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We consider “approximately stationary” Markov chains in which the entries of the one-step
transition probability matrix are known to be of different orders of magnitude and whose
structure (that is, the orders of magnitude of the transition probabilities) does not change with
time. For such Markov chains we present a method for generating order of magnitude
estimates for the r-step transition probabilities, for any 1. We then notice that algorithms of the
simulated annealing type may be represented by Markov chains which are approximately
stationary over [airly long time intervals. Using our results we obtain a characterization of the
convergent “cooling” schedules for the most general class of algorithms of the simulated
annealing type.

1. Introduction. The main objective of this paper is the characterization of the
cooling schedules under which a simulated annealing algorithm converges to a set of
desired states, such as the set where some cost function is minimized, thus generalizing
the results of Hajek [9]. The method we follow is based on the observation that in
simulated annealing algorithms the “temperature” remains approximately constant for
sufficiently long times. For this reason, we may exploit bounds and estimates which are
valid for singularly perturbed, approximately stationary Markov chains and obtain
interesting conclusions for simulated annealing algorithms. In our development we
derive certain results on approximately stationary singularly perturbed Markov chains
which seem to be of independent interest.

The structure of the paper is the following. In §2 we assume that we are dealing with
a discrete time Markov chain in which each of the one-step transition probabilities is
roughly proportional to a certain power of €, where € is a small parameter. We then
present an algorithm, consisting of the solution of certain shortest path problems and
some graph theoretic manipulations, which provides estimates for the transition
probabilities of the Markov chain for any time between 0 and 1/e. Then, in §3, we
indicate how the procedure of §2 may be applied recursively to produce similar
estimates on the transition probabilities for all times. In §4 we use the results of §3 to
characterize the convergence of simulated annealing algorithms.

2. Markov chains parametrized by a small parameter. In this section we derive
order of magnitude estimates on the transition probabilities of a nonstationary discrete
time Markov chain. Our results are based on the assumption that such order of
magnitude information is available on the one-step transition probabilities of the
Markov chain.
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We start with some notation. We use 4" and 4, to denote the positive and the
nonnegative integers, respectively. We also let % denote the set of functions f: (0, 1) —
(0. 00) such that for every n € 4, there exists some ¢, > ( such that f(e) < ¢,g", Ve
€ (0,1). In particular, if f is bounded, membership in % is determined by its behavior
near zero. Notice that % has the property that f(e)/e" € #.¥fe U, Vn € A", Also
notice that ¢'/¢ € %, for any ¢ € (0, 1).

We consider a (generally nonstationary) finite state, discrete time Markov chain
X = {X(1): t € 4} with state space § = {1,..., N}. We assume that X(7) is also
defined for noninteger times by X(r) = X(|7]), where | 1] denotes the integer part of 1.
For any >0 we let g, ()= P(X(t +1)=j]X(¢) =1i) and pi(t) = P(X(x) =
J1X(0) = i). We assume that some structural information is available on this Markov
chain. More precisely, let there be given a collection &= {a,:1<i, j< N} of
elements of A} U {s0}. Let f€ @ and let C,, C, be positive constants. Suppose that
for some € € (0,1) and for every i. j € § we have

(2.1) Cie% < q,,(1) < Ce™, Y120, ifa, <,

(2.2) 0<gq,(t)<f(e), V=0, ife, =o.

We introduce the convention €* = 0, Ve € (0,1). Then equations (2.1), (2.2) imply that
Cie® < g;;(t) < Ce% + f(e), Vi, j€S, Vi=0.

We make the natural assumption that for each i there exists some j such that a,, = 0.
(Otherwise no Markov chain could satisfy (2.1) and (2.2) for € small enough.) We call
s/ the structure of the Markov chain X. We will now assume that &/, C}, C,, [ are
fixed and we denote by # (&, C,, C,, ) the set of all Markov chains X for which
(2.1) and (2.2) hold. (Occasionally we use the shorter notation .#,, provided that no
confusion may arise.) Notice that if we start with some X €.#, and shift the time
origin we still obtain a Markov chain in ., a fact that we will repeatedly use without
comment.

As an example, consider the four state stationary Markov chain of Figure 1, for
which

]
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Figure 1. An Example.



72 JOHN N. TSITSIKLIS

We define a path from i to j to be a sequence (iy,...,i,) of (not necessarily
distinct) states such that iy = i, i,, = j and m > 2. The length of such a path is defined
as X700 llarmn' We now provide a classification of the states in S. In this classification
only zero length paths are of interest. A state i is called rransient if there exist a state j
and a zero length path from i to j but no zero length path from j to i; otherwise, i is
called recurrent. This coincides with the usual definition if € = 0 and the Markov chain
is stationary. Let TR, R denote the sets of transient and recurrent states, respectively.
For any i € R, we let R, be the set of all j such that there exists a zero length path
from i to j.

In our example, R = {1,2}, R, = {1}, R, = {2}. TR = {3.4}.

LEMMA 2.1. (1) We have i € Rand j € R, if and only if j € R and i € R .
(i) Ifi € R, j& R, then a; > 1. ‘
(i) Ifi € R, j € TR, then a;; > 1.

Proor. If i € R and j € R, but j & R, then there exist a zero length path from i
to j and a zero length path from j to some k& but no zero length path from & to j. It
follows that there exists a zero length path from 7 to k but no zero length path from k
to i, which contradicts the assumption i € R. Thus, j € R. The fact that i € R is
then obvious, which proves part (i). The remaining parts hold because if / € R and
a,; =0, then j € R, (by definition) and j € R (part (i)), which implies j & TR. =

We introduce the following assumption on -

Assumption TRI. For any i, j, k, such that at least one of them belongs to R, we
have

(2.3) Oy < @ F .

This assumption is made for convenience because it leads to some simplification of
the proofs. It is not satisfied by the example of Figure 1 and will be removed at the end
of this section. We collect a few useful consequences of Assumption TRI.

LeMMA 2.2, Under Assumption TRI:

() Ifie Rand a; =0, thenj € R, j € R, and a;, = 0.

(i) Ifi € R, then a;; =0 andi € R,.

(iii) Ifi€ R, j€ R, then a;; = 0.

(iv) If i € TR, then there exists some j< R such that a, = 0. In particular,
P(X(t+1)€ TRIX(t)=i)<1— C,Vie TRVt > 0.

Proor. (i) If i € R and a,; = 0, then there exists a zero length path from j to i,
because of the definition of R. We then apply Assumption TRI along this path to
obtain a; = 0. Also, j € R,, by the definition of R, and j € R, by Lemma 2.1(i).

(ii) Let i € R. By assumption, there exists some ; such that a,, = 0. By part (i) of
the lemma, we also have a; = 0. Using Assumption TRI, we obtain ¢, < &, + &, = 0.
That i € R, follows from part (i).

(iii) If i € R, j € R, then there exists a zero length path from 7/ to j. Using
Assumption TRI along this path we obtain a,, = 0.

(iv) Given { € TR, we define a finite sequence (i)...., i,) of distinct states as
follows. Let i, = i. Having chosen i,, if i, € R let n =m and stop. Otherwise,
choose i, ., so that there exists a zero length path from i, to i, ., but no such path
from i, , toi,. (Such an i, exists, by the definition of TR and must be different
[ i, because otherwise there would be a zero length path from i, to i, _.)
Since the state space is finite, the termination condition must be met eventually. Thus
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there exist some j € R and a zero length path from i to j. We then use (inductively)
Assumption TRI along this path, to conclude that a,, = 0. The last statement of the
Lemma is then an immediate consequence of (2.1). m

Let us point out that the sets R, determine a partition of R into disjoint classes
which is analogous to the usual partition of recurrent states into ergodic classes for
stationary Markov chains.

We need a preliminary result which provides order of magnitude estimates on the
probability that a state j € R is the first recurrent state to be visited, starting from a
transient state /. We use the notation 7= min{7 > 0: X(r) € R}.

PROPOSITION 2.1. For any o/, C\. C,, [, there exist F > 0 and g € U such that for
any e € (0,1), X € # (.C,, Gy, f). we have:
() Ifie TR, j € R, then

(2.4) Cie™ < P(X(T) = j|X(0) = i) < Fe™ + g(e).
(i) Ifi € TR, j= TR, then
P(X(t)=j,T>1|X(0) =i) < (1 - C)" Y(NCye)™ ") wr>1,

PrOOF. Let us fix &/, C\, G, f.

(i) Let j € R. We define, for a € 4} U {0}, §, = {i € TR: a, =a} and Q, =
{{ € TR: a,; > a}. We then define p,, = SUPy e o, Max, . o P(X(T) = j|X(0) = i).
We first prove, by induction on a, that for any a < oo there exists some F, > 0 such
that p, . < Fg® Ve € (0,1). This is clearly true for & = 0. Suppose it is true for all &
less than some positive integer 8. Let i Qp and X € . . Notice that for any state k
we have @, + a; >« > B, because of Assumption TRI. Using (2.1) and the
induction hypothesis we obtain

P(X(T) = jIX(0) = i)

B=1
< X X P(X(T)=j1x(1) = k)P(X(1) = k| X(0) = i)

a=0keS,

+P(X(1) € Qp|X(0) = i) max P(X(T) = j|X(1) = 1)

€0y
+P(X(1) =j|X(0) =)
B-1
S Y Y Fe™iCe™ + (1 - Ci)pg. + CeP
a=0keS,

< [Nmax {F}C + Glef + (1 - C)pg ..
a<f} !

Taking the supremum of the left-hand side over all i € Qg and all X € .# . we obtain,
for some constant Fg,

Pﬂ.s = F}?Eﬂ i (] - Cl)p,f,g

from which it follows that the induction hypothesis is also true for 8.
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Finally, we assume that i € S . Notice that a,, = o, Yk & S, because otherwise

@, < @y + @, < oo, contradicting the assumption i € S, Now,

P(X(T) =j|1X(0) = i)
< P(X(1) € TR, X(1) & S_|X(0) = i) + P(X(1) = j|X(0) = i)
+P(X(1) € 5,,1X(0) = i)p,, .
< Nf(e) + (1 = C))py o

Thus p,, . < (N/C))f(€), Ve > 0. This completes the proof of the second inequality in
(2.4), with F = max F; (where the maximum is over all # such that §; is nonempty)
and with g = Nf/C,. The first inequality is a trivial consequence of (2.1).

(i) If a;, = 0, the result follows because

P(X(1)=jT>0Xx(0)=i) < P(T>)X(0) =i) < (1—-C)".

So. suppose that a,, > 1. Let A = {i} U {k € TR: a, = 0} and B = {/ € TR: I+ i,
a, = 1}. We claim lhal a, > 1, Vk € A, VI € B. Indeed, if k = i, this follows from
the definition of B; if k # i, then 1 € a,, < @, + a;, = ;. which proves the claim.
Therefore,

P(X(r+1)eB|X(r)€A) < NCe. VY720

Notice that i € A, j € B; thus,

=M
P(X(t)=j.T>tX(0)=i)< Y P(T>t, X(r) €A, X(r+1) € B|X(0) =)

r={)

=1
Y P(T>7X(0)=i)P(X(r+1) € B|X(7) € 4)
T={)

/A

XP(T > 1|X(r + 1) € B)

t—1
Y (1-C) (NG =)

=0

VAN

(1= €)' (NCyt),

Il

which completes the proof. =

Proposition 2.1 is false if Assumption TRI is removed.

The main result of this section is based on the following algorithm, which provides
important structural information on the long-run behavior of Markoy chains in .# .

Algorithm 1. (Input: &= {a,:1 <i.j<N}: Output: V= (Vi jrl<ij<
N},sets Rc S, TR C S and foreach i € R aset R, C R\)

1. Given .9/. determine R, TR and the classes R, using the definition given earlier.

2. Let¢,, =« — 1 if i€R, jER, j&R; let ¢;; = a,;, otherwise. (Notice that
;>0 a]wayq holds.)

3. Solve the shortest path problem from any origin i € R to any destination j € R,
with respect to the link lengths ¢,, and subject to the constraint that any intermediate
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state on a path must be an element of R. Let V(i, j) be the length of such a shortest
path. Notice that the V(i, j)'s satisfy ¥(i,i) = 0, Vi € R and

(2.5) Vi, j) = Iniz{;f(f.k) +e,). Vi, jER.
he
4. 1fie R, je TR, let

(2.6) V(i j) = min {V(i, k) + ¢, } = min (V(i k) +q, .
keR keER :

5. If i & TR, let

(2.7) V(i, j)=min{e, + V(k, j)} = min {a, + V(k. J)}.
keR hER
Notice that the output ¥(i, j) of the above algorithm is equal to the length (with
respect to the ¢,;'s) of a shortest path from i to j subject to the constraint that all

states on the path belong to R, except possibly for the first and the last one. We
continue with a few elementary observations on this algorithm:

PROPOSITION 2.2. (i) V(i, j) = 0, Vi, j.

(i) V(i, j) > 1, Vi, Vj € TR.

(i) V(i, j) < V(i, k) + V(k, ). Vi, j, k.

(iv)y If jE R and j' € R, then V(i, j)= V(i, j'). Vi. Also, if i € R and i’ € R,
then V(i, j) = V(i', j), ¥j.

PROOF.  Part (i) follows from the shortest path interpretation and the nonnegativity
of the ¢,,’s. Part (ii) follows from (2.6) and the fact (Lemma 2.1(ii1)) that a;, = 1,
whenever k € R and j € TR. Part (iii) is clearly true for k € R, due to the shortest
path interpretation. So, assume that k € TR. Let us take shortest paths from ¢ to k (of
length V(i, k)) and from k to j (of length V(k. j)) and concatenate them. This
produces a path from i to j. of length V(i, k) + V(k. j). such that all intermediate
states, except from k, belong to R. If k| and k, are the predecessor and the successor,
respectively, of k in this path, we have k, € R, k, € R and we can use (2.3) to
conclude that ¢, + ¢, > ¢k, Which shows that & may be eliminated from this
path. to produce a path from i to j, with all intermediate states belonging to R, and
with length less than or equal to V(i. k) + V(k. j), as desired. Finally, part (iv)
follows from the shortest path interpretation and the fact that ¢y = ;= 0, whenever
k € R and | € R, which is a straightforward consequence of Assumption TRI. m

We notice that, as a consequence of part (iv) of the proposition, the algorithm need
not be carried out for all states. It suffices to consider transient states and one
representative from each class R,

The following proposition provides the interpretation of the V(. J)s.

PROPOSITION 2.3, For any o#, C,, C,, f. there exist positive constants G i Gay G
Gy, with Gy <1, and some g & U such that. for any €>0, for any X €
MAA,C\.Cy, ) and any states i, | we have
(2.8) Gi(e(r = N))"“) < p, (1) < G oD + x, GiGY(16)™ ™) + g(e),

Vie [N+ 1,1/].

where x,, = 1. ifi € TR, j € TR, and X, = 0, otherwise. (The upper bound in (2.8) is
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also true for 1 € [1, N + 1].) In particular, there exist G, > 0, G, > 0, g € ¥ such that
Jor all states i, j,

1

(2.9) G <y | < G0+ g(e).

PrOOE. Let &/, C,, C,, [ be fixed throughout the proof. Let i € R. Suppose that
€ > 1/(2NG,). For any j € R, we have a;, = 0 and

P(X(t+1)eR|X(t)eR,)=P(X(t+1)=iX(t)ER,) > migq”(r) = 5.
[ER,

Thus, if 0 < 5 <1 < 1 /€, then
P(X(1) € R|X(s) €ER) = CIN, VXe#, Yee (1/(2NG).1).

Suppose now that € < 1/(2NC,). Notice that for any k € R,, j& R, we have
g, (1) < G, Vi It follows that P(X(71 + 1) & R|X(1) € R,) < NCy and. for 0 < s
st </

P(X(1) € R|X(s) € R,) = (1 - NCe)"/ = (1)
vXe, VYee (0,1/(2NC,)).
We conclude that there exists some F; = 0 such that
(2.10) P(X(t)eR|X(s)ER,)>2F. 0<s<t<]l/e,
Ve >0, VXe#, Yi€R.

We now start the proof of the lower bound in (2.8). If ¥(i, j) = oo, there is nothing
to prove, so we will be assuming that V{(i, j) < co. We first assume that i € R and
j € R. Then there exists a sequence i =iy, i,,...,i, =/ of elements of R (with
n < N), such that £}_lc,, = V(i, j). Let k € {1....,n} and suppose that there
exists some F, > 0 such that, for all € > 0 and for all X e,

(2.11) P(X(¢) € R, |X(0) = i) > F(e(r — k + 1)) el
Ve e [k—1.1/¢].
We then have, for ¢t € [k, 1 /€],

(212) P(X(1) R, |X(0)=i)

=1
> Z P(X(F) = RfA‘IIX(S-i- l) = Rikil)

s=0

xP(X(s+1) € R, |X(s) €R,)P(X(s) €R,|X(0) =i)

A%

r—1
Z Flclf“"“"‘“(Fk(f(s —k+ 1))k71€£}"1"uml]
s=k
. =1 .
> (F FC))e" e Y (e(s—Kk+1))" .

s=k
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Clearly, there exists a constant £ such that

=1
Ys—k+1)" s FE G-k visk
s=k

Inequality (2.10) shows that (2.11) holds for k = 1. We have thus proved by induction
on k that (2.11) holds for all k. Notice that

pi(1) = P(X(1) = j1X(0) = i)

P(X(1) =j1X(1—=1) € R,)P(X(+ — 1) € R | X(0) = {)

W

> CP(X(1=1) € R|X(0) = ¢).

from which the left-hand side of (2.8) follows for 7 = N and for i € R and JER.

Suppose now that i € R, j € TR and let k € R be such that V(i. Jy= V(. k) +
ay . 1T ay ;= oo, then V(i, j) = oc and there is nothing to prove. So. assume that
a;; < oo. Then, for 1 > N + 1,

P(X(1) =j1X(0) = i) = P(X(1) = j|1X(1 = 1) = k) P(X(1 = 1) = k| X(0) = i)
> Ce™P(X(1 = 1) = k| X(0) = i).

Given that we have already proved the lower bound for P (1), the desired result for
p;,(1) follows.

Finally, let i € TR and 1 > N + 1. The result follows similarly by choosing & € R
so that e, + V(k, j) = V(i. j) and using the inequality

P(X(r) =j1X(0) = i) = P(X(1) = k| X(0) = i) P(X(¢) = j|X(1) = k).

We now turn to the proof of the upper bound in (2.8). Let i € R be fixed. We define
E.={JER: V(i j)=a), T, = {7 € TR: V(i, j) = a}, E. = Uﬁ@Eﬂ. We also
define similarly £, 7_ . 7. . We will prove by induction that for any a < oo the
following statements hold:

(SE,): There exists some G, > 0 such that Ve € (0,1), VX eEM VjeE,, and
Vi < 1/e we have p, (1) < Gg".

(ST,): There exists some G, > 0, such that Ye € (0,1), VX € M Ve T, , and
Vi < 1/¢ we have p, (1) < Gle™

Statements SE; and ST, are trivially true, with Gy = G = 1. We now prove ST,.
(Notice that T, = TR.) Now.

(213)  P(X(z:+1) € TR|X(0) = i)
< P(X(r+1) € TRIX(¢) € TR)P(X(1) € TRIX(0) = i)
+P(X(1+1) € TR|X(1) € R)
< (1= C)P(X(r) € TRIX(0) = i) + NCe.

Since i € R, P(X(0) € TR|X(0) = i) = 0 and (2.13) implies P(X(1) € TR|X(0) = i)
< (NGe)/C, Vit = 0, which proves ST;.



78 JOHN N. TSITSIKLIS

Now let a be some positive integer and assume that statements SE; | and ST, are
true, for all B < a. We will prove that SE, and ST, are also true. We first need the
following lemma.

LemMma 2.3. Ifjed=E
tapza+tl

UT_ ,andk € K=E, UT, .y, then V(i, )

<{a-1)

Prook. (i) If j€EE_, 1, K€ E,, then V(i,j) +ayu=V{, j)+c +12
Vii,k) +1za+ 1.

(ii) If j€ E_a-1y k€ T, (uury then V(i, j) + ay = V(L j) tep 2 (i, k)=
a+ 1.

(i) If j€ T.,, k€ E_,, let ] € R be such that V(i,/) + a;; = V(i. j). Suppose
that / € R,. Then V(i, /)= V(i,k) =z a and V(i. j} = V(i, D+e;zat+l which
contradicts the assumption j € T_,. We thus assume that / &€ R. Then V{i, j) + a,
= V@i, )+ o, +ay > Vi) +a=V(i,)+eu+12 V@i k)+1>a+l

(iv) If j€T_, kET, 41y let LER be such that V(i,l) + «;; = V(i, j). Then
V(i J) oy = Vi, ) + a; + a; > V(ii,ly+ ay > V(i k)za+1. =

Let jeJ. If je€ E_, . then V(i, j) < a — 1, by definition. Also, j € Ey; ;) and
by the induction hypothesis p, (1) < Ge"'"/), where G = max{Gy_,. Gg: B<al. A
similar argument gives the same conclusion if j € T_,. Now, if k € K, then

P(X(t+ 1) = k|X(t) =j)P(X(1) = j|X(0) = i) < Cx™%Ge" ) < CGe* Y,

where the last inequality follows from Lemma 2.3.
Notice that V(i, i) < a,, = 0, since i € R. Thus, i € E; which implies that / € J.
Therefore,

P(X(I)EK]X(0)=i)<ri Y P(X(r+1)=klX(r)=])

1
=0 kekK, jeJ

T

XP(X(r) =jl1X(0) = i)

ok

< ?CZGE““NI. vr e [1,1/¢],

which proves SE,. Finally,
P(X(t+1) €T, 1) X(0) = i) < (1 = C)P(X(1) € Ty 41| X(0) = i)
+ NGg°Cie + N?CGe* !
which shows that
P(X(t) € T, .. |X(0) = i) < (1/C)(NGC, + N*CG )™, Vi e [1,1/€].

This proves ST, and completes the induction.

We have thus completed the proof of the upper bound in (2.8) for the case where
i € R and V(i, j) < oo. The proof for the case i € R and V(i, j) = oo is very simple
and is omitted.
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We now assume that i € TR and j € TR. Let T be the random time of Proposition
2.1. Then, for some F >0, G > 0, g, g', g’ € ¥, we have

Py (1) < X P(X(1) = jIX(T) =k, T < t)P(X(T) = k. T < 1| X(0) = i)
ke R

+P(X(1) =j.T> 11X(0) = i)

L [Ge®h + g(e)][Fes + g'(e)] + (1 — €)Y (NCyte)™n -}

ke R

Al

< (NG)F"" D + g"(€) + (NG)(1 = €)™ '(re)™™ ! Wi e [1.1/].

which has the same form as the right-hand side of (2.8). (In the above inequalities we
use the easily verifiable fact V(k, j) + a,, = V(i, j).)

Finally, we consider the case where i € TR and j € R. The argument is identical as
in the preceding case except that the term P(X(¢) = j. T > t|X(0) = i) is now equal 1o
zero. m

We point out that the bounds (2.8) are also applicable to P(X(1 + 5) = j| X(s) = i).
for every s = 0, because .#, is invariant under translations of the time origin.

Notice that the gap between the upper and lower bounds is a multiplicative factor
independent of ¢, when 7 = 1/¢. For smaller times the bounds are much further apart.
It is not hard to close this gap, although we do not need to do this for our purposes.

The remainder of this section is devoted to showing that Assumption TRI is not an
essential restriction. Roughly speaking. we will establish that our results are applicable
to any Markov chain which is aperiodic in the fastest time scale.

Let there be given a set &= {a,:1 < i, j< N} of elements of 4 U {ec], not
necessarily satisfying (2.3). For any i, j € §, n € 4", we define 8, = o, and Bt =
min, { B + ay,}. Thatis, B equals the distance of a shortest path (with respect to the
link lengths «, ) from i to ;j which has exactly n hops. Also, let B, =min,_ ,-B/.
Notice that for every i, j, k, m, n we have B7 + B!, = B"". We introduce the
following assumption on 7.

Assumption AP.  There exists some positive integer M with the following property:
if i € Ror j R, then B'i= B ¥n> M.

For any Markov chain whose structure is described by 7, meaning that the
estimates (2.1), (2.2) are valid, assumption AP amounts to the following: if we
substitute 0 for €, and decompose the resulting Markov chain into ergodic classes, in
the usual manner, then each of the noncommunicating classes of recurrent states is
aperiodic.

It can be shown that if & satisfies Assumption AP, then M can be chosen to be
smaller than N (This is related to the fact that the “index of primitivity” of any
primitive nonnegative matrix is bounded above by N2 — 2N + 2: for more details, see
Chapter 2 of [13].)

Given %/, some positive constants C,, C,, some f € % and some € > 0, consider the
set M (o7, C,, Gy, [). Let O be some positive integer. For any X € M (A, C, Gy, f),
let us define X to be the discrete time Markov chain obtained by sampling X every Q
time units. Finally. let #¢ = {B2:1 < i, j < N}. The following proposition estab-
lishes that the coefficients B¢ describe the structure of the sampled Markov chain X,

PROPOSITION 2.4.  For any /. C,. C,. f€ U, and for any Q € A", there exist some
positive Cy, C{ and some [ € U such that { X°: X € M (4, C,, Cy. [)) is a subset of
M (B, CL, CL ). '
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Proor. The result is immediate from the fact that P(X9(¢t + 1) = j| X9t) = i)
equals the sum, over all paths from 7 to j with exactly Q hops, of the probability that
X(¢) follows any such path. The desired conclusion follows with C{ = C¢, €y = CZN?
and ["(e) = N9f(e). (The factor N€ arises because there are less than N9 such paths.)

u

The main reason, however, for introducing X’ ? is the following.

PrROPOSITION 2.5. Suppose that ¢ satisfies Assumption AP and that Q > M + N,
where M is the constant in that assumption. Then B¢ satisfies Assumption TRI.

ProoF. Let us fix some i, j, k and suppose that i € R. Let n be such that
BJi = B, Without loss of generality we may assume that n < N. Furthermore.
Bj’, > B, = Bji- Therefore, using Assumption AP and the inequalities Q > M, Q — n
> M, we have B9 + BY = B2 + Bji = BY " + Bji = BY, which is the desired inequal-
ity. The proof for the cases j € R or k € R is identical and is omitted. =

As a consequence of Propositions 2.4 and 2.5. Proposition 2.3 becomes applicable to
an appropriately sampled version of a given Markov chain, assuming Condition AP.
We notice that Proposition 2.3 will provide us with estimates of the transition
probabilities only for those times which are integer multiples of Q. However, it is easy
to show that the same estimates are also valid for intermediate times as well.

With a more elaborate choice of Q, the conclusions of Proposition 2.5 are valid even
if Assumption AP fails to hold. However, in this case, the corresponding conclusions of
Proposition 2.3 will only be valid for the sampled chain X¢ and not, in general, for the
original Markov chain. Rather, the order of magnitude of p, () will vary periodically
with ¢.

We close this section by pointing out that there is nothing special about the
coefficients «;, being integer. For example, if the a;; are rationals we could introduce
another small parameter & (to replace €) and another set of integer coefficients B, , so
that 8% = €%, Even if the g, /s are not rational, neither are their ratios rational, the
proof of Proposition 2.3 remains valid, as long as min{a,, : a,; # 0}. This can be
always achieved by redefining the small parameter e.

Returning to the example of Figure 1, we notice that Assumption AP is satisfied and
an easy calculation yields

0 3 4.3
wo_ |1 0 1 4
W=l 34 af V=4
1. 0.1 4
By applying Algorithm I to 29 we obtain

Q=2: 33
VN L ¢ T e
=10 2 3 3
0 0 I3

3. Determining the structure at successively slower time scales. Proposition 2.3
allows us to determine the structure of a Markov chain X € .#_ in the fist of the slow
time scales, that is for times of the order of 1/e. We now notice that the transition
probabilities P(X(1/€) = j|x(0) = i) satisfy (2.1), (2.2) (with a new choice of C;, C;,
/) provided that we replace a,; by V(i, j). Moreover, due to part (iii) of Proposition
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2.2, the coeflicients V(i, j) satisfy the triangle inequality (2.3) and, therefore. Proposi-
tion 2.3 becomes applicable once more. This yields estimates for the transition
probabilities P(X(1/¢*) = j|x(0) = i). This procedure may be repeated to yield esti-
mates for P(X(1/e?) = j|x(0) = i), for any positive integer d. To summarize, we have
the following algorithm:

Algorithm I1. (Input: &= {a,:1 < i, j < N}, satisfying Assumption TRI; Out-
put: for each d & A4, a collection V¥ = {V(i, j):1 < i, j < N}, a subset R? of the
state space and for each i € RY a set RY c RY)

L. Let ¥°(i, j) = a,,, Vi, j.

2. Let ¥ be the input to Algorithm 1I: let V' R4 TR RY be the outputs
returned by Algorithm 1.

Notice that R is the set of all states i with the following property: if for some ; we
have V¥(i. j) = 0 then we must also have V% J. i) = 0. Also, for any i € RY we have
R¢={je RLVYi, j)= 0}. The remarks preceding Algorithm II lead to the next
proposition. (Notice that when we use Proposition 2.3 to obtain estimates for 7 = 1/€4,
the unit of time becomes 1/¢/'. For this reason, the variable ¢ in Proposition 2.3
must be replaced by re? 1)

PROPOSITION 3.1. Given some </ satisfying Assumption TRI and some d € A, let
VA, j), RY, be the collection of integers and the subset returned by Algorithm . Then,
Jfor any positive constants C,, C and for any [ € U, there exist positive constants D,, D,,
Dy, Dy, with Dy < 1, and g € U, such that, for any ¢ € (0,1) and for any Markov chain
X e M, CC,, [) we have'

L]

o ¢ min{ 141, g
< qui‘ (8- + X‘r'r;lDﬂDq“r I([t‘d) {141 o 1y +g(€)
Vie [(N+1)/e " 1],

where x{"' =1, ifi € TR\, j & TR, and x{ ' =0, otherwise. (The upper bound
in (3.1) is also valid for 1 € [1/e* ' (N + 1)/€* ") In particular, there exist Dy
D, > 0, g € U such that

(3.2) Do < Pu(%) < D0+ g(e).
L €

PrOOF. (Outline) For d = 1, the result is a restatement of Proposition 2.3. Assume
that the result is true for d — 1. If 7 is an integer multiple of 1/€¢“7!, the result for d
follows from Proposition 2.3, using 1 /¢! as the time unit. A simple way of obtaining
the same bound for general 7 is the following. We restrict, without loss of generality, to
the case where € < 1/2, because for € > 1/2 the result is trivially true. Given some
L€ [(N + 1)/e’ 1, 1/¢“] which is not an integer multiple of 1/¢* !, let k be an
integer such that k/e’" ! <1 < (k + 1)/e’" !, k € [N+ 1,1/¢]. Let €, be such that
t = k/eg'. Notice that 1 < (e/e,) < [(k + L/k]M4=0 < 2. Bince X e
M (A, Cp, Gy, f). it follows that X € # (s#,2 7C,, 25C, g), where B —
max{e,, :a;; < oo} and where g € % is suitably defined. Since € < €, we see that

"The notation [ @] stands for the largest integer bounded above by a.
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k € [N + 1,1/¢,). To summarize, we have 1 € [(N + 1)/¢§ '.1/€{] and ¢ is an
integer multiple of 1/¢{ ! and this reduces to the case for which the result has been
already proved. We conclude that (3.1) holds, with ¢, in the place of €. We then rewrite
(3.1), in terms of ¢, as follows. We have |ed 't| = k = [¢/ 1] and this term is of no
concern. For the other occurrences of e, we use the inequalities €/2 < €. €; <€,
whichever is appropriate at each place. We then see that (3.1) still holds, provided that
some of the constants are redefined. m
We continue with a few remarks on the quantities computed by Algorithm IL.

PROPOSITION 3.2. (i) Forany d, i, j, k, we have V(i, j) < V(i , k) + V(k, j).
(i) For any d., we have R**! C RY.
(i) Vi, j) + V<G, k) = vmesteddo k), Vi, g, k, e, d.

Proor. (i) This is an immediate consequence of part (iii) of Proposition 2.2.

(ii) Suppose that i € R**!. Then, V“*'(i, i) = 0. Using part (ii) of Proposition 2.2,
we conclude that i € TR, or, equivalently, i € R“.

(iii) Using Proposition 3.1 twice, there exist constants D/, D; such that

1 1

r VG )+ VI k) =2
Die <Pl X 2(“'+ et

) = k| X(0) = :‘) D™,

Moreover, this inequality is true for all X € #, and for all € > 0. Letting € be
arbitrarily small, we conclude that the claimed result holds. =

As a corollary of Proposition 3.2 we obtain that some of the upper bounds of
Proposition 3.1 are true even for times smaller than 1/¢“":

COROLLARY 3.1. For any o/, C,, C,, [ and any nonnegative integer d, there exist
some h € U and some C > O such that, for all € € (0,1), all X € # (A, C,,C,, [) we
have:

(i) Ifi € RY or j € RY, then

(3.3) pi; (1) < €D + h(e), Ve [1,17€];
(i) If V<(i. j) = 1, Ve < d, then
(3.4) pi,(1) < Ce+ h(e), Vre [1,1/6].

ProoF. (i) Suppose that i € RY. Given 1. let us choose some ¢ < d such that
re[1/e1,1 /€. Since i € RY, Proposition 3.2(ii) shows that i € R", Ve < d. and
therefore x{, ' = 0. Then the upper bound (3.1) yields p, (1) < Ge""" ) + h(e), for
some h € %. Using Proposition 3.2(iii), we obtain V<(i, j) + Vi, i) = V(i j).
Since i € RY, we have V¥(i, i) = 0 and therefore

pi (1) < GV D + h(e) < GV + h(e),

as desired. The proof for the case j € R is identical.
(ii) We choose ¢ as in part (i) and we follow the same steps. The bounds of
Proposition 3.1 now yield, for some constants G, G', G", with G" <1 and some
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he%,
[J”(I) < GEI"U.;]+ Gr(Gu‘)n‘ L(E‘_!)minﬂ.iﬁ' Yiv i) +h(€)
< Ge + eG’[(G”)“' (tee 1)] + h(e)

< c[(]'max {a(G")"} + G] + he).

a=1

which is of the desired form. m

For the sampled version of the example of Figure 1, V' has been already computed
in §2. We see that R' = (1} and therefore R = (1}, Vd > 1.

We continue with a few remarks on the applicability and usefulness of Algorithms |
and II. We observe in Algorithm I that in order to determine V(i, j) for i € R and
J € R, we only need to know the coefficients a,; for i and j belonging to R. This has
the following implication for Algorithm II: in order to compute the coefficients
{(V4"Yi, j): i, j € R}, we only need to know the coefficients {(V4i, j): i, j € RY).
Since R*' R it follows that the coefficients { V4 1(i, j): i, J € R may be
computed from the coefficients { V“(i, j):i.j € R*}. Thus, if we are only interested in
determining which states are recurrent for each time scale (as well as in determining
the corresponding ergodic decomposition) we may eliminate, at each stage of Algo-
rithm II. the states which have been found to be transient, that is the elements of TRY.
This observation, together with the fact that we only need to carry out the algorithm
for just one representative from each class R% should result in a substantial amount of
savings, were the algorithm to be implemented.

Naturally, Algorithm II is applicable to the appropriately sampled versions of
Markov chains satisfying Assumption AP. Then, inequalities (3.1) and (3.2) are valid
for times which are integer multiples of the sampling period Q. Moreover, a simple
argument shows that these inequalities are valid for intermediate times as well. Also
notice that sampling needs be carried out only once. Even if .o satisfies AP but not
TRI, still the coefficients V', d > 0, will automatically satisfy Assumption TRI and no
sampling is required at subsequent stages of Algorithm I1.

We compare Algorithm II and Proposition 3.1 to the results available in the
literature. There has been a substantial amount of research on singularly perturbed
stationary Markov chains [2, 3, 4, 5, 12]. Typical results obtain exact asymptotic
expressions for the transition probabilities, as a small parameter e converges to zero.
These asymptotic expressions are obtained recursively, by proceeding from one time
scale to the next, similarly with Algorithm II. Each step in this recursion involves the
solution of systems of linear equations and, possibly, the evaluation of the pseudoin-
verse of some matrices [2], which may be computationally demanding, especially if we
are dealing with large scale systems. However, we may conceive of situations in which
we are not so much interested in knowing the values of the transition probabilities, but
rather we want to know which events are likely to occur (over a certain time interval)
and which events have asymptotically negligible probability (as € goes to zero). For the
latter case, a nonnumerical, graph-theoretic, method is more natural. This is accom-
plished by Algorithm II. Such a method can be also extracted from the results of [12].

4. Cooling schedules for simulated annealing. In simulated annealing [7, 10] we
are given a set S = {1,..., N } of states together with a cost function J: § — 4" to be
minimized. (Our restriction that J takes integer values can be relaxed.) The algorithm
jumps randomly from one state to another and forms a Markov chain with the
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following transition probabilities:
(4.1) P(X(t+1)=j1X(1) =1)
= 0(i, j)exp[min{0, = (J(j) = J()/T(1)}]. if j+ i,

(42) P(X(t+1)=iX(1)=i)=1-= Y P(X(r+1)=4X(t) =1i),

J*ED

where the kernel Q(i, j) is nonnegative and satisfies X,0(7, j) = 1, and T(z) > 0 is
the “temperature” at time ¢. It is known that if 7(z) decreases to zero slowly enough,
then X(t) converges (in probability) to the set at which J is minimized [1, 6-9, 11]. We
are interested in determining how slowly 7(7) must converge to zero. so that conver-
gence to the minimizing states is obtained.

We formulate the problem in a slightly more general manner, as follows. Suppose
that we are given a stochastic matrix P¢ (whose ijth entry is denoted by p;))
parameterized by a positive parameter € and assume that there exist positive constants
C,, G, and a collection &= {a,,:1 <i, j < N} such that a;; € A, U {00}, Vi, j
and such that pf, = 0, whenever «,; = o0, and Cye™ < pj; < G, Ve € (0,1]. when-
ever a,; < co. Finally, we are given a monotonically nonincreasing function (cooling
schedule) €: A} — (0,1). We are interested in the Markov chain X(7) with transition
probabilities given by P(X(¢ + 1) = j| X(¢) = i) = p{}".

Clearly, the simulated annealing algorithm is of the type described in the preceding
paragraph, provided that we identify e(z) with ¢ /7 and provided that we define
@;; = 00, if Q(i, j) =0, i#j, and a,; = max{0, J(/) - JO)) A QUL )+ 000+
The coefficient a;; may be specified similarly.

We now return to our general formulation. We thus assume that &7, C|, C, are
given, together with the schedule {€(7)}. We assume that = satisfies Assumption TRI
and we define, for any d € 4, the quantities (i, j) and the sets RY by means of
Algorithm IT of §3. Our main result is the following.

ProrosITION 4.1.  Assume that for some integer d = 0,

(4.3) Y e4(f) = oo,
=0
(4.4) 2 el (1) < oo
=0
Then
(i) lim, ,  P(X(1) € RY|X(0) = i) =1, Vi

(ii) For any i € R, limsup, ,  P(X(t) = i|X(0) = i) > 0.

PrOOF. The main idea of the proof is to partition [0, co) into a set of disjoint time
intervals [r,,f,,,) such that X(r) is approximately stationary during each such
interval, in the sense of §2, and then use the estimates available for such Markov
chains. To simplify notation, if ¢ is not an integer, we define €(¢) to be equal to e(|]).

The proof for the case d =0 is rather easy and is omitted. We present the
comparatively harder proof for the case d > 1.



MARKOV CHAINS WITH RARE TRANSITIONS & SIMULATED ANNEALING 85

We start with the proof of part (i) of the proposition. We define t, = 0 and

1 . 1
(4.5) Lip1 =y + W lfe(l'(-l“ ;ﬁm)} te(r,).
(4.6) t,or =min{r:e(r) < Ye(s;)}, otherwise.

We define A, (respectively, A) as the set of all ks such that 1, .1 1s defined by (4.5)
(respectively, (4.6)).

LeMMA 4.1 The sequence {€(1,)} has the following properties:

(4.7) () < elr) <e(t,), Ve[, y,,),
(4.8) Y () = oo,
ke d;
(4.9) Y €1,) < .
k=0
Let f(k. 1) be the cardinality of 4, N {I,.. ., k =1}, fork = I. Then, forany C € (0,1),
% k
(4.10) 2 X (1 =C)"%(1,)e(r) < oo,
A=0i=0
k
(4.11) Jim Y (1-C)* %) =o0.
T =0

PrOOF. Inequality (4.7) is an immediate consequence of (4.5). (4.6).
We notice that for any k € A, k' € Ag, with k' > k, we have e(t) < (1/2)e(2,).
Hence,

(4.12) Y €(1,) < €(0) )E 27% < oo,

kedy k

Furthermore,

Z e(t,) = z ed(f.g)[f;\nl —f;.]

ked, ked,
oL
= ¥ Mt =1l - X (M iteni = 7]
k=0 keAdy

v

Zc"(r) - ¥ e(1,) = oo,

ked,
which proves (4.8).
From (4.12) we conclude that ¥, _ 4, £7(1,) < o0, Also.
=] oo
Y Ey)<s ¥ e )ty = 1] < 244 Y e (1) < oo,
k=0

keAd,; =0

which proves (4.9).
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Given any C € (0, 1), we define a constant a by [2(1 — C)]* = 3/2.if (1 — C) > 1;
otherwise, we let a = 1. Let B = {(k,/): k = [ and f(k.!) = a(k — I)}. Then

20 A
Y (- %)) < T X [0 -0 Ten)elr) < .
(k,l)eB k=0 =0

because (1 — C)“ <1 and e(1;) is square summable by (4.9). Now notice that
e(r,) & 2 =NHEN(r, ), if ke .1 Hence,

Y a-0)Y*()el) < X [201- )" "2kene(g))

(k. YEB, k=1 (k.NEB, k=l

< Y (321 2) 1) < o,
k=l
which proves (4.10). The proof of (4.11) is similar and is omitted. =
We now define subsets S, S},... of the state space inductively as follows.
Sy = R?= {i:if (i, j) = Othen V(,i) = 0},
S,y1={i€R"Mi¢ S U -+ US, and 3j € §, such that V*7'(i, j) = i e
Also let
T, = {i € TR ':3j € S, such that ¥*"'(j,i) = 1}

and let T, be the complement of T, in TR* '. Notice that (U,.,S,) U T, U T, =
{(1....,N}. Also, if i€ S,, n+0 and V97'(i, j) =0, then j € R{"" and j € §,.
(For a proof of this fact, if i € S,, then i€ R, so, if V4 (i, j) =0, then
V4=1(j, i) =0 and therefore j € R\ Let /€S, | be such that ¥/ '(i, 1) = 1.
Then V4-Y(j. 1) = 1. So, either j € §, and we are done, or j € §, U --- US, ;. In
the second case, the same argument shows that /€ §, U --- US, | which is a
contradiction.)

We let Y(k) = X(1;). We need estimates on the transition probabilities of the Y (k)
process. These are obtained by noting that, for any k. the Markov chain { X(1): r €
[#4+ 14411} belongs to A, (.2 KC,, C,,0), where K = max{a,: a, < o }. Since
tyo1 — b, < 1/(€ (1)), Corollary 3.1 may be used to obtain upper bounds. Also, for
ke A, t,,, —t, =1/(e? Y(1,)) and therefore Proposition 3.1 may be used to obtain
lower bounds. In more detail, we have:

LEMMA 4.2. There are constants F > 0, G > 0, such that, for every k € A, we have
(4.13) (i) Ifk € A, then P(Y(k +1) € S,|Y(k) € 8,,,) = Fe(1,).Vn.
(4.14) (i) P(Y(k+1) & S,|Y(k) €S,) < Ge(1,).Vn.

(4.15) (iii) P(Y(k+ 1) & S, U T,|Y(k) € S,) < Ge*(1,).
(4.16) (iv) P(Y(k+1) & S, U T|Y(k) € ;) < Ge(ry).
(4.17) (v) P(Y(k+1) e T|Y(k) € S,) < Ge(1,).
(4.18) (vi) Ifk€ A,, then P(Y(k + 1) € Sy|Y(k) € T,) = F.
(4.19) (vii) Ifk € A,, then, foralli,

P(Y(k+1) € TR YY(k)=i)<1—F.
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Proor. (i) If i€ S, ., then (by definition) there is some j € S, such that
V4=1(i, j) = 1. The result follows from the lower bound in (3.2).

(i) Let i € §,, j & §,. We have shown earlier that we must have V¢ (i, j) = 1
and the result follows from (3.3).

(i) Leti € Syand j & S, U T, If j€ S, n # 0, then j & R hence V4(i, j) > 1.
Therefore, using the definition of V% we have 1 < Vi, j) < V¥ (i, j) — 1. Hence
V=Y, j) = 2. Finally, if j € T,. then V¢ (i, j) > 2. because otherwise we would
have j & T|. The result follows from (3.3).

(iv) Let 1 € T}, and choose some / € S, such that ¥ (1, i) = 1 (which exists by the
definition of 7). Suppose that j & S, U T,. If j€ S,, n# 0, then V¢ (i, j) = 1.
because otherwise V'“~!(/, j) = 1. which contradicts the discussion in the proof of part
(iii). So. for this case the result follows from (3.3). Suppose now that j € T|. For any
¢<d—1 we must have V(i, j) > 1 because otherwise (using Proposition 3.2)
VAU jy < VEYLE) + Vi, j) = 1, which contradicts the assumption j & T,. The
result follows from (3.4).

(v) This is immediate from V" '(i, j) > 1, Vi € R*"}, ¥j & TR (Proposition
2.2, part (ii)).

(vi) Let i € T;,. Since i € TR’", there exists some j € R“ ! such that V¢ (i, j)
= 0. By the previous discussion, such a j cannot belong to S,. for n > 1. The result
follows from (3.2).

(vii) Similarly, for any i there exists some j € R“"! such that V¥"'(i, j) = 0 and
the result follows from (3.2). =

Let

H,= P(Y(n) € S;U T,,¥n € [0, k]|Y(0) € S,).
O, = P(Y(k) e Tj|¥(n) € S, U T).¥n € [0. k — 1], ¥(0) € §,).

Using (4.17), (4.18), we obtain Q,,, < Ge(r,) + (1 — X:F)Q,, where x, =1 il
k€ A, and x, = 0, otherwise. So,

A
0,5 7oz T (1)1 - F)I&D
=0

Using (4.15), (4.16),
(4.20) Hy 2 [l - Ge(1,)Q; — GEZ(’.&)] H,.

Now, €(1,)Q, is summable, by (4.10); also, €*(1,) is summable, by (4.9). Since H, > 0,
it follows that there exists some H > 0 such that H, > H,Vk. Using (4.13),

1> P(Y(n) € 55U Tp)

n—1

> ) P(Y(k) €S, Y(I)eSUT, Ve (k+1,..., n})
k=0

> L P(Y(I)eSUT,Vie (k+2,. .., n}|lY(k+1)es,)
k=0

XP(Y(k +1) € S|Y(k) € 5,)P(Y(k) € 5,)

> HF Y (1, )P(Y(k) €5)).
(kEd :0sn—2)
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So, E,\.E,,,e(r,c)P(Y(k) € 8§)) < 0. Since X, . 4 €(1,) < oo, it follows that

i e(1,)P(Y(k) €S;) < o0.
k=0

We will prove by induction that for all n = 1,

o0

(4.21) Y e(1,)P(Y(k)ES,) < .
k=0

(We already proved the case n = 1.) Using (4.13), (4.14), we have
(4.22) P(Y(k+1)€S,) = P(Y(k)ES,) — Ge(t,)P(Y(k) € S,)
+XAF€(rk)P(Y(k) = SfH ])'

By telescoping the inequality (4.22) and using the induction hypothesis (4.21), we
see that ¥ _ox&(t)P(Y(k) € §,,,) < oo. Also, L, €e(t,)P(Y(k) € S,,,) <
L, e 48(1,) < oo (because of (4.12)) which completes the induction step. Summing
inequality (4.21), over all n > 1, we obtain

S €(1,) P(Y(k) €U, ..S,) < .
k=0

Using the fact that e(r,) sums to infinity, we conclude that liminf, . P(Y(k) €
U, »1S,) = 0 and therefore,

limsup P(Y(k) € S, U TR 1) =1.

TRl

We show next that the probability of the process being in transient states goes to zero.
Inequalities (4.14) and (4.19) imply

P(Y(k+1) € TR ) < Ge(t,) + (1 — x, F)P(Y(k) € TR ).

Thus,

I\ = A
P(¥(k) e TR ) < (1 = F)'"™9 4 if—F Yo — FY %),
=0

which converges to 0, as k tends to infinity, due to (4.11). We may thus conclude that
limsup, . P(Y(k) € ;) = 1. By repeating the argument that led to (4.20) we can see
that the probability that ¥ ever exits S, U T;, given that Y(k) € §,. converges to zero.
as k — co. (This is a consequence of the square summability of e(z,).) It follows that
lim, _,  P(Y(k) € S,) = 1. Finally, for any ¢ € [1;, t, ;] we have P(X(1) € §;) =
P(Y(k) € S,) — Ge(1,), which converges to 1, as k — co. This completes the proof of
part (i) of the proposition.

For part (ii) of the proposition, in order to avoid introducing new notation, we prove
the equivalent statement that if ¥ €“(¢) < o, then limsup, ,  P(X(1) = i| X(0) = i)
>0, Vie R So, let i € R and consider the set RY !, For any j & RY ', we
have V¥"1(i, j) = 1 and, therefore (using Corollary 3.1), there exists some G > 0 such
that

P(Y(k+1) & RIYY(k) € REY) < Ge(r,). Vk.
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Figure 2. A Counterexample to Proposition 4.1.

Since we are assuming that ¥ (1) < oo, it follows (as in the proof of (4.9)), that
X ge(t,) < 0. Consequently,

(4.23) i?rp(}'(k) € RE-YH(0) =1) > 0.

Finally, for any j € R{"! we have V¥ !(j, i) = 0. Hence, using Proposition 3.1, there
exists some F > () such that

(4.24) P(Y(k+1)=ilY(k) e RI ) > F.

By combining (4.23), (4.24), we obtain the desired result. m

ReEmarks. 1. With a little more effort along the lines of (4.23), (4.24) it can be
shown that, under (4.4), we have inf, P(X(¢r) = i| X(0) = i) > 0.Vi € R".

2. Proposition 4.2 may be extended to the case where .o satisfies Assumption AP in
a straightforward manner, using the method discussed in §2.

COROLLARY 4.1, Ler the transition probabilities Jfor the simulated annealing algorithm
he given by (4.1), (4.2). Consider cooling schedules of the form T(t) = ¢/logi. For any
initial state, the algorithm converges (in probability) to the set of global minima of J if
and only if there exists some d such that the set of global minima contains R and ¢ is
larger than or equal to the smallest such d, to be denoted by d*.

PROOF. Having identified exp[—1/7(r)] with €(r), we see that e ef) =
E(1/t) = oo and £Z e (1) = £2,(1/1°*V/¢) < . Thus, by Proposition 4.1,
R® is the smallest set to which the algorithm converges (in probability). Thus, for
convergence to the set of global minima, we need that set to contain R°. which
establishes the desired result. m

A possibility for generalizing Proposition 4.1 arises if we allow the schedule €(t) to
be nonmonotonic. In fact the proof goes through (with a minor modification in the
definition of the sequence {1, }) if we assume that there exists some C > 0 such that
€(7) < Ce(s), Vi > s, which allows for mild nonmontonicity, On the other hand. if €(1)
is allowed to have more substantial variations, then the conclusions of Proposition 4.1
are no more true. For a simple example consider the Markov chain of Figure 2,
together with the schedule e(7) = r /2, if ¢ is even. and e(t) =1/1,if ¢ is odd. For
this schedule, the largest integer for which L2 €t) = oo is equal to 2. Also,
R* = {3}. On the other hand, P(x(t) = 3|x(0) = 1) does not converge to 1.

We have claimed that our result generalizes the results of [9] and we now elaborate
on this claim. Hajek’s result characterized ¢* in an explicit manner, as the maximum
depth® of local minima which are not global minima, under a “weak reversibility”

*The depth of a state i is defined as the minimum over all J-such that J( j) < J(i). of the minimum over
all paths leading from ¢ to j. of the maximum of J(k) — J(i), over all ks belonging to that path: the depth
of ¢ is infinite if no such ; exists.
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assumption, which is equivalent to imposing certain restrictions on the structure 7.
Our characterization is less explicit because instead of describing d* we give an
algorithm for computing it in terms of <. Nevertheless, for the class of structures o
considered in [9], we can use our Algorithm II to show that RY is the set of all local
minima of the cost function J, of depth d + 1, or more. Hence, the d* produced by
our approach is the smallest ¢ such that all local (but not global) minima have depth d
or less, which agrees with the result of [9]. However, carrying out this argument
rigorously turns out to be quite involved [14].

Let us look again at the example of Figure 1. We may think of it as being a Markov
chain representing a simulated annealing algorithm, for the cost function J defined by
J(i) = i. (The reversibility assumption made in [9] is violated for this example.) Notice
that 1 is the unique optimal state and recall that R = R® = {1,2}, R' = (1}. Thus,
d* = 1 is the smallest value of d for which R is contained in the set of optimal states.
We therefore have convergence (in probability) to state 1, for every initial state, if and
only if ¥ (1) = co0. However, this example may be misleading: in general, without
some form of reversibility, there will exist no d such that R will be contained in the
set of optimal states.

Acknowledgements. The author is grateful to a referee for an extremely careful
reading of the manuscript which caught several deficiencies and a gap in a proof and
for several useful suggestions.

References

(1] Chiang, T-S., Hwang, C.-R. and Sheu, S-1. (1987). Diffusions for Global Optimization in R". SIAM
J. Control Optim. 25 737-753.
[2] Coderch, M. (1982). Multiple Time Scale Approach to Hierarchical Aggregation of Linear Systems and
Finite State Markov Processes. Ph.D. Thesis, Dept. of Eleetrical Engineering, M.LT.
[3] . Willsky, A. S.. Sasury, 8. S, and Castanon, D. A. Hierarchical Aggregation of Singularly
Perturbed Finite State Markov Processes. Stochastics 8 259-289.
[4] Courtois, P. J. (1977). Decomposability: Queuing and Computer System Applications, Academic Press.
New York.
[5] Debecque, F. (1983). A Reduction Process for Perturbed Markov Chains. STAM J. Appl. Math. 43 1.
[6] Gelfand, S. B., Mitter, S. K. (1985). Analysis of Simulated Annealing for Optimization. Proc. 24th
IEEE Conf. Decision and Control, Ft. Lauderdale, FL, pp. 779-786.
[7] Geman, S. and Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images. TEEE Trans, Pattern Analysis and Machine Intelligence 6 721-741.
[8] Gidas, B. (1985). Non-Stationary Markov Chains and Convergence of the Annecaling Algorithm.
J. Statist. Physies 39 73-131.
[9] Hajek, B. (1988). Cooling Schedules for Optimal Annealing, Marh. Oper. Res. 13 311-329.
[10] Kirkpatrick, S., Gelatt, C. D., Jr. and Vecchi, M. P. (1983). Optimization by Simulated Annealing,
Science 220 671-680, -
[11] Mitra, D., Romeo, F. and Sangiovanni-Vincentelli, A. (1985), Convergence and Finite-Time Behavior
of Simulated Annealing. Proc. 24th IEEE Conf. Decision and Control, F1. Lauderdale, FL. 761-767.
[12] Rohlicek, J. R. and Willsky, A. S. (1988). The Reduction of Perturbed Markov Generators: An
Algorithm Exposing the Role of Transient States. J. Assoc. Compul. Muach. 35 675-696.
[13] Varga, R. S. (1962). Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, NJ.
[14] Tsitsiklis, I N. (1988). A Survey of Large Time Asymptotics of Simulated Annealing Algorithms. in
W. Fleming, P. L. Lions (Eds.), Stochastic Differential Systems. Stochastic Control Theory and
Applications. Springer-Verlag, New York, 583-599.

LABORATORY FOR INFORMATION AND DECISION SYSTEMS, MASSACHUSETTS INSTI-
TUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139



