
SIAM J COMPUT g, 1987 Society for Industrial and Appihed Mithemanucs

Vol 16, No I, Februar, 198
'
" 5

ON STOCHASTIC SCHEDULING WITH IN-TREE
PRECEDENCE CONSTRAINTS*

CHRISTOS H. PAPADIMITRIOUr AND JOHN N. TSITS1KLIS:

Abstract. We consider the problem of optimal scheduling of a set of jobs obeying in-tree precedence

constraints, when a number M of processors is available. It is assumed that the service times of different

jobs are independent identically distributed random variables. Subject to a minor assumption on the service

time distribution, we show that policies of the "Highest Level First" type are optimal asymptotically, as the

number of jobs tends to infinity.

Key words. scheduling, stochastic, trees

AMS(MOS) subject classification. 90B35

1. Introduction. Scheduling jobs with equal execution times and in-tree precedence
constraints to minimize makespan (latest finishing time) is a classical problem in
scheduling [Co]. It is known that, for any number of processors, the most natural
policy, namely the one that asigns to the next available processor a leaf that tias the
largest height (distance from the root), is optimal [Hu]. This policy is called highest
level first.

An interesting twist on this theme is to allow the execution times of the tasks to
be independent and identically distributed exponential random variables [CR]. The
results here are less complete: It is known that the highest level first policy is optimal
only in the two-processor case [CR]. In fact, for two processors this policy is optimal
under a wide variety of criteria [BR]. Unfortunately, for three processors the highest
level first policy is not optimal, and no tractable way to approach this problem is
known. It was shown in [Pa] that a generalization of the two-processor problem in
another direction (and-or precedences) is PSPACE-complete.

In this paper we show that for any number of processors the highest level first
policy, although suboptimal, is not much worse than the optimum. In particular, we
show that, for any in-tree, the cost associated with a highest level first policy is no
larger than the optimal cost times a factor that goes to one as N increases to infinity.
Moreover, this result is shown to be true for a fairly wide class of service time
distributions, exponential distributions being a special case.

2. Problem definition. We are given a set of M processors and an in-tree G with
N nodes. Each node represents a job that may be processed by any of the processors.
We assume that the jobs have service times that are independent and identically
distributed random variables, with known distributions. We assume that these random
variables are positive, with probability one.

A scheduling policy is a rule that, at time t = 0, assigns L of the processors to L
leaves of the tree, where L is the minimum of M and the number of leaves of G. If
at time t some processor terminates the processing of a job, we delete the corresponding

* Received by the editors June 24, 1985; accepted for publication (in revised form) April 24, 1986 This

research was supported by a National Science Foundation grant, an IBM Faculty Development Award and

U.S. Army Research Office contract DAAG-29-84-K-0005
t Departments of Computer Science and Operations Research, Stanford University, Stanford, California

94305.

+ Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139.

2 C. H. PAPADIMITRIOU AND J. N. TSITS(KL[S

leaf. Then, if there still exists a leaf with no processor assigned to it, the scheduling
policy reassigns the free processor to one such leaf. The choice of the leaf to which a
processor is assigned may depend on all events that have occurred up to that time.
For example, it may depend on the amount of time that the other processors have
been already processing the jobs to which they have been assigned.

In the above description of scheduling policies we have implicitly imposed the
following restrictions:

(a) No processor remains unassigned as long as there exists a leaf with no
processor assigned to it;

(b) Once a processor is assigned to a leaf, it remains assigned to it until the
processing of the corresponding job is completed. (Thus, preemptive policies are not
allowed.)

The above restrictions are only introduced for definiteness and to keep the
description of scheduling policies simple. However, our result does not change if these
restrictions are altered.

For any policy rr and initial in-tree G, we define T,(G) to be the time that the
processing of the root of G is completed. We are interested in policies that minimize
T,(G), maybe approximately.

A special (and very easily implementable) class of policies is the class of highest
level first policies. With such policies, processors are always assigned to leaves of
maximum distance from the root. (Notice that there exists more than one highest level
first policy; a particular one could be chosen by following a lexicographic tie-breaking
rule, for example.)

It is known that highest-level-first policies are not optimal for M > 2 [CR], even
if the service time distribution is exponential. However, we will show that they come
within an arbitrarily small percentage of the optimal, as the size of the original tree
grows to infinity.

We assume that there exists some -r > 0 such that E[e x] < oo, where X is sampled
from the service time distribution. Notice that this assumption allows both discrete
and continuous service time distributions; exponential distributions are covered in
particular. Under the above assumption, we have the following result:

THEOREM. There exists some function)3 :{1, 2, -}--[0, co) such that
limp_ p3(N) = 0 and such that for any in-tree G and any highest level first policy H we
have

E[TH(G)] inf E[T,(G)](l + /(N)),

where N = IGI and where the infimum is taken over all scheduling policies r.
We have not been able to prove that a bound of this form is tight, and we are

tempted to conjecture the stronger result that there exists a constant A such that, for
any in-tree G,

E[T,4(G)] < inf E[T,(G)]+ A.

3. Proof of the theorem. Let us denote by L the set of functions f: [0, co)-,[0, cc)
with the property that lim.•., a f(a) = 0, Vk > 0. (Negative exponentials are prototype
elements of this class.) We develop a few useful consequences of our assumption on
the service time distribution.

We first notice that, by Jensen's inequality, E[X] 5(1/ /) log E[e"x] <cc. We
will therefore assume, without any loss of generality, that the mean service time E[X]
equals 1. We also have

LEMMA i. For any e > 0 there exist some h , , .•, h' e V such that

STOCHASTIC IN-TREE SCHEDULING 3

(i) P(IV,'Z X,-NIJeD)<=sh,(D) VD -N.
(ii) E[V_.X;_• . X,'-N+eD]s h((D) VDXN,=

(iii) P(max, ,' NX,=~ENh" (N h(N) VN,
(iv) E[max,_,,N X,--5eN+h'(N) VN,

where X,,- . XN are independent random variables sampled from the service time
distribution.

Proof (i) This a classical result, but for completeness we outline a proof. One
first shows that, given any e > 0, we may choose q >0 small enough so that
E[exp {i(X, - - (e/2))] 1. (A proof may be found in [Ha], for example.) It then
follows that E[exp{r(,', X,-N(1+(E!/2))}]l5 and p(,x, - N N+eD)

P(Lt Xi N+(E/2)N+(e/2)D) _-exp {-D71(E/2)}. The inequality for the lower
bound on , I Xi is proved similarly.

(ii) We have that E[Y"•', X,; Xt X, N+eD]s = , (D+ kD + 1)
P(Y_, X, - N+zkD)-5E, (2D+skD)hr(kD)= h'(D), where h' is the function of
part (i). We now show that hE 2 rV. For any m > 0, we can find some A such that
h '(kD) - A/(kD)"' 3 , for all k, D, such that kD is large enough, because h' E VL. Then,
D " hI(D) A(l+ e•) 1, (kD)- = A(2+e)rr2/(6D 2), which goes to zero, as D-+oo.
which goes to zero, as D - ac.

(iii) Let C = E[exp {rX,}J. Then, P(X, Ž-a) 5C.e- l , for all a and

P(max.,, X, >- a) - NCe - l .

The result follows by taking a = eN"• and h(N) = CN exp {-•.EN • 2}, which belongs
to U.

(iv) This follows from part (iii) in the same way that part (ii) followed from
part (i). 0

To simplify notation, we define f; = maxz,aA {h }, which clearly belongs to 'L.
We define the depth of a leaf of an in-tree to be the number of nodes on the path

from the leaf to the root of the in-tree. We then define the depth of an in-tree as the
maximum of the depths of all its leaves. We start by establishing the performance of
scheduling policies for "thin" trees.

LEMMA 2. For any e > O0, there exists some f: E W1 with the following property: Let
G be any in-tree with M leaves and let R,, • , R, be the service times of its leaves.
Then, P(T, (G)- D + eD'+max,,,_ M R,!R, - - , RM) -f~(D'), for all D'2: D, where
D is the depth of G and 7r is a scheduling policy using M processors. (In fact there
exists only a single scheduling policy in this case.) Also, E[T,(G)R,, - - , RM]
max,, I R, + (+ e)D f+D (D).

Proof If T,(G) > D+eD'+maxg,,k, R,, then there exists a path from some leaf
to the root such that the sum of the service times of the jobs on this path (the leaf
being excluded) is larger than or equal to D + eD'. By Lemma 1(i), the probability of
this event is bounded byf'(D'), for any particular path. There is a total of M candidate
paths, which proves the first part of the lemma with f,(D') = Mff(D'). The second
part of the lemma follows by appealing to Lemma 1(ii) to bound the contribution of
the "unlikely" events to E[T,,(G)]. .

The main idea of the rest of the proof is the following: if the deepest part of an
in-tree has very few leaves, then Lemma 2 will imply that a highest level first policy
will be reducing its depth at approximately the largest possible rate of one unit per
unit time, with high probability. If on the other hand the deepest part of an in-tree is

I'f X is a random variable with distribution Pi -) and A is an event, we use E[X; A] to denote

J, XdP(X).

4 C. H. PAPADIMITRIOU AND J. N. TSITSIKLIS

"thick," we will show that no policy can gain a substantial advantage over a highest
level first policy. In order to put these two arguments together, we need to define a
sequence of time intervals during which the deepest part of the remaining in-tree is
either "thin" or "thick."

We will be assuming throughout that M is fixed and we introduce some new
notation. Let us fix a highest level first policy H and another policy 7r. Given an initial
in-tree G, we let GH(t), G,(t) be the (random) in-trees remaining at time t, if policy
H, 7r, respectively, is followed. Let DH(t), D,.(t) be the depth of GH(t), G,(t),
respectively. Finally, let dH(t) be the smallest depth of any leaf to which a processor
is assigned by policy H, at time t, in the graph GH(t). Notice that Gu(t) has fewer
than M leaves of depth larger than dH(t). (To resolve any ambiguity, we assume that
all of the above introduced functions are right-continuous in t.) Also, for any processor
k that is processing some job at time t, let Rk(t) be the remaining time until the
processing of that job is completed. Let R' = maxk, Rk(t). Notice that R* equals the
maximum processing time of any job. Thus, by virtue of Lemma I (iii)-(iv), we have
P(R* - -eN/1 2

) 5fJ(N) and E[R*] _ eN +f'(N), for all e> 0.
Given some e > 0, we define a finite sequence to 5 t, < - -.. tK of random times,

(where K is a random integer to be defined below), and a corresponding sequence of
random variables Xk (for k < K), as follows. Let to = 0 and suppose that tk has been
already defined. If DH(tk) < N" 2 or if .G1H(t) has no more than M leaves, we let
K = k and the construction is completed. Otherwise, we consider two cases: (i) If
DH(tk)-dH(tk)- N L 2, we let Xk = and tk+l= t k+(l+e)N 1/ 2. (ii) If DH(tk) -

dH(tk)< N1/2, we let Xk = 0 and we define tk,1 as the first time t > tk that DH (t) < N/2,

or the number of leaves of GH(t) is'no larger than M or DH(t)-dH(t)-N'12,
whichever comes first. We define, for kS K, Ak = Du(tk) - D,(tk). (Notice that the
above introduced variables all depend on e, even though this is not explicit in our
notation.) We finally define t* as the first time that GH(t) has M or less leaves.

It will be convenient to assume that both stochastic processes GH(t) and G,(t)
are defined on a common probability space as follows. We start with a collection

= {X, : n = 1, 2, - - -; i= 1, - - -, M} of independent random variables drawn from

the service time distribution. We interpret X', as the time spent by processor i to
process the nth job ever assigned to that processor. With this definition, each of GH(t),
G,(t) is a well-defined functional of the collection X of random variables. With this
correspondence we have the following useful properties.

LEMMA 3. ff GH(S) has at least M leaves for all times s < t (and in particular if
t 5 t*) then

(i) JG f(t)J: JG,,(t)J,
(ii) D,(t)=-dn(t).
Proof (i) Simply notice that each time that a node is deleted from G,, a node is

also deleted from GH, provided that GH had at least M leaves just before time t, which

we are assuming.
(ii) Let A be the number of nodes of G(0) at depth smaller than DH(t). If

D,(t) < dH(t), then IG,(t)l J A. On the other hand, under policy H, none of the jobs
at depth smaller than dH (t) has been processed and there exists at least one unprocessed
job at depth dH(t). Thus, GH(r)I> A and the result follows from part (i). 0

LEMMA 4. There exists some f 4 VL such that P(TH (G) > 2N) 5f 4(N).
Proof P(TH(G) > 2N) 5 P(E, , X, - 2N) 5-fJ(N), where each Xi is sampled

independently from the service time distribution and where f E V' is the function of
Lemma 1. 0

LEMMA 5. For any e > 0, there exists some fi E L such that P(K > 5N' 2) -fS(N).

STOCHASTIC IN-TREE SCHEDULING 5

Proof Notice that if K>k+2, then tk+2-•1 N'N' . Thus, if K > 5N "", then
TH(G) -t Ž 2N, and the result follows from Lemma 4. D

LEMMA 6. For any E > O0, there exists some f, l such that P(DH (t,) - DH (tk.,) 5
N" 2 and Xk = 1) -f6(N) for all k

Proof If Xk = 1, then the portion of GH(tk) which lies at depth larger than
DH(tk)- N 1

2 has at most M leaves. Therefore, for any time t tkt, a processor is
always assigned to each leaf at depth larger than DH(t,) - N" , . Hence, by Lemma 2,
this portion of GH(tk) will be processed until time tk+(l+(e/2))N/12+R*, with
probability no smaller than 1-f~N'(N'2). Furthermore, the probability that R* is
larger than (e/2)N • 2/ is bounded by fN/2(N). The result follows with ff(N)=
f~'2(N)+fE/2(N/"2), which belongs to "U. 0

The following lemma is a straightforward consequence of Lemma 1(i) and the
proof is omitted.

LEMMA 7. For any e > 0 there exists some fI V " such that

(i) P(D,(tk)-D,,(tk+t)>(l+2e)N'1 2 andXk = l)--f(N) Vk;

(ii) P(DH DH()- DH(tk+)>2N•/ andXk = l)5f7(N) Vk.

LEMMA 8. For any e > 0 there exists some f8 a V such that P(k - K and Ak 2 N /2 +
2ekN'"2 + 1) - kfe(N) for all k.

Proof The proof is by induction on k and with fs =f +f-. The result is true for
k = 0, since Ao =0. Suppose it is true up to some k. In order to prove the result for
k + 1, we condition on the event K > k. If Xk =0 and k < K, then, by definition,
DH (tk1. - 8) - dH(tk+1 -8) < N 1; 2, for sufficiently small 6 > 0. Moreover, GH(tk+, - 8)
has more than M leaves. Thus, by Lemma 3(ii), DH(tk+--8)-D,,(tk+, -)< N /2 ,
for sufficiently small 8. At time tk+, each processor may complete at most one job
(because we have assumed that the service times are positive with probability one).
Thus, D,(tk+1 -)-D,(t --)< 1. Consequently, DH(tt,,)-D,(tk+1)<N /2+1.

The above demonstrates that we only need to consider the case Xk = 1. Notice
that Ak+1 = Ak + (D,(tk) - D,(tk+,)) -(DH (tk) - DH(tk+,)). We argue by contradiction.

If Ak+ > 1 + N/'2+ 2e(k + 1)N" 2 , then one of the following three must be happening:
(i) Ak> N/"2 +2ekN'/ 2 +1, which is the case with probability bounded by

kfl(N), using the induction hypothesis;
(ii) D,r(tk)-D,,(tk+,)> N/"+2eN"/ 2, which is the case with probability

bounded by f7(N), because of Lemma 7(i);
(iii) DH(tk)- DK(tk+,)< N /2 , which is the case with probability bounded by

f6(N), because of Lemma 6. Therefore, the induction step goes through with our
choice of f'. 0

LEMMA 9. For any s> 0 there exists some fg E l such that P(,K -N"/+ 10N+
1) 5fE(N).

Proof This is a trivial consequence of Lemmas 5 and 8. 0
LEMMA 10. For any e > 0 there exists some f• -a V such that P(D (t*)- D,(t*)>

4N1/2+ 10eN) 5-feo(N).
Proof We distinguish three cases: (i) If t*= tK, then Df(t*)- D,•(t*)= AK and

we use the bound of Lemma 9. (ii) If t*> tK, the definition of tK implies that
DH(t*) - D(t*) -DH(t*)5 DH(tK)< N 1/ 2 and there is nothing to prove. (iii) If
t* < tK, then we have tK -1 < t* tK • +(1 + E) N 1/2 = tK and XK-I = 1. Hence, DH(t*)-
D,(t*) _ D(tK,-1) - D,,(tK) = AK + DH(tK t) - DH(tK). For AK we use the bound of
Lemma 9. For DH(tK-)-DH(tK) we have P(DH(tK-)-DH(tK)>2N"• and
XK -1 = 1) P(K > 5NI/2)+ &k.:Nu' P(DH(tk-I) - D(tk)> 2NI/ 2 and Ak= 1

C. H. PAPAD[MITRIOU AND J. N. TSITSIKLIS

.f(N)+5N'"2f;(N). By combining the above observations, we obtain the desired
result. 0

We can now complete the proof of the theorem. We have the obvious bound
E[T,(G)] > E[t*] + E[D,(t*)] - 1. Moreover, using Lemma 2, E[TH(G) -t* GH(t*),
R,(t*), - ,R(t*)]S R*+DH(t*)+eN+ff(N). We now use the fact E[R*]-_5

eN+ff(N) and combine the above inequalities to obtain E[T,(G)-T,(G)]<
E[DH(t*)-D,(t*)]+EN+ff(N)+eN+fg(N)+I. We now use Lemma 10,
together with the fact DH(t*) - D,(t*) - N, to obtain the bound E[D,(t*) - D,(t*)] -<
4N"'2 +10EN+NfIo(N). Using the obvious fact E[T,(G)] -NIM, we finally
obtain E[T,(G)- T,(G)]- E[T,(G)](12Me+P'(N)), where 6"(N) satisfies
limN., p'(N) = 0, for all e > 0. Recall now that E was arbitrary and the result follows
with p(N) = mirro (11Me + e'(N)). O

Acknowledgments. We would like to thank the referees for a variety of suggestions
on improving the style of the paper.

REFERENCES

[BR] J. BRUNO, On scheduling tasks with exponential service times and in-tree precedence constraints, Acta
Inform., 22 (1985), pp. 139-148.

(Co] E. G. COFFMAN, JR., Computer and Job Shop Scheduling Theory, Prentice-Hall, Englewood Cliffs;
NJ, 1976.

[Hu) T. C. Hu, Parallel sequencing and assembly-line problems, Oper. Res., 9 (1961), pp. 841-848.
[Pa] C. H. PAP&DIMITRIOU, Games against nature, Proc. 24th FOCS, 1983, pp. 446-450.
[CR] K. M. CHANDY AND P. F. REYNOLDS, Scheduling partially-ordered tasks with probabilistic execution

times, Proc. of the Fifth Symposium on Operating Systems Principles, 1975, pp. 169-177.
[Ha] B. HAJEK, Hitting-time and occupation-time bounds implied by drift analysis with applications, Adv.

in Appl. Probab., 14 (1982), pp. 502-525.

