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Abstract. A queuing system with infinitely many servers, and with the following queuing discipline is 
considered: For any two jobs i and j in the system, such that i arrived later than j, there is a fixed 
probability p that i will have to wait for j’s execution to terminate before i starts executing. This queuing 
system is a very simple model for database concurrency control via “static” locking, as well as of parallel 
execution of programs consisting of several interdependent processes. The problem of determining the 
maximum arrival rate (as a function of p) that can be sustained before this system becomes unstable is 
studied. It is shown that this rate is inversely proportional to p, and close upper and lower bounds on 
the constant for the case of deterministic departures are found. The result suggests that the degree of 
multiprogramming of multiuser databases, or the level of parallelism ofconcurrent programs, is inversely 
proportional to the probability of conflict, and that the constant is small and known within a factor of 
2. The technique used involves the computation of certain asymptotic parameters of a random infinite 
directed acyclic graph (dag) that seem of interest by themselves. 

Categories and Subject Descriptors: C.4 [Performance of Systems]: design studies; D.4.8 [Operating 
Systems]: Performance-queuing theory; H.2.2 [Database Management]: Physical Design 

General Terms: Design, Performance, Theory, Verification 
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1. Introduction 
Consider the following queuing system. Jobs arrive at a rate A. There are infinitely 
many servers that can service these jobs, and we assume that the service times are 
independent identically distributed variables with known distribution. Ordinarily, 
we would assign each incoming job to a different server, and the system would not 
be of any particular interest. Let us assume, however, that the jobs have certain 
precedence constraints between them. In particular, for each arriving job i and each 
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job j in the system at the moment of i’s arrival (j is either in the queue or being 
served), there is a probability p that i cannot start before the service of j is com- 
pleted. Owing to this constraint, it may not be possible to start servicing a job, 
despite the availability of servers. Moreover, as the number of jobs in the queue 
increases, incoming jobs will have a higher probability of having to wait too; this 
will further increase the size of the queue, and the process is potentially unstable. 
The question that we would like to investigate is, under what conditions on the 
arrival and service time distributions, as well as on p, is the queuing system stable. 

This queuing system is a very simple attempt at modeling the performance of 
concurrent systems with conflicts and interdependencies between the processes. 
One such situation is the scheduling of database transactions so as to preserve 
consistency [la, 3, 41. One common method employed in database concurrency 
control is locking. In the simplest version of locking, once a transaction arrives and 
requests execution, it predeclares the database entities that it must access and/or 
update. If there is a conflict with a previous arrival, the transaction joins a queue 
and waits for that transaction to complete. If the probability of conflict between 
any two transactions is p, and we assume that there is enough processing power in 
the system so that the processing times of the transactions are not affected by the 
degree of multiprocessing, we have the queuing system under consideration. We 
should note that there are more clever ways to do locking. For example, we may 
acquire locks in a dynamic way (with the possibility of introducing deadlocks); or, 
we can start a transaction each time no active transaction conflicts with it, instead 
of waiting for all previous arrivals that conflict with it to execute. However, we 
think that our simple model captures the essentials of the queuing situation arising 
in database concurrency control, and deserves study, especially because of its 
conceptual simplicity. 

Another application of our model is parallel computation. Suppose that a 
program consists of many processes, with the following pattern of interdependency: 
Consider a process i and another process j written before i was. Then there is a 
probability p that process i needs data computed by process j. If such a pattern of 
dependencies exists, then the effective parallelism of the program is captured by 
the maximum ratio of the arrival-to-service rate (what we call throughput’) of our 
queuing system. 

In Section 2 we present a mathematical model for this system. If the arrival and 
service times are both exponential, then we have a Markov process with arbitrary 
directed acyclic graphs (dags) as states. This makes a direct approach to this 
problem virtually impossible. For this reason, we focus on the special case in which 
service times are deterministic. Then the states of the process are finite sequences 
of integers, much simpler than dags. In Section 3 we study in more detail the case 
of deterministic service times. We also consider a related process in which jobs 
arrive into the system but are never served, so that the size of the queue grows to 
infinity. From a slightly different point of view, this latter process corresponds to 
forming a random graph. We show that the throughput of the original system can 
be compactly characterized in terms of the asymptotic expected depth of this 
random graph. 

On the basis of the results of Section 3, we obtain in Section 4 upper and lower 
bounds on the throughput of the original system by exploiting certain inequalities 

’ In the queuing-theoretical literature the term “throughput” is used to describe the ratio of the arrival 
rate divided by the total service rate, for all processors. Our use is therefore slightly nonstandard. 
However, this deviation is totally justified, since in our model and intended applications the servers are 
components of a single concurrent system. 
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on the statistics of the associated random graph. As the probability p tends to zero, 
the throughput converges to infinity. However, we are able to bound the through- 
put, within a constant factor from the inverse of p, for arbitrarily small p. We also 
discuss briefly the case of exponential service times, in which the same upper 
bounds, but a weaker lower bound, appear to hold. 

2. The Model 
In this section we present a model of the system under study and introduce some 
notation. Jobs are indexed by the positive integers in order of arrival; the arrival 
time of job j is denoted tj. We assume that, with probability 1, no two jobs arrive 
simultaneously, that is, t;+, > ti; also that the interarrival times ti+l - ti are 
independent, identically distributed, with finite mean. The arrival rate is then 
defined as X = l/E[ti+l - ti]. For any pair (i, j) of jobs such that i > j, let “0 be a 
O-l random variable with mean p. We assume that these random variables are 
independently distributed both among themselves, as well as with the sequence of 
interarrival times. Here, the event aij = 1 corresponds to a precedence constraint 
from i to j. That is, service of job i can only start after service of jobi has terminated. 

At any time t, there will be a set V(t) C Z+ of jobs that have arrived and whose 
service has not yet terminated. Let 

V,(t)= (if2 V(t):thereisnojE V(t)withaii= 1) 

be the set of presently serviced jobs. That is, we assume that there are infinitely 
many servers available, and that, once a job has no precedences leading to other 
jobs, its service starts. Thus, there are two possibilities for an arriving job i. Either 

v(t;)n (j:a,= 1) =0, 

in which case i E Vo(t;) and service starts immediately, or the intersection above is 
nonempty, and thus i’s service will start at time Ti, where 

7; = &f(V(t) t-l (j: cyij = 1) = 0). 
I 

Let si denote the service time of the ith job. Formally, 

Si = wF{i E V(t)) - 7i. 
I 

We assume that the service times are themselves independent, identically distrib- 
uted, random variables with finite mean (without loss of generality taken to be l), 
and also independent of arrival times and the precedence events. We can now pose 
the problem of interest in this paper: 

Find necessary and sufficient conditions on the distributions of the interarrival 
and service times, and on p, so that the above defined queuing system is stable in 
an appropriate sense. 

Remark. In simple queuing systems (e.g., for the G/G/ 1 queue) conditions for 
stability can be expressed only in terms of the arrival and service rates. Accordingly, 
we show in Section 3 that (in the case of deterministic service times) stability 
depends on the interarrival times distribution only through the parameter X. 
However, there are reasons to believe that throughput depends on the exact form 
of the service time distribution, and not just its mean. 

To illustrate the difficulty of this problem, let us consider briefly the case of 
exponential interarrival time and service time distributions. In this case it is 
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straightforward to obtain a Markov model for the process. In particular, the state 
X(t) is a dag (V(t), E(t)), with V(t) the set of jobs that have arrived but have not 
yet been serviced, and arc (i, j) is in E iff ‘Ye = 1. Although the state transition 
probabilities between two dags are very easy to compute, they are nevertheless 
extremely hard to handle. Although the state space is countable, there is no 
convenient parameterization or ordering of its elements. There seem to be no 
techniques in the spirit of networks of queues [2] that are applicable. The direct 
approach through the state transition equations is hopeless. This motivates the 
study of deterministic service times. In this case, even though the Markov property 
is lost, the state of the queue admits a much simpler description, and interesting 
results can be obtained. 

3. The Asymptotic Depth of Random Dags 

In this section we assume that the service times Si are deterministic and in fact 
equal to 1. In this case, our model can be considerably simplified. The basic 
observation is that the time at which an arriving job i will start service is determined 
to within one time unit by the precedences. In particular, the waiting time is 
approximately equal to the length of the longest chain leading from i to other jobs 
in V(t;). 

More formally, to each arriving job i we assign an index n(i) equal to 

n(i) = max((LtiJ) U (n(j): cyij = 1)) + 1. 

Intuitively, a job i is guaranteed to complete service in the interval [n(i), n(i) + 1). 
Finally, l(t) is the depth of the queue at time t, that is, l(t) = max,+,n(i) - LtJ. Note 
that l(t) = 1 iff V(t) = V,(t), that is, all jobs in the system are simultaneously 
serviced. We can now define the renewal times of our system. The zeroth renewal 
time RO is zero, and for all k > 1, 

Rk+, = inf(t: t 2 Rk, l(t) d 1, and there is a 7 E [Rk, t] such that l(7) > 1). 

Define now the system to be transient if lim,,l(t) = 00, and the system to be 
positively recurrent if there is an A such that for all k we have E(Rk+, - Rk) 5 A. 
Notice that, even though we do not have a Markov model, this definition is similar 
to the traditional classification of chains in a countable state space. Also, the two 
cases of this definition are not exhaustive, in that the system can be “null recurrent.” 
We shall show, however, that this may happen only for a single threshold value of 
the arrival rate X. 

We are thus led to studying the statistics of longest chains in random dags. 
Let G = (Z’, E) be the infinite directed graph of the precedence constraints; 
that is, (i, j) E E if CY~ = 1. We denote by G[m, n] the node-induced subgraph 
ofGwithvertexset(m,m+ I,..., n). We define the depth of G[m, n], d,,, to 
be the length of the longest path in G[m, n]. We next define ,t3,, = E[dlJn and 
/I* = lim inf,,Pn. 

Intuitively, p* is the rate of increase of the longest chain in the queue per unit 
arrival. On the other hand, the depth of the queue tends to decrease by one per 
unit time owing to service. For this reason, it is quite natural to expect that the 
throughput of the system is exactly l/p*. This is made precise in the following 
theorem: 

THEOREM 1 

(1) The sequence (&) converges to ,B* from above. 
(2) The limit lim,, (d,,,,,/n) exists almost surely, and is equal to /3* for any m. 
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(3) If X > l/p*, then the system is transient. 
(4) If X < l/p*, then the system is positive recurrent. 

PROOF 

(1) Notice that, from the definition of d,,,, it follows that, for all a I b I c, we 
have dab + db+l,C 2 d,,. Therefore, d,,k,, I xi dci-l)n+l,in. Noting that the terms of 
the sum are all independent and identically distributed, we take expectations and 
divide by kn to obtain &Bkn I &. Also, it is easy to check that, with positive 
probability, this inequality is strict. We conclude that &, > /3* for all n. 

We can similarly show a more general inequality, namely, 

(a + b)@a+b 5 aPa + bh. 

Now fix some t > 0, and choose an no such that &, I fi* + 42. Then choose a 
k,suchthat&&<t/2forallm= l,..., no. Then, for all k L ko and m I no, 
we have, using the previous inequality, 

P 
k&d&c ML 

kno+m s kno + ; + kno + m 
< p* + t. 

It follows that fin indeed converges to p*. 

(2) Fix an integer n. Then 

lim sup 2 = lim sup rnn; * 
k-m k-m 

= limsup b’ 5 1 limsup 1 ‘i’ d. 
k-KC kn n k--Ko k j=. Jn+l,(j+l)n = h* 

The latter equality follows from the weak law of large numbers, since the addends 
are independent and identically distributed random variables with means n/3,. 
Since this inequality holds for all n, we conclude that lim supk-(drk/k) I p*. 

To complete the proof of part (2), we show a converse inequality. Fix an integer 
n. Let rk be the largest integer less than nk that has depth in G equal to the 
maximum d,,k. For k 2 2 we define mk to be the number of nodes in the interval 
[(k - 1)n + 1, kn] that have in G paths to &I. Notice that, by the choice of rk, 
the mk’s are independent and identically distributed random variables, since they 
depend in the same manner on disjoint sets of (~~3. El 

LEMMA 1 

(i) E[mk] 2 n - l/p2. 
(ii) For all k 2 2, dl,kn 2 d,,(k--l)n + d(k-,)n+,,kn - (n - mk). 

PROOF 

(i) Let uI, u2, . . . be, in increasing order, all nodes with paths to r&l. Then we 
have that n - mk 5 c,“=o (Uj+l - Uj - 1). NOW notice that 

Pr(Uj+l _ uj = 1) = (1 _ p)C’-l)U+l)(l _ (1 _ p)j+‘), 

and, therefore, 

E[Uj+* - Uj] = 
1 

1 _ (1 - p)i+l * 
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E[n - rnk] 5 i ( 
1 

) 

1 
j=. 1 - (1 -p)i+l - ’ ‘p” 

(ii) Consider the path that achieves ~&-,,~+,,k,,. Of its d+,,,,+,,kn vertices, all but 
n - rnk have paths to Q-, . Thus, the last element of the chain has depth in G at 
least 4,(k-I)~ + d(k-,jn+,,kn - (n - mk). 0 

Now, to show the inverse inequality for (2), repeated applications of Lemma 
l(ii) yield dl,,,k 2 Cj”=l dcj-l,,+l,jn - & (n - mj). Then, proceeding as in the proof 
of the other direction, 

lim inf + = lim infE$ * 
k-co k-co 

Since this inequality holds for all II, it follows that liminfk-dlk/k 2 
lim infk-+m(& - l/np2) = fi*. 

(3) Let us assume that h > l//3*, and let A(t) be the total number of arrivals 
prior to time t. By part (2) of the theorem, we have that lim,,(d,,,&A(t)) = p* 
(almost surely), and also that lim,,, (A(t)/t) = X (almost surely), and thus 
lim,+m(d,,a(t,/t) = 0*X > 1 (almost surely). Therefore, liml-ro(d,,A(I) - LtJ) = 00 
(almost surely). Notice now that the quantity in the limit is a lower bound on the 
depth of the queue at time t, which establishes that the system is indeed transient. 

(4) To show this last part, we need a lemma. 

LEMMA 2. Suppose that A@’ < 1. Then, there is some t 2 0 such that 
-W,,,dt < 1. 

PROOF. Let 6 > 0 be small enough so that X(p* + t) + E < 1. Choose no such 
that, for all y1 2 120, Pn 5 ,L?* + t. Finally, choose t large enough so that t 2 no, and 
Pr(A(t) < no) < t. Also note that d ,,A,r) I A(t), for all t. With the above, we obtain 

E[dlp(,)l = E[dl,A(f) IA(t) 5 nolPr(A(t) 5 no) 
+ EIWl,A(r) I401 I A(t) > nOlPr(A(t) > no) 

5 noe + (p* + f)E[A(t) IA(t) > no]Pr(A(t) > no) 

5 tc + (p* + t)E[A(t)] = t(c + (p* + t)A) < t. 0 

So, we have found a time t so that E[dl,AClj ]/t < 1. We shall use this to show that 
the system is recurrent. We do this as follows. We simplify our queuing discipline, 
making it suboptimal, and thus less likely to be recurrent. In particular, we consider 
periods of length t. During each period, we service only the jobs that were left from 
the previous one, whereas the new arrivals are constrained to wait for those left 
from previous periods. This is obviously suboptimal, since it imposes an additional 
constraint on the problem. Then it is easy to check whether the depth xk of the 
queue at the beginning of the kth period obeys the equation 

xk+l = 
-I 

(xk - t) + yk if xk > t, 
Yk otherwise, 

where yk is the length of the longest chain in the arrivals during this period. These 
are independent and identically distributed random variables, with mean less than 



Performance of a Precedence-Based Queuing Discipline 599 

t, by Lemma 2. It is easy to verify that this system is positive recurrent, that is, that 
the expectation of the length of runs of indices k with xk > t is finite. If this bound 
is K, then the expectation of the periods between two consecutive renewals in our 
system is at most Kt. This completes the proof of the last part of Theorem 1. Cl 

In view of Theorem 1, the value X * = l//3* will henceforth be called the 
throughput of the system. Theorem 1 says nothing about the case X = l/p*; it 
could be that, for this value, the system is neither transient nor positive recurrent. 
Also, note that the stability of the system depends on X alone, and not on other 
moments of the interarrival times. We conjecture that this holds for any service 
time distribution. 

Theorem 1 provides a constructive way for obtaining lower bounds on the 
throughput of the queuing system: For any fixed n, Pn is such a bound. For upper 
bounds, however, /3,, is useless. In what follows, we define a quantity that is helpful 
in that respect. 

Let P,, denote the path, that is, the dag with nodes ( 1, . . . , n) and arcs 
((i+ 1, l):i= l,..., n- l).Wedeline 

y 
n 

= E[dl.2n I G[l, 4 = PA 
n 

Let us explain the meaning of yn. First, P,, is the average depth increase when n 
nodes are added to the dag, given that the process started from the most favorable 
conditions, namely, depth 0. As n goes to infinity, the effect of the favorable initial 
conditions gradually diminishes, and P,, approaches its limit p*. In the same spirit, 
yn corresponds to the average depth increase when n nodes are added, starting 
from the most unfavorable conditions, namely, totally ordered nodes. The following 
result can be obtained by arguments similar to those in the proof of Theorem 1 
(its proof is therefore omitted). 

THEOREM 2. The sequence (r,,) converges to /3* from below. 

COROLLARY 

( 1) Zf X > l/m for some n, then the system is transient. 
(2) u-x < l/P ,, or some n, then the system is positive recurrent. f 

4. Upper and Lower Bounds on the Throughput 
The previous section suggests methods for estimating the throughput of our system. 
One could estimate P* by simulation. More interestingly, numerical values of /3,, 
and -r,, can be calculated for small values of n. Unfortunately, this is not a realistic 
approach for sufficiently small values of p-and this is the range of interest for our 
applications. For example, as p goes to zero, it is easy to see that p* converges to 
zero. On the other hand, Pn satisfies Pn I l/n. So, if we fix the value of n and 
evaluate Pn as a function of p, we are not going to observe the true behavior of p* 
as p goes to zero. For this reason, different tools are required to capture this 
behavior. Before proceeding to a result of this type, let us make a few observations. 
It should be clear that ,& 2 p for all n, and thus ,8* 2 p or X*p 5 1. This is a 
fundamental limitation of the throughput. With this in mind, the exact value of 
X*p (which is between 0 and 1) may be viewed as the eficiency of the system. 
Moreover, it is better to think in terms of X*p instead of X*, because the former 
quantity remains bounded as p goes to zero (whereas the latter goes to infinity). A 
natural question is then whether X*p is bounded away from 0 as p goes to zero. 
This is settled next. 
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THEOREM 3. For all p # 0, X*p 2 l/e + p/2. 

PROOF. Let X,(k) denote the number of nodes in G[ 1, n] that have depth k or 
more (i.e., the length of the longest path starting at the node is at least k). 0 

LEMMA 3. For all n and k, E[X,(k)] I pk-‘(n), where (j) = 0,forj > i. 

PROOF. Induction on k. It holds for k = 1. Suppose it holds for some k. Then 

E[J’n(k + l)] = ic, E[l - (1 - P)~~-“~‘] 5 P i!l E[Xi-l(k)] 

SPj,Pk-l(i,‘)=Pk(,: 1). cl 

Now, 

p ” = E[dlnl y1 5 ; (kPr(X,,(k) = 0) + nPr(X,(k) > 0)) I a + pk-’ . 

Recall that the latter inequality is true for all k and n and note that 

n 

0 k’ 
(n - ((k - O/2Nk (l + o(l)) 

kkemk 

Choosing the first term to be any number larger than p/(e-’ + p/2), we observe 
that the second term tends to zero as k grows. It follows that /3* 5 p/(e-’ + p/2), 
or, equivalently, X*p I e-’ + p/2. Cl 

Recall that there is a ready upper bound: X*p 5 1. It is easy to derive a tighter 
bound, and we give a simple derivation. The basic observation is the following: 
With a nonzero probability, there are at least two nodes of maximum weight in 
G[ 1, n]. So, the probability that the next node increases the depth by more than 
one is bounded below by a number larger than p. The precise statement is the 
following: 

THEOREM 4. For allp E (0, I], X*p 5 (3 - 2p)/(4 - 4p + p’). (Notice that this 
implies that X*p tends to a quantity less than 0.75 as p goes to zero.) 

PROOF. We study the growth of the average depth of a family of graphs 
G’[ 1, n] that are bound to have less average depth than G[ 1, n]. The reason for 
this is that the graph G ‘[ 1, n] has smaller depth than G[ 1, n] fir each sample path. 
A graph G’[ 1, n] has n nodes, just as G[ 1, n], and is of one of the following two 
types (see Figure 1): either (a) a set of isolated nodes, together with a path starting 
with the nodes, say, k and 1, or (b) a set of isolated nodes with two paths starting 
at the nodes k and 1, and converging to a single path at their second node. Once 
we have G’[ 1, n], we can define G’[ 1, n + l] as follows: 

(1) Suppose that G’[ 1, n] is of type (a). Then we have three cases. (i) If 
&+I& = 1 (probability p), then node n + 1 is appended to the chain. The graph 
remains of type (a), only with a chain longer by one. (ii) If &+I& = 0 but CX,+I,I = 
1 (probability p( 1 - p)), then n + 1 is appended to 1 to form a graph of type (b). 
(iii) If neither holds, then IZ + 1 becomes an isolated node, and G’[ 1, n + l] is a 
graph of type (a). 

(2) Suppose that G’[ 1, n] is a graph of type (b). Then, if either &+l,k or (Y,+I,I is 
one, node n + 1 is appended to one of the paths, the end of the other path becomes 
an isolated node, and G’[ 1, n + I] is of type (a). Otherwise, n + 1 becomes an 
isolated node. 
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k P k 

e 
0 0 

(a) 

0 0 
0 0 

(b) 

FIGURE 1 

Notice that the growth of G’[ 1, n] is a Markov process, with states (a) and (b) 
corresponding to the types of graphs, and with steady-state probabilities 7r0 and 7Q 
satisfying 

Also, using the fact that a0 + 7Fb = 1, we get 

2-P 1 -P 
=a==P2P xb = 3 - 2p’ 

It follows that the probability that n + 1 increases the depth is (at steady state) 
p?r, + ( 1 - ( 1 - p)2)?‘Q, = (4 - 4p + p2)/(3 - 2p)p. 

This is the incremental depth of G’[l, n] (call it d,‘Jn). Notice that it is a lower 
bound for P,,. It follows that the limit of the latter quantity is bounded above by 
the former, and thus we obtain the theorem. Cl 

COROLLARY. 0.37 5 lim&!*p 5 0.75. 

By a more complicated argument we can establish that lim@X*p I log2 = 
0.69; we also have experimental evidence that limm X*p = e-l. 

Let us finally discuss briefly the case in which the service times are exponentially 
distributed with mean one (as opposed to deterministic and equal to one). It is 
possible to do an analysis of this case along very similar lines. It is not hard to 
show that, in this case as well, if X > l/p*, then the system is unstable (i.e., the 
same upper bound holds). For lower bounds, we conjecture that a sufficient 
condition for the system to be positive recurrent is X < 1 /ep log( 1 /p). That is, we 
feel that a similar lower bound still holds, although it is weaker by a factor 
of log( 1 /P). 

Note Added in Proof: Bruce Hajek has kindly communicated to us a proof that 
the limit of X*p is actually equal to l/e, as p tends to zero. 

The proof goes as follows: Consider a modification of our process in which an 
incoming job can only be blocked by the M deepest jobs in the queue. Let B(M) 
be the expected depth per unit time of the corresponding random digraph. Clearly, 
Pwo 5 P*. 

Consider now a further modification: If an incoming job is blocked by some of 
the M deepest jobs (probability 1 - (1 - p)“), then it is attached to any of these A4 
jobs with equal probability. Let ,8(M) be the corresponding expected depth per unit 
time. Notice that with this modification jobs are attached to positions at smaller 
depth, on the average. Hence, P(M) 5 p(M) I /3*. 

We now use the main result of [l] to obtain ,8(M) = s(M)[ 1 - (1- P)~], where 
the sequence s(M) has the property that lim ,+,,,Ms(M) = e. Putting everything 
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together, 

1 P* -=- >so[l -(I-p)M]=Ms(M) l -;;p)“. 
x*;P P-P 

Now let p + 0 and then let M + CQ. We then have [ 1 - (1 - p)“]/(Mp) + 1, 
which leads to the desired result. 
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