
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-31. NO, 9, SEPTEMBER 1986 803

Distributed Asynchronous Deterministic and
Stochastic Gradient Optimization Algorithms

Abstract-We present a model for asynchronous distributed computa-
tion and then proceed to analyze the convergence of natural asynchron-
ous distributed versions of a large class of deterministic and stochastic
gradient-like algorithms. We show that such algorithms retain the
desirable convergence properties of their centralized counterparts, pro-
vided that the time between consecutive interprocessor communications
and the communication delays are not too large.

I. INTRODUCTION

ANY deterministic and stochastic iterative algorithms admit
a natural distributed implementation [l], [3]-[5], [7]

whereby several processors perform computations and exchange
messages with the end-goal of minimizing a certain cost function.
If all processors communicate to each other their partial results at
each instance of time and perform computations synchronously,
the distributed algorithm is mathematically equivalent to a single
processor (serial) algorithm and its convergence may be studied
by conventional means. Synchronous algorithms may have,
however, certain drawbacks, which have been discussed in [9].

In this paper we study asynchronous distributed iterative
optimization algorithms in which each processor does not need to
communicate to each other processor at each time instance; also,
processors may keep performing computations without having to
wait until they receive the messages that have been transmitted to
them; processors are allowed to remain idle some of the time;
finally, some processors may perform computations faster than
others. Such algorithms can alleviate communication overloads
and they are not excessively slowed down by neither communica-
tion delays, nor by differences in the time it takes processors to
perform one computation.

In Section I1 we present the model of distributed Computation to
be employed. In this model, there is a number of processors who
perform certain computations and update some of the components
of a vector stored in their memory. In the meanwhile, they
exchange messages, thus informing each other about the results of
their latest computations. Processors who receive messages use
them either to update directly some of the components of the
vector in their memory, or they may combine the message with
the outcome of their own computations, by forming a convex
combjnation. Weak assumptions are made about the relative
timing and frequency of computations or message transmissions
by the processors.

In Section I11 we employ this model of computation and also
assume that the (possibly random) updates of each processor are
gradient-like; that is, they are expected to be in a descent
direction. when conditioned on the past history of the algorithm.

paper is based on a prior submission of February 18, 1984. Paper
Manuscript received December 19. 1984; revised October 25, 1985. This

recommended by Past Associate Editor, J. Walrand. This work was supported
by the Office of Naval Research under Grants NOOO14-77-C-0532 and
N00014-84-K-0519 (NR 649403) and by the National Science Foundation
under Grant ECS-82 17668.

Department of Electrical Engineering and Computer Science, Massachusetts
The authors are with the Laboratory for Information and Decision Systems,

Institute of Technology, Cambridge, MA 02139.
IEEE Log Number 8609873.

Our main results show that, under certain assumptions, asyn-
chronous distributed algorithms have similar convergence proper-
ties as their centralized counterparts, provided that the time
between consecutive communications between processors plus
communication delays are not too large. We distinguish two
cases: a) constant step-size algorithms (e.g., deterministic gradi-
ent-type algorithms) in which the time between consecutive
communications has to be bounded for convergence to be
guaranteed and; b) decreasing step-size algorithms (e.g., stochas-
tic approximation-type algorithms) for which convergence is
proved even if the time between consecutive communications
increases without bound as the algorithm proceeds. Sections II
and III are developed in parallel with a variety of examples which
are used to motivate and explain the formal assumptions that are
being introduced.

Finally, Section IV suggests some extensions and possible
applications. The Appendix contains the proofs of our main
results.

11. A MODEL OF DISTRIBUTED COMPUTATION

We present here the model of distributed computation em-
ployed in this paper. We also define the notation and conventions
to be followed. Related models of distributed computation have
been used in [3]-[5], [7], in which each processor specialized in
updating a different component of some vector. The model
developed here is more general, in that it allows different
processors to update the same component of some vector. If their
individual updates are different, their disagreement is (asymptoti-
cally) eliminated through a process of communicating and
combining their individual updates. In such a case, we will say
that there is overlap between processors. Another minor differ-
ence is that [3] and [7] assumed a shared memory model, whereas
we assume that each processor has its own local memory.

Let H I , H2, . . . , HL be finite-dimensional real vector spaces I

and let H = H I X Hz X . . . X H L , which we endow with the
Euclidean norm. If x = (X I , x2, * * * , xL), x/ E H I , we will refer
to x/ as the lth component of x.

L e t { 1, * * e , M) be the set of processors that participate in the
distributed computation. As a general rule concerning notation,
we use subscripts to indicate a component of an element of H ,
superscripts to indicate an associated processor; we indicate time
by an argument that follows.

The algorithms to be considered evolve in discrete time. Even if
a distributed algorithm is asynchronous and communication
delays are real (i.e., not integer) variables, the events of interest
(an update by some processor, transmission or reception of a
message) may be indexed by a discrete variable; so, the restriction
to discrete time entails no loss of generality.

It is important here to draw a distinction between “global” and
“local” time. The time variable we have just referred to
corresponds to a global clock. Such a global clock is needed only

modifications whatsoever are needed in the assumptions or the proofs except
I All of our results generalize to the case where H, is a Banach space. No

that matrices should be now called linear operators and that expressions like

H.
VJ(x) should be interpreted as elements oi the dual of H rather than vectors in

0018-9286/86/0900-0803$01 .OO 0 1986 IEEE

804 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-31, NO. 9, SEPTEMBER 1986

for analysis purposes. On the other hand, the processors may be
working without having access to a global clock. They may have
access to a local clock or to no clock at all.

We assume that each processor has a buffer in its memory in
which it keeps some element of H. The value stored by the ith
processor at time n (global) is denoted by x'(n). At time n, each
processor may receive some exogenous measurements and/or
perform some computations. This allows it to compute a "step"
s'(n) E H , to be used in evaluating the new vector xi(n + 1).
Besides their own measurements and computations, processors
may also receive messages from other processors, which will be
taken into account in evaluating their next vector. The process of
communications is assumed to be as follows.

At any time n, processor i may transmit some (possibly all) of
the components of x'(n) to some (possibly all or none) of the other
processors. (In a physical implementation, messages do not need
to go directly from their origin to their destination; they may go
through some intermediate nodes. Of course, this does not change
the mathematical model presented here.) We assume that com-
munication delays are bounded. For convenience, we also assume
that for any pair (i, j) of processors, for any component x, and any
time n, processor i may receive at most one message originating
from processorj and containing an element of HI. This leads to no
significant loss of generality: for example, a processor that
receives two messages simultaneously could keep only the one
which was most recently sent; if messages do not carry time-
stamps, there could be some other arbitration mechanism. Physi-
cally, of course, simultaneous receptions are impossible; so, a
processor may always identify and keep the most recently
received message, even if all messages arrived at the same
discrete time n.

If a message from processor j , containing an element of H,, is
received by processor i (i f j) at time n, let ty(n) denote the time
that this message was sent. Therefore, the content of such a
message is precisely x:(ty(n)). Naturally, we assume that tY(n) 5
n. For notational convemence, we also let t;'(n) = n, for all i, I,
n. We will be assuming that the algorithm starts at time 1;
accordingly, we assume that tY(n) z 1. Finally, we denote by TY
the set of all times that processor i receives a message from
processorj, containing an element of H I . To simplify matters we
will assume that, for any i, j , I, the set TY is either empty or
infinite.

Once processor i has received the messages arriving at time n
and has also evaluated si@), it evaluates its new vector x'(n + 1)
E H by forming (componentwise) a convex combination of its
old vector and the values in the messages it has just received, as
follows:

M

x$n + 1) = ay(n)xj(tf(n)) + Ti(n)s$n), n 2 1 (2.1)
j = 1

where sf(n) is the Ith component of si(n) and the coefficients
a?@) are scalars satisfying

i) aj i (n) rO v i , j , [, n, (2.2)

M
ii) x ay(n)= I , v i, I , n, (2.3)

j = 1

iii) ay(n)=O, V n Ty, i#j. (2.4)

Remarks:
1) Note that ty(n) has been defined only for those times n that

processor i receives a message of a particular type, i.e., for n E
TY. However, whenever ty(n) is undefined, we have assumed
above that = 0, so that (2.1) has an unambiguous meaning.

2) When we refer to a processor performing a "computa-
tion,'' we mean the evaluation and addition of the term yi(n)sXn)

in (2.1). With this terminology, forming the convex combination
in (2.1) is not called a computation. We denote by Ti the set of all
times that processor i performs a computation involving the Ith
component. Whenever n 6 Ti, it is understood that s;(n) in (2.1)
equals zero. We assume again that for any i, I the set T; is either
infinite or empty. Accordingly, processor i will be called
computing, or noncomputing, for Component 1.

3) The quantities y'(n) in (2.1) are nonnegative scalar step-
sizes. These step sizes may be constant (e.g., y'(n) = yo, vn), or
time-varying, e.g., -&I) = l/fL, where t: is the number of times
that processor i has performed a computatlon up to time n. Notice
that with the latter choice each processor may evaluate its step size
using only a local counter rather than a global clock.

Examples

We now introduce a collection of simple examples representing
various classes of algorithms we are interested in, so as to
illustrate the nature of the assumptions to be introduced later.
Throughout, we assume that communication delays are bounded.
We actually start with a broad classification and then proced to
more special cases. In these examples, we model the message
receptions and transmissions [Le., the sets TY and the variables
tY(n)], the times at which computations are performed (i.e., the
sets T;) and the combining coefficients a?@) as deterministic.
(This does not mean, however, that they have to be a priori
known by the processors.)

Specialization: This is the case considered in [4]: [SI where
each processor updates a particular component of the x-vector
specifically assigned to it and relies on messages from the other
processors for the remaining components. Formally

i) M = L . (There are as many processors as there are
components.)

ii) s$n) = 0, VI # i, V n . (A processor may update only its own
component; Ti = 4 , vi # 1.)

iii) Processorj only sends messages containing elements of Hi;
if processor i receives such a message, it uses it to update x; by
setting x; equal to the value received. Equivalently,

a) If i # j and j # I, then TY = 4 and a$n) = 0, Vn.
b) If processor i receives a message from processor j at time n,

i.e., if n E I";, then = 1. Otherwise, ay(n) = 0, anday@)
= 1.

Overlap; Here L = 1 (we do not distinguish components of
elements of H) , messages contain elements of H (not just
components) and each processor may update any component of x.
(For this case subscripts are redundant and will be omitted.)

We now assume that J H + [0, 03) is a continuously
differentiable nonnegative cost function with a Lipschitz continu-
ous derivative.

ExampIe I-Deterministic Gradient Algorithm; Specializa-
tion: Let y'(n) = yo > 0, Vn, i. At each time n E Tj that
processor i updates x$ it computes sj(n) = - aJ/ax,{x'(n)) and
lets s$n) = 0, for J # i. We assume that each processor i
communicates its components xj to every other processor at least
once every B, time units, for some constant B1. Other than this
restriction, we allow the transmission and reception times to be
arbitrary. (A related stochastic algorithm could be obtained by
letting si(,) = - aJ/dx,(x'(n))(l + wj(n)), where wj(n) is unit
variance white noise, independent for different i ' s .)

Example 11-Newton's Method; Overlap: For simplicity we
assume that there are only two processors (M = 2). Let yi(n) =
yo > 0, vn. We also assume that J is twice continuously
differentiable, strictly convex and its Hessian matrix, denoted by
G(x), satisfies 0 < &I 5 G(x) 5 &I, b'x E H. At each time n E
Ti, processor i computes s'(n) = - G-I(xi(n))dJ/dx(x'(n)). For
n B Ti, si@) = 0. If at time n processor 1 (respectively, 2)
receives a message x2(t'2(n)) [respectively, x1(t2'(n))], it updates
itsvectorbyxI(n + 1) = allxl(n) + alzx2(tI2(n)) + y'(n)sl(n),
[respectively, x2(n + 1) = a21xL(t2L(n)) + aux2(n) +
y2(n)s2(n)]. Here we assume that 0 < aij < 1 and that all + a12

TSITSIKLIS et al.: DETERMINISTIC AND STOCHASTIC GRADIENT ALGORITHMS 805

= + aZ2 = 1. For other times n the same formula is used with
alz = 0 (azl = 0). We make the same assumptions on
transmission and reception times as in Example 1.

Example 111-Distributed Stochastic Approximation; Spe-
cialization: Let y'(n) be such that, for some positive constants
A I , A ? , A l / n I $(n) I A2/n, V n . Notice that the implementa-
tion of such a step size only requires a local clock that rum in the
same time scale (i.e., within a constant factor) as the global clock.
For n E Ti, let sj(n) = - aJ//axi(x'(n)) + wj(n). Also, s$n) =
0, for i # j and for all n. We assume that wj(n), conditioned on
the past history of the algorithm has zero mean and that
E[(1 wj(n) 11 * Ix'(n)] I K(11 VJ(x'(n)) 11 * + l), for some constant K .
We assume that for some B1 2 0, /3 2, 1 and for all n, each
processor communicates its component x: to every other proces-
sor at least once during the time interval [B,nB, Bl(n + 1)q.
Other than the above restriction, we allow transmission and
reception times to be arbitrary. Notice that the above assumptions
allow the time between consecutive communications to grow
without bound.

Example IV-Distributed Stochastic Approximation: Over-
lap: Let $(n) be as in Example III and let M = 2. For n € Ti, let
s'(n) = -aJ//ax(xi(n)) + w'(n), where w'(n) is as in Example
III. We make the same assumptions on transmission and reception
times as in Example III. Whenever a message is received, a
processor combines its vector with the content of that message
using the combining rules of Example 11.

Example V: This example is rather academic but will serve to
illustrate some of the ideas to be introduced later. Consider the
case of overlap, assume that H is one-dimensional, and let y'(n)
= 1, Vn. Assume that, at each time n, either all processors
communicate to each other, or no processor sends any message.
Let the communication delays be zero (so, tiJ(n) = n, whenever
t'j(n) is defined) and assume that &(n) = a'' (constant) at those
times n that messages are exchanged. We define vectors x(n) =
(x'(n), * , xAW(n)) and s(n) = (s'(n), e , sM(n)). Then, the
algorithm (2.1) may be written as

x (n + l) = A (n) x (n) + s (n) . (2.5)

For each time n, either A(n) = I (no communications) or A(n) =
A , the matrix consisting of the coefficients a''. The latter is a
"stochastic" matrix: it has nonnegative entries and each TOW
sums to 1. We assume that each a'j is positive. It follows that A =
limn+- A" exists and has identical rows with positive elements.
We assume that the time between consecutive communications is
bounded but otherwise arbitrary. Clearly then, limn+- II;=
A(m) = A , for all k . It is interesting to compare (2.5) with the
generic equation

x(n + 1) = x (n) +s(n)

which arises in centralized algorithms.
All of our examples refer to either specialization or overlap.

However, we may also conceive of situations in which some of the
components are updated by a single processor, while some others
are updated by many processors simultaneously (partial overlap).

Assumptions on the Communications and the Combining
Coefficients

We now consider a set of assumptions on the nature of the
communication and combining process, so that the preceding
examples appear as special cases.

For each component I E { 1, . * -, L } we introduce a directed
graph G1 = (V , E,) with nodes V = { 1, e , M) corresponding
to the set of processors. An edge (j , i) belongs to E/ if and only if
Ty is infinite, that is, if and only if processor j sends (in the long
run) an infinite number of messages to processor i with a value of
the Ith component xj.

Assumption 2. I : For each component I E { 1 , * a , L }, the
following hold.

a) There is at least one computing processor for component 1.
b) There is a directed path in GI, from every computing

processor (for component I) to every other processor (computing
or not).

c) There is some a > 0 such that:
i) If processor i receives a message from processorj at time n

ii) For every computing processor i , ay(n) 2 a, Vn.
iii) If processor i is noncomputing and has in-degree2 (in GI)

larger than or equal to 2, then a:(n) 2 a, vn.
Parts b) and c) of Assumption 2.1 guarantee that any update by

any computing processor has a lasting effect on the states of
computation of all other processors. Next, we introduce two
alternative assumptions on the frequency of communications.

Assumption 2.2: The time between consecutive transmissions
of component xj from processor j to processor i is bounded by
some BI 2 0, for all (j , i) E E/.

Assumption 2.3: There are constants B1 > 0, p 2 1 such that,
for any (j , i) E E/, and for any n , at least one message xj is sent
from processor j to processor i during the time interval [BlnB,
Bl(n + 1)5]. Moreover, the total number of messages transmitted
and/or received during any such interval is bounded.

Note that Assumption 2.2 is a special case of 2.3, with /3 = 1 .
Assumption 2.4: Communication delays are bounded by some

Bo 2 0, i.e., for all i , j , I and n E Ty we have n - ty(n) I BO.
Assumptions 2.1 and 2.4 hold for all the examples introduced

above. Assumption 2.2 holds for Examples I, 11, and V;
Assumption 2.3 holds for Examples I11 and IV, except for its last
part which has to be explicitly introduced.

Equation (2.1) which defines the structure of the algorithm is a
linear system driven by the steps sj(n). In the special case where
communication delays are zero, we have t;'(n) = n, and (2.1)
becomes a linear system with state vector (xl(n), . e , xM(n)).
Equation (2.5) of Example V best illustrates this situation. In
general, however, the presence of communication delays necessi-
tates an augmented state if a state space representation is desired.
Exploiting linearity, we conclude that there exist scalars @y(nIk),
for n 2 k, such that

(i.e., if n E TY), then ay(n) 2 a.

M " - 1 M

(2.6)

The coefficients @y (nlk) are determined by the sequence of
transmission and reception times and the combining Coefficients.
Consequently, they are unknown, in general. Nevertheless, they
have the following qualitative properties.

Lemma 2.1:

i) O s @ y (n l k) , v i, j , I, n r k , (2.7)

M

@ Y (n I k) s l , v i , I , nrk. (2.8)
j = I

ii) Under Assumptions 2.1 and 2.4 and either Assumption 2.2
or 2.3, limn+- @Y(nIk) exists, for any i , j , k , 1. The limit is
independent of i and will be denoted by 9j(k). Moreover, there is
a constant 7 > 0 such that, if j is a computing processor for
component I, then

@{(k)?q , V k. (2.9)

pointing to node i.
The indegree of a processor (node) i (in G/) is the number of edges in E/

transmitted but not yet received. Since we are assuming bounded communica-
Such an augmented state should incorporate all messages that have been

tion delays, there can only be a bounded number of such messages and the
augmented system may be chosen finite dimensional.

806 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-31, NO. 9, SEPTEMBER 1986

The constant q , depends only on the constants introduced in our
assumptions (i.e., Bo, B I , 0, a).

iii) Under Assumptions 2.1, 2.2, and 2.4, there exist d E [0,
I) , B 2 0 (depending only on Bo, B 1 , a) such that

max)@~(nlk)-@j(k)llBdn-k, V I , n r k . (2.10)

iv) Under Assumptions 2.1, 2.3, and 2.4, there exist d E [0,
l), 6 E (0, 11, B 2 0 (depending only on Bo. B I , 0, a) such that

max I @ ~ (n I k) - ~ . j (k) 1 1 B d n b - k 6 , v I, n z k . (2.11)

The proof of Lemma 2.1 is omitted and may be found in [IS],
Apart from part i) [which is proved by a straightforward induction
based on (2. l)] the main idea of the proof, for the case of zero
transmission delays, is the following: proving convergence of
+(nlk) is equivalent to proving convergence of a sequence of
products of stochastic matrices. These stochastic matrices have a
"scrambling" property and the desired conclusions follow from
well-known results on weak ergodicity of nonstationary Markov
chains [151. The general case may be reduced to the zero delay
case by a suitable "state augmentation" procedure.

In the light of (2.6), Lemma 2.1 admits the following
interpretation: part ii) states that if all processors cease updating
(that is if they set si@) = 0) from some time on, they will
asymptotically converge to a common limit. Moreover, this
common limit depends by a nonnegligible factor on all past
updates of all computing processors. Parts iii) and iv) quantify the
natural relationship between the frequency of interprocessor
communications and the speed at which agreement is reached.

For any pair (i, j) of processors, we define a linear transforma-
tion 9'j(nlk):H + H by

1.1

1.J

cP'i(nIk)x=(@'Y(nIk)xl, ..., @Z(nlk)xt) (2.12)

where x = (x,, * a * , xL). Clearly, limn-- iPiJ(n(k) exists, is
independent of i and will be denoted by W(k) .

We can now define a vector y(n) E H by
A4 n -1 M

Y (n) = x @'(o)xJ(l)+ yj(k)@j(k)s'(k) (2.13)
j = I k = l j = l

and note that y(n) is recursively generated by
'44

y(n + 1) =y(n) + yJ(n)@j(n)sj(n). (2.14)
j = 1

The vector y(n) is the element of H at which all processors would
asymptotically agree if they were to stop computing (but keep
communicating and combining) at a time n. It may be viewed as a
concise global summary of the state of computation at time n, in
contrast to the vectors x'(n) which are the local states of
compbtation. Another reason for introducing y(n) is that (2.14) is
much simpler than (2.1). The content of the vector y(n) and of the
@(n)'s is easiest to visualize in two special cases.

Specialization (e.g., Examples Z and IIZ): Here y(n) taka
each component from the processor who specializes in that
component. That is, y(n) = (x:(n), * * a , x$(n)). Accordingly,
@i.(n) = 0, for i # j , and @(n) = 1.

Example V: Here cP'J(n lk) is the ijth entry of the matrix
,,,=k+ A(m). It follows that the limit of @'l(n (k) is the ijth entry

of A , which by our assumptions depends only on j . Moreover,
y(n) equals any component of Ax@). (All components are equal
by our assumptions.) If we multiply both sides of (2.5) by A and
npte that i iA(n) = A , we obtain y(n + 1) = y(n) + E:,
Aijsj(n), which is precisely (2.14).

n n - I

IU. CONVERGENCE RESULTS

There is a large number of well-known centralized determinis-
tic and stochastic optimization algorithms which have been

analyzed using a variety of analytical tools [2], [lo], [ll], [14]. A
large class of them, the so-called "pseudogradient" algorithms
[141, have the distinguishing feature that the (expected) direction
of update (conditioned upon the past history of the algorithm) is a
descent direction with respect to the cost function to be mini-
mized. The Examples of Section I1 certainly have such a property.
Reference [14] presents a larger list of examples. In this section
we present convergence results for the natural distributed asyn-
chronous versions of pseudogradient algorithms. We adopt the
model of computation and the corresponding notation of Section
11.

We allow the initialization (x1(I), . . . , x"(I)} of the algorithm
to be random, with finite mean and variance. We also allow the
updates s'(n) of each processor to be random. On the other hand,
we assume that ~ ' (n) is deterministic; we also model the
combining coefficients a;'@) and the sequence of transmission
and reception times as being deterministic. This is not a serious
restriction because they do not need to be known by the processors
in advance in order to carry out the algorithm. We assume that all
random variables of interest are defined on a probability space (Q ,
F, P). We introduce 1 F,,}, an increasing sequence of u-fields
contained in F and describing the history of the algorithm up to
time n. In particular, F,, is defined as the smallest u-field such that
si(@, k 5 n - 1, andx'(l), i E (1, . . . , M } are F,,-measurable.

We assume that the objective of the algorithm is to minimize a
nonnegative cost function JYi --+ [0, 03).

Assumption 3.1: J is continuously differentiable and its
derivative satisfies the Lipschitz condition

I I V J (X) - V J (~ ') ~ ~ ~ K I ~ X - ~ ' I I , V X, X ' E H (3.1)

where K is some nonnegative constant.
Assumption 3.2: The updates sj(n) of each processor satisfy

This assumption states that each component of each processor's
updates is in a descent direction, when conditioned on the past
history of the algorithm and it is satisfied by Examples I-IV.

The next assumption is easily seen to hold for Examples I and
II. For stochastic algorithms, it requires that the variance of the
updates (and, hence, of any noise contained in them) goes to zero,
as the gradient of the cost function goes to zero.

Assumption 3.3: For some KO 2 0 and for all i, I , n,

As a matter of verifying Assumption 3.3, one would typically
check the validity of the slightly stronger condition

= - K&[V J(x'(n))@'(n)s'(n)] (3.3)

where = K,/q 2 0.
Our first convergence result states that the algorithm converges

in a suitable sense, provided that the step sizes employed by each
processor are small enough and that the time between consecutive

' In (3.2), if H, has dimension larger than 1, aJ/dx, should be interpreted as
a Ton' vector. In general, the appropriate interpretation should be clear from
the context.

TSlTSIKLlS er a/.: DETERhlINlSTIC AND STOCHASTIC GRADIENT ALGORITHMS 807

communications is bounded, and applies to Examples I and 11. It
should be noted, however, that Theorem 3.1 (as well as Theorem
3.2 later) does not yet prove convergence to a minimum or a
stationary point of J. In particular, there is nothing in our
assumptions that prohibits having s'(n) = 0, V i , n. Optimality is
obtained later, using a few auxiliary and fairly natural assump-
tions (see Corollary 3.1).
Theorem3.1:LetAssumptions2.1,2.2,2.4,3.1,3.2,and3.3

hold. Suppose also that y'(n) 2 0 and that supi,,, y'(n) = 70 < 03.
There exists a constant y* > 0 (depending on the constants
introduced in the Assumptions) such that the inequality 0 < yo 5
y* implies the following.

a) J(x'(n)), i = 1, 2, . . . , M , as well as J(y(n)), converge
almost surely, and to the same limit.

b) limn+m (x'(n) - x'(n)) = limn-- (x'(n) - y(n)) = 0, vi, j ,
almost surely and in the mean square.

c) The expression
m M

r'(n)VJ(x'(n))E[sl(n)I F n 1 (3.4)
n = l i = l

is finite, almost surely. Its expectation is also finite.
Proof: See the Appendix.

Theorem 3.1 (as well as Theorem 3.2) is a distributed version
of the convergence results of [141 and our proofs follow the same
general pattern as in [141. However, much more technical
development is needed to obtain bounds on the effects of
asynchronism and therefore show that asynchronism cannot
destroy convergence.

The main reason why such results are possible is the following.
The difference between y(n) and xi@), for any i , is of the order of
Ayo, where A is proportional to a bound on communication
delays plus the time between consecutive communications be-
tween processors. Therefore, as long as yo remains small,
VJ(xi(n)) is approximately equal to VJ(y(n)); hence s$n) [and
consequently ai(n)si(n)] is approximately in a descent direction,
starting from point y(n). Therefore, iteration (2.14) is approxi-
mately the same as a centralized descent (pseudogradient)
algorithm which is, in general, convergent [141. This line of
reasoning is actually reflected in our proofs.

Decreasing Step-Size Algorithms

We now introduce an alternative set of assumptions. We allow
the magnitude of the updates si(n) to remain nonzero, even if
VJ(xi(n)) is zero (Examples I11 and IV). Such situations are

. common in stochastic approximation algorithms or in system
identification applications. Since the noise is persistent, the
algorithm can be made convergent only by letting the step size
y'(n) decrease to zero. The choice y'(n) = l/n is most commonly
used in centralized algorithms and in the sequel we will assume
that y'(n) behaves like l/n.

Since the step size is decreasing, the algorithm becomes
progressively slower as n --t m. This allows us to let the
communications process become progressively slower as well,
provided that it remains fast enough, when compared to the
natural time scale of the algorithm, the latter being determined by
the rate of decrease of the step size. Such a possibility is captured
by Assumption 2.3.

The next assumption, intended to replace Assumption 3.3,
allows the noise to be persistent. It holds for Examples I-IV. As in
Assumption 3.3, inequality (3.5) could be more naturally stated in
terms of conditional expectations, but such a stronger version
turns out to be unnecessary.

Assumption 3.4: For some K, , K2 2 0, and for all i, 1, n ,

Theorem 3.2: Let Assurlptions 2.1, 2.3, 2.4, 3.1, 3.2, and

3.4, hold and assume that for some K3 2 0, y'(n) 5 K d n , Vn, i.
Then, conclusions a), b), c), of Theorem 3.1 remain valid.

Proof: See the Appendix.
Theorem 3.2 remains valid if (3.5) is replaced by the weaker

assumption

E[lls'(n)ll 2] <KoE[J(x'(n))] - K~E[VJ(x'(n))a'(n)s'((n)l + K z .

(3.6)

The proof may be found in [18] and is significantly more
complicated.

We continue with a corollary which shows that, under
reasonable conditions, convergence to a stationary point or a
global optimum may be guaranteed. We only need to assume that
away from stationary points some processor will make a positive
improvement in the cost function. Naturally, we only require the
processors to make positive improvements at times when they are
not idle.

Corollary 3. I : Suppose that for some K4 > 0, y'(n) 2 K4/n ,
vn, i . Assume that J has compact level sets and that there exist
continuous functions gf:H -+ [0, m) such that

aJ .
- (x ' (n))E[.~ f (n) lF ,]~ -g f (x i (n)) , V n E TI. (3.7)
ax/

We define g:H --* [0, m) by g(x) = C i Z l g f (x) and we
assume that any point x E H satisfying g(x) = 0 is a stationary
point of J. Finally, suppose that the difference between consecu-
tive elements of T f is bounded, for any i , 1 such that Tf # 9.
Then,

A4 L

a) Under the Assumptions of either Theorem 3.1 or 3.2,

liminf IIVJ(x'(n))ll=O, v i, a s . (3.8)

b) Under the Assumptions of Theorem 3.1 and if (for some E >
n-m

0) yi(n) 1. E , v i , n, we have

lim IIVJ(x'(n))ll=O, v i, a.s. (3.9)
n-m

and any limit point of {x'(n) 1 is a stationary point of J.
c) Under the Assumptions of either Theorem 3.1 or 3.2 and if

every point satisfying g(x) = 0 is a minimizing point of J (this is
implicitly assuming that all stationary points of J are minima),
then

lim J(x'(n)) = inf J(x) .
n-m x€ H

Proof: See the Appendix.
We now discuss the above corollary and apply it to our

examples. Our assumption on T; states that, for each component I,
the time betwecn successive computations of sf is bounded, for
any computing processor i for that component. Such a condition
will be always met in practice. The assumption yi(n) 2 K4/n may
be enforced without the processor having access to a global clock.
For example, apart from the trivial case of constant step size, we
may let y'(n) = l/r;, where t ; is the number of times, before
time n, that processor i has performed a computation.

For Examples I and JJI, (3.7) holds with g'(xj a constant
multiple of (a J / d ~ ,) ~ ; for Examples II and IV, it holds with g'(x) a
constant multiple of 11 VJ(x) 11 2. We may conclude that Corollary
3.1 applies and proves convergence for Examples I-IV.

We close this section by pointing out that our results remain
valid if we model the combining coefficients, the transmission and
reception times as random variables defined on the same
probability space (Q, F, P), subject to certain restrictions [18].
Notice that such a generalization allows the processors to decide
when and where to transmit based on information related to the
progress of the algorithm. Finally, Assumptions 2.1-2.4 may be
dispensed with as long as the conclusion of Lemma 2.1 may be
somehow independently verified.

808 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-31, NO. 9, S E ~ ~ B E R 19%

IV. EXTENSIONS AND APPLICATIONS

A main direction along which our results may be extended is in
analyzing the convergence of distributed algorithms with decreas-
ing step size and with correlated noise, for which the pseudogra-
dient assumption fails to hold. Such algorithms arise frequently,
for example, in system identification. Very few global conver-
gence results are available, even for the centralized case [161.
However, as in the centralized case an ordinary differential
equation (ODE) may be associated with such algorithms, which
may be used to prove local convergence subject to an assumption
that the algorithm returns infinitely often to a bounded region
[lo], U11, V81.

Another issue, arising in the case of constant stepsize
algorithms, concerns the choice of a step size which will
guarantee convergence. We may trace the steps in the proof of
Theorem 3.1 and find some bounds on yo so as to ensure
convergence, but these bounds will not be particularly tight. For a
version of a distributed deterministic gradient algorithm, tighter
bounds have been obtained in [181 which quantify the notion that
the frequency of communications between different processors
should in some sense reflect the degree of coupling inherent in the
optimization problem.

Concerning possible applications, there are three broad areas
that come to mind. There is first the area of parallel computation,
where an asynchronous algorithm could avoid several types of
bottlenecks [9]. Then, there is the area of data communication
networks in which there has been much interest for distributed
algorithms for routing and flow control [6], [8], [191. An analysis
of a gradient projection method for optimal routing has been
carried out in 1171. Finally, certain common algorithms for
system identification or adaptive filtering fall into the framework
of decreasing step-size stochastic algorithms and our approach
may be used for analyzing the convergence of their distributed
versions [IS]. Our results may not be applicable without any
modifications or refinements to such diverse applications areas.
Nevertheless, our analysis indicates what kind of results should be
expected to hold.

APPENDIX

This Appendix contains the proofs of the results of Section III.
Remark on Notation: In the course of the proofs in this

section, we will use the symbol A to denote nonnegative
constants which are independent of n, yo, yi(n), x'(n), si@), etc.,
but which may depend on the constants introduced in the various
assumptions (that is, M, L , K , KO, Bo, Bl , CY, etc.). When A
appears in different expressions, or even in different sides of the
same equality (or inequality), it will not necessarily represent the
same constant. (With this convention, an inequality of the form A
+ 1 5 A is meaningful and has to be interpreted as saying that A
+ 1 , where A is some constant, is smaller than some other
constant, denoted again by A.) This convention is followed so as
to avoid the introduction of unnecessarily many symbols.

Proof of Theorem 3.1: Without loss of generality, we will
assume that the algorithm is initialized so that xi(1) = 0, vi . h the
general case where x'(1) # 0, we may think of the algorithm as
having started at time 0, with x'(0) = 0; then, a random update
~'(0) sets xi(l) to a nonzero value. So, the case in which the
processors initially disagree may be easily reduced to the case
where they initially agree.

Note that we may define fi(n) = (y'(n)/yo) si@) and view fi(n)
as the new step with stepsize yo. It is easy to see that Assumptions
(3.2) and (3.3) also hold for Si(n). For these reasons, no
generality is lost if we assume that y'(n) = yo, V n and this is what
we will do.

Let us define

and note that
M

Using (2.6), (2.13) and Lemma 2.1 iii), we obtain

n- I

From a Taylor series expansion for J we obtain

M
5J(y (n))+yoVJ(y (n)) W (n) s ' (n) + A y p (n) .

i = I

('4.3)

Assumption 3.2 is in terms of VJ(x'(n)), whereas above we have
VJ(y(n)). To overcome this difficulty, we use the Lipschitz
continuity of the derivative of J and invoke (A.2) to obtain

M

V J (y (n)) @(n)s'(n) - VJ(x'(n))$'(n)s'(n)
*I ll i = l i = I II

k = I i = I k = 1

n-I

5 y o A d"-k[b2(k)+b2(n)J .
k = I

Let us define

G (n) = S G'(n),
.M

i= I

and note that Assumption 3.2 implies that E[G(n)] 2 0. We now
rewrite inequality (A.3) using (A.4) to replace the derivative
term, to obtain

TSITSIKLIS et at.: DETERMINISTIC AND STOCHASTIC GRADIENT ALGORITHM

Assumption 3.3 implies that [cf. inequality (3.3)]

E [b 2 (k)] s A E [G (k) l . (A. 8)

Taking expectations in (A.7) and using (A.8) we obtain

E [J (y (n + I))] s E [J (y (n)) l - ~ o E [G (n) l
n

+ A T ; d ” - k E [G (k)] . (A.9)
k = 1

We then sum (A.9) for different values of n, to obtain

o ~ E [J (y (n + l))] I E [J (y (l))] + 1 A -- lFd Y O] E [G (k) l .
k = l

(A. 10)

We now let y* = (1 - d)/2A, where A is the constant of
inequality (A. lo), and assume that 0 < yo 5 y*. Then, inequality
(A. 10) implies

and letting n tend to infinity,

YO E [G (~) I < o J .
m

(A. 12)
k = 1

By Assumption 3.2 , E[G(k) I Fk] 2 0, vk; we may apply the
monotone convergence theorem to (A. 12) and obtain

L k = l J k = l

which implies

From (A.14) we obtain

m

~,~(x’(n))~[9l(n)sl(n)l F,] > - OJ, a.s.
n = l

Now use the fact [Lemma 2.1 ii), inequality (2.9)] that a;(!) L r]
> 0, for any computing processor i for component 1. This implies
that

~ , ~ (x ’ (n)) ~ [s ! (n) l ~ , l > - 01, a s .
m

k = I

and establishes part c) of the theorem.
Lemma A.1: Let X(n), Z(n) be nonnegative stochastic

processes (with finite expectation) adapted to { Fn} and such that

E I X (n + l) l F n] ~ X (n) + Z (n) , (A.15)

Then X@) converges almost surely, as n + a.
Proof of Lemma A.1: By the monotone convergence

[S 809

theorem and (A.16) it follows that 2, < 03, almost surely.
Then, Lemma A. 1 becomes the same as Lemma 4.C. 1 in [12, p.
4531, which in turn is a consequence of the supermartingale
convergence theorem [131. 0

Now let A be the constant in the right-hand side of (A.7) and let

Z (n) = A y ; E [SI dn-kb2 (A. 17)

Then, Z(n) 2 0 and by (A. 8)

n

E [Z (n) l s A d n - k E I G (k) l . (A. 18)
k = I

Therefore,
m n

n = l n = l k = l

. m

(A. 19)

where the last inequality follows from (A.12). Therefore, Z(n)
satisfies (A.16). We take the conditional expectation of (A.7),
given F,. Note that J(y(n)) is F,-measurable and that E[G(n) I Fn]
z 0. Therefore Lemma A. l applies and J(y(n)) converges
almost surely.

Using Assumption 3.3 once more, together with (A.12),

L k = l J k = l

which implies that b(k) converges to zero, almost surely. Recall
(A.2) to conclude that y(n) - x‘(n) converges to zero, almost
surely. Also, by squaring (A.2), taking expectations and using the
fact that E[b2(k)] converges to zero we conclude that E[Ily(n) -
xi(n)ll*] also converges to zero, and this proves part b) of the
Theorem.

Now, let us use Assumption 3.1 and a second-order expansion
of J to obtain, for any a E R

O I J (X - U V J (~)) ~ J (~) - ~ A I I I V J (~) ~ ~ ’ + ~ ~ A ~ I I V J (~) ~ ~ ~ (A.21)

where A l , A2 are positive constants not depending on a.
Assuming that a was chosen small enough, we may use (A.21)
and the nonnegativity of J to conclude

IIVJ(x)l l2sAJ(x) , v x E H . (A.22)

Since J(y(n)) converges, it is bounded; hence VJ(y(n)) is also
bounded, by (A.22). We then use the fact that y(n) - x’(n)
converges to zero, to conclude that J(x’(n)) - J(y(n)) also
converges to zero. This proves part a) and concludes the proof of
the theorem.

In the following lemma we bound certain infinite series by
corresponding infinite integrals. This is justified as long as the
integrand cannot change by more than a constant factor between
any two consecutive integer points. For notational convenience,
we use c(nlk) to denote d n d - @ . where d and 6 are as in Lemma
2.1 iv).

Lemma A.2: The following hold:

(A.23)

(A. 24)

810 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-31, NO. 9, SEPTEMBER 1986

m ,

(A.25)

Proof of Lemma A.2: Let t6 = y ; then, t = Y " ~ and dt =
(l/ti)yI'*-l dy. Therefore,

(A.26)

where A does not depend on s. Equation (A.25) follows. Since
(l/s) A/s6 is an integrable function of s, (A.23) follows as well.

The left-hand side of (A.24) is bounded by

m6
= A m y-(l/6)-l dm6-Y dysAm-6 s,= I

which converges to zero. The middle term in (A.24) is certainly
smaller and converges to zero as well. 0

Proof of Theorem 3.2: Using the same arguments as in the
proof of Theorem 3.1, we may assume, without loss of generality,
that ~ ' (1) = 0 and that -$(TI) = l / n , Vi, n. (Otherwise, we could
define s'(n) = n-y'(n)s'(n).)

We still use c(nIk) to denote dn6-lP. We define again b(n),
G'(n), G(n) by (A. l), (A.3, (A.6) , respectively, as in the proof
of Theorem 3.1. Also, let

i -+ - -c(nIm), n = k ,
1 n - L 1 1

n z n m
1 1

m = l

d(nlk)= --x ~ (n l k) , n > k , (A.27)

0, n<k.

By replicating the steps leading to inequality (A.7) in the proof of
Theorem 3.1 and using Lemma 2.1 iv) and (A.27) we obtain, for
some A 2 0,

n

J (Y (n + 1)) s J (Y (n)) - ; G (n) + A 4(nlk)b2(k) , V n.
1

k = 1
(A.28)

Taking expectations in (A.28), we have

E [J (y (n + 1))1 I E [J (Y (n)) l - ; E[G(n)l
1

+ A f; 4(nlk)E[b2(k)] , v n (A.29)
k = 1

and using Assumption 3.4,

+ A d(n(k)(E[G(k)] + 1). (A.30)
k = 1

We then sum (A.30), for different values of n, to obtain

The definitions (A.27) and (A.23) imply that the middle term on
the right-hand side of (A.31) is bounded. Moreover, using (A.27),

which converges to zero, as m -+ 03, by (A.24) and (A.25).
Therefore, for large enough m, E;=, +(klm) - l / m 5 - 11
2m. It follows that E[J(y(n))] is bounded. Inequality (A.31) and
the above also imply that C f = (1 /m)E[G(m)l < 03 and part C)
of the Theorem follows, as in the proof of Theorem 3.1.

We now define

and note that

s A + A 2: i E [G (k)] < c o .
k = l

Taking conditional expectations in (A.28) (with respect to F,) and
using Lemma A. 1 , we conclude that J(y(n)) converges, almost
surely.

We now turn to the proof of part b). Using (3.5) and (A.22), we
have

E[lls'(n)ll2]5E 2AVJ(x'(n)) - s'(n)) + A [2 l . 1
s4A2E[IIVJ(X'(n))l12]+4 E[lls'(n)llZ]+A

5AE[J(x' (n)) l +z E[llsi(n)l121+A,

1

1 (A.32)

which finally implies that

E[lls'(n)112]sAE[J(x'(n))l+A. (A.33)

Now, using (A.22) once more,

J(x'(n)) - J (Y (n)) s IlVJ(y(n)ll * IIx'(n) -y(n)ll

+ A IIx'(n)-y(n)l12

'5 IlvJ(Y(n))l12+Allx'(n)-Y(n)llz
1

sAJ(~(n))+AI Ix ' (n)-~(n) l l~ . (A. 3 4)

Inequalities (A.33), (A.34) and the boundedness of E[J(y(n))]
yield

E [b 2 (n)] 5 A + A E [l l ~ ' (n) - y (n) l (~] . (A.35)

Similarly with (A.2), we have

llY(n)-x'(n)Il c(nlk)b(k)
n - 1 1

(A.36)
P = I

and

(A.37)

TSITSIKLIS ef al.: DETERMINISTIC AND STOCHASTIC GRADIENT ALGORITHMS 81 1

Therefore,

EIllu(n)-x’(n)l121~P(n) rnax E[bz (k) l , (A.38)
I s k < n

where P(n) = A n E::; c(n l k) /k2 converges to zero, by (A.24).
Using (A.35),

E[llu(n)-x’(n)l121~AP(n)(l+max ~ [l l ~ (k) - x ’ (k) l 1 2 1)
k < n

and since P(n) converges to zero, it follows that E[Ily(n) -
x’(n)II 2] converges to zero as well. We also conclude from (A.35)
that sup, E[b2(n)] < 00.

Let

Dk= b(i), k r l . (A.39)
1

. k 1 / * s f < (k + l) ’ / *

Using the fact that there exists an A such that (k + 1)IIh - kl/6
5 A k (’ / *) - l , v k , we obtain from (A.39)

(A.40)

It follows that D : converges to zero, almost surely. Consequently,
so does Dk and I dn- kDk as well. Let us fix some n, let N
denote the largest Integer such that N 5 n* and use (A.36) to
obtain

(A.41)

As n converges to infinity, so does N and, by the above
discussion, x’(n) - y(n) converges to zero, as n -+ 00.
Consequently, x’(n) - xj(n) also converges to zero, for any i , j ,
completing the proof of part b).

Finally, since J(y(n)) converges and x’(n) - y(n) converges to
zero, part a) of the theorem follows, as in the proof of Theorem
3.1.

Proof of Corollary 3. I : From part c) of either Theorem 3.1
or 3.2 and (3.7) we obtain

Because of our assumption on the sets Ti, it follows that if Tj #
4, then there exists a positive integer c such that, for any i , f, m,
the interval { cm + 1, cm + 2, * * , dm + 1) } contains at least
one element of T;. Let us choose sequences of such elements

denoted by By (A.42), we have

M I . m

a.s. (A.43)
i = l l = I m = l

Now notice that, for some constant K5 > 0,

K4 K4 K5
t;,,, c(m+ 1) m

r‘(tj,m) r - L ~ 2- , V i, I, m . (A.44)

Hence, (A.43) yields

Let us assume, without any loss of generality that Tf # 4.
From either Theorem 3.1 or 3.2 and its proof we obtain limn+-
(xi@) - y(n)) = limn+- (y (n + 1) - y(n)) = 0 which implies
that

lim (xi(t f , ,) -y(t ; , ,))=O, v i, I . (A.46)

Since J has compact level sets and J(y(n)) converges, the
sequence (y (n) } is bounded. We therefore need to consider the
functions g; only on a compact set on which they are uniformly
continuous. Therefore,

m-m

m-m
lirn (gj(x’(tj,,))-gj(y(tt,,)))=O, V i, 2. (A.47)

By combining (A.45) and (A.47) we obtain

M I

(A.48)

a) By (A.48), there must be some subsequence of { t&,} along
which g(y(t J) converges to zero. Let y* be a limit pomt of the
corresponding subsequence of { y (t f , ,) } . By continuity, g(y*) =
0 and, by assumption, y* must be a stationary point of J, so
VJ(y*) = 0. Moreover, x’(fl m) also converges to y* along the
same subsequence. By continuity of V J , (3.8) follows.

b) In this case, (A.43) implies

M L

and the rest of the proof is the same as for part a), except that we
do not need to restrict ourselves to a convergent subsequence.

c) From part a) we conclude that some subsequence of
{ y (t f , ,) } converges to some y* for which g(y*) = 0. Conse-
quently, y* minimizes J. Using the continuity of J,

lirninf J (y (n)) ~ liminf J(y(t t , ,)) sJ (y*)= inf J (x) .
n-m n-m X E H

On the other hand, J(y(n)) converges (part a) of either Theorem
3.1 or 3.2) which shows that (3.10) holds. E

REFERENCES

[l] K. J. Arrow and L. Hurwicz, “Decentralization and computation in
resource allocation,” in Essays in Economics and Econometrics, R.
W. Pfouts, Ed. Chapel Hill, NC: Univ. North Carolina Press, 1960,
pp. 34-104.

[2] M. Avriel, Nonlinear Programming. Englewood Cliffs, NJ: Pren-

[3] G. M. Baudet, “Asynchronous iterative methods for multiprocessors,”

[4] D. P. Bertsekas, “Distributed dynamic programming,” IEEE Trans.

tlE-Hall, 1976.

J. ACM, vol. 25, no. 2, pp. 226-244, 1978.

Automat. Contr., vol. AC-27, no. 3, pp. 610-616, 1982.

812 IEEE TRAl

r51

[61

[91

Programm., vol. 27, pp. 107-120, 1983.
-, “Dismiuted asynchronous computation of fixed points,” Math.

-, “Optimal routing and flow control methods for communication

and I. L. Lions, Eds. New York: Springer-Verlag, 1982, pp. 615-
networks,” in Analysis and Optimization of Systems, A. Bensoussan

643.
D. Chazan and W. Miranker, “Chaotic relaxation,” Linear Algebra

R. G . Gallager, “A minimum delay routing algorithm using distributed
and Appl., vol. 2, pp. 199-222, 1969.

computation,”IEEE Trans. Commun., vol. COM-25, no. 1, pp. 73-
85, 1977.
H. T. Kung, “Synchronized and asynchronous parallel algorithms for
multiprocessors,” in Algorithms and Complexity. New York:
Academic, pp. 153-200, 1976.
H. J. Kushner and D. S. Clark, Stochastic Approximation Methods
for Constrained and Unconstrained Systems (Applied Math. Series,

L. Ljung, “Analysis of recursive stochastic algorithms,” IEEE Trans.
No. 26). New York: Springer-Verlag, 1978.

Automat. Contr., vol. AC-22, pp. 551-575, 1977.
L. Ljung and T. Soderstrom, Theory and Practice of Recursive
Identification. Cambridge, MA: M.I.T. Press, 1983.
P. A. Meyer, Probability and Potentials. Waltham, MA: Blaisdell,
1966.
B. T. Poljak and Y. Z. Tsypkin, “Pseudogradient adaptation and
training algorithms,” Automar. Remote Contr., no. 3, pp. 45-68,
1973.
E. Seneta, Non-Negative Matrices and Markov Chains. New
York: Springer-Verlag, 1981.
V. Solo, “The convergence of AML,” IEEE Trans. Aufomat.
Contr., vol. AC-24, pp. 958-962, 1979.
J. N. Tsitsiklis and D. P. Bertsekas, “Distributed asynchronous
optimal routing for data networks,” in Proc. 23d Conf. Decision
Contr., Las Vegas, N V , Dec. 1984; also in IEEE Trans. Automat.
Contr., vol. AC-31, pp. 325-332, 1986.

‘JSACTIONS ON AUTOMATIC CONTROL, VOL. AC-31, NO. 9, SEPTEMBER 1986

1181 J. N. Tsitsiklis, “Problems in decentralized decision making and
computation,” Ph.D. dissertation, Dep. Elect. Eng. Comput. Sci.,
M.I.T., Cambridge. MA, 1984.

[19] D. P. Bertsekas and R. G. Gallager. Data Networks. Englewood
Cliffs, NJ: Prentice-Hall, 1986.

John N. Tsitsiklis (S’80-“81). for a photograph and biography, see p. 332
of the April 1986 issue of this TRANSACHONS.

Dimitri B. Bertsekas (S’70-SM‘77-F’84), for a photograph and biography,
see p. 332 of the April 1986 issue of this TRANSACTIONS.

Michael Athans (S’58-”61-SM‘69-F’73)
received the Ph.D. degree in electrical engineering
in 1961 from the University of California,
Berkeley.

From 1961 to 1964 he was with the M.I.T.
Lincoln Laboratory. Lexington. Since 1964 he has
been a faculty member in the Department of
Electrical Engineering and Computer Science,
M.I.T.. Cambridge. where he currently holds the
rank of Professor of Systems Science and
Engineering. While at M.I.T., he also served as

Director of the Laboratory for Information and Decision Systems from 1974
to 1981. He is a cofounder of ALPHATECH. Inc.. Burlington, MA. He has
also consulted for several other industrial organizations and government
panels.

. .

