Xjl=zil=uj, x i2=z ;2=7Uj ,  x,-j=&3=1. 

Using Lemma A.3 and  the identity (A.6), the resulting cost is 
35nL (i.e., 35L from  each  collection Di, i = 1, * * * ,  n) plus  the 
number of clauses in Do which are not satisfied (since  these  carry 
unit  weight). The latter number is identical to the  number of 
clauses in C which are not satisfied, which is less than or equal to 

b) Conversely,  given  an  assignment  for X, Z such  that J 5 
35nL + IC1 - K,supposethatforsomeiE (1, - . . , n } , J i r  
37L. Using Lemma A.3 and the inquality IC( < L ,  we  obtain 

IC1 - K .  

n 

J z Z  Jjr3SnL+2L>3SnL+ IC( -K 

which is a contradiction and shows that Ji = 35L, vi. Conse- 
quently, (xi, ,  xi2, zil, zi2) have  been  assigned values  in one of the 
two ways suggested by Lemma A.3. We now assign truth values 
for iJ by setting ui = x i l .  Then Jo is the  number  of  clauses in C 
which are not satisfied. Moreover,  since Ji = 35L, i E { 1, - . * , 
n), it follows that JQ 5 IC( - K, which  implies that at least K 
clauses in C are satisfied. This completes  the proof  of  Lemma 
A.4. 0 

It is easy to see that the above  reduction  of MAX-2-SA T to P is 
polynomial.  Therefore, P is NP-complete and so is DD, thus 
completing  the  proof of the  proposition. 0 

;= r 
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