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Consider a complete directed graph in which each arc has a given length. There is a set 
ofjobs, each job i located at some node of the graph, with an associated processing time 
h i ,  and whose execution has to  start within a prespecified time window [ r ; ,  d i ] .  We have 
a single server that can move on the arcs of the graph, a t  unit speed, and that has to 
execute all of the jobs within their respective time windows. We consider the following 
two problems: (a) minimize the time by which all jobs are executed (traveling salesman 
problem) and (b) minimize the sum of the waiting times of the jobs (traveling repairman 
problem). We focus on the following two special cases: (a) The jobs are located on a line 
and (b) the number of nodes of the graph is bounded by some integer constant B. 
Furthermore, we consider in detail the special cases where (a) all of the processing 
times are 0, (b) all of the release times ri are 0, and (c) all of the deadlines d i  are infinite. 
For many of the resulting problem combinations, we settle their complexity either by 
establishing NP-completeness o r  by presenting polynomial (or pseudopolynomial) time 
algorithms. Finally, we derive algorithms for the case where, for any time t, the number 
of jobs that can be executed at  that time is bounded. 

I. INTRODUCTION 

As is well known, the traveling salesman problem (TSP) is NP-complete even 
if we are restricted to grid-graphs [9]. Furthermore, introducing time con- 
straints into the problem (such as time windows) can only make it harder [13]. 
For this reason, time-constrained variants of the TSP have been primarily 
studied from a pragmatic point of view, for the purpose of designing branch and 
bound algorithms with practically acceptable running time; see the surveys [3] 
and 1151. On the other hand, there is some hope of obtaining polynomial time 
algorithms for time-constrained variations of the TSP when we restrict it to 
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special cases. In the first special case that we consider, the jobst to  be executed 
are placed on a straight-line segment. A few problems of this type have been 
studied in [12],  where one particular variation was shown to be polynomially 
solvable; some other variations, however, were left open and we study them in 
Sections 2 and 3. In practice, the straight-line problem can arise in the case of a 
server visiting customers located along a highway or in the case of a ship 
visiting ports along a coastline. 

In a variant of the TSP, instead of minimizing the total time it takes to 
execute all jobs, one tries to minimize the sum of their waiting times. This is 
known as the traveling repairman problem (TRP) and has been studied in [I] .  
While this problem is also NP-complete, in general, it was shown in [ I ]  that 
some progress is possible for the straight-line case. We discuss this problem 
further in Section 4. Note that the TRP captures the waiting costs of a service 
system from the customers' point of view. As such, it can be used to model 
numerous types of service systems. Also, the cost function used in the TRP is 
the same asflowtime (also known as sum of completion times), which is a most 
commonly employed performance measure in scheduling theory. 

Problem Definition and Notation 

Let Zo be the set of nonnegative integers. Consider a complete directed graph 
G. To each arc (i, j ) ,  we associate a length c( i ,  j) E Zo. We assume that the arc 
lengths satisfy the triangle inequality and we use the convention c( i ,  i )  = 0 for 
all i .  There are n jobs JI  , . . . , J, ,  with job Ji located at a node xi of G. To each 
job J ; ,  we associate a time-interval [ r ; ,  d i ] ,  with ri E ZO and d;  E Zo U {m). We 
refer to ri as  a release time and to d ;  as a deadline. The interval [ri , d ; ]  is called a 
window and di  - ri is its width. 

Each job has an associated processing time hi E Zo. We have a single server 
that starts at time 0 at a certain node x * of G. The server can move on the arcs 
of the graph at unit speed or stay in place. It must start the execution of each 
job Ji during the time interval [ r i ,  d i ] .  Furthermore, if the execution of job Ji 
starts at time t i ,  then the server cannot leave node xi or start the execution of 
another job before time ti + h i .  

Formally, an instance of the problem consists of G, x*, the job locations 
x , ,  . . . , x , ,  the lengths c( i ,  j ) ,  and the nonnegative integers r i ,  d i ,  h i ,  i = 1 ,  
. . . , n.  A feasible solution (also called a feasible schedule) for such an instance 
is a permutation .rr of { I ,  . . . , n), indicating that the jobs are executed in the 
order J n ( I ) ,  . . . , J,(,) , and a set of nonnegative integer times t i ,  i = 1 ,  . . . , n, 
indicating the time that the execution of each job Ji is started. Furthermore, we 
have the following feasibility constraints: 

(a) t i  E [ r i ,  d i ] ,  for all i ;  
(b) c (x* ,  xn(1)) 5 t n ( ~ ) ;  
(c )  tn(i)  + hn(i) + c ( x , ( ~ ) ,  ~ , ( i + j ) )  5 tn(i+l) 7 for i = 1, . . . , n - 1 

tWe use the term "jobs" synonymously with the term "cities" that is often used in 
describing the TSP. 
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TABLE I. The complexity of special cases of Line-TSPTW (n is the num- 
ber of jobs). 

Zero processing times General processing times 

No release times 
or deadlines Trivial Trivial 

Release times o(n2) [I21 NP-complete (Theorem 3) 
only ? 

Deadlines only O(nZ) ? 
(Theorem 1) 

General time Strongly NP-complete Strongly NP-complete [6] 
windows (Theorem 2) 

We are interested in the following two problems: 

TSPTW: Find a feasible solution for which maxi(ri + hi) is minimized. 
TRPTW: Find a feasible solution that minimizes the total waiting time Gin_, ti 
or, equivalently, CY=, (ti - r i ) .  

Summary of Results 

In the first special case we consider, the job locations xi are integers and 
c ( x ~ ,  xi) = Ixi - xjl. We refer to the resulting problems as  Line-TSPTW and 
Line-TRPTW. Results for these two problems are presented in Sections 2-4. 
They are summarized in Tables I and 11, together with earlier available results 
and references. Here, question marks indicate that there are still some open 
problems. For  example, it is not known whether Line-TSPTW with release 
times only and general processing times is strongly NP-complete or 
pseudopolynomial. 

In the next special case that we consider, we impose a bound B on  the 
number of nodes of the graph and study the complexity as  a function of the 

TABLE 11. The complexity of special cases of Line-TRPTW (n is the 
number of jobs). 

Zero processing times General processing times 

No release times 
or deadlines o(n2) [I] 

Release times 
only ? Strongly NP-complete [lo] 

Deadlines only NP-complete [I] NP-complete [l] 
pseudopolynomial ? 

General time Strongly NP-complete Strongly NP-complete [6] 
windows (by Theorem 2) 



TABLE 111. The complexity of TSPTW and TRPTW when the number 
of nodes is bounded by B; general processing times are allowed (the 
number of jobs is n). 

B-TSPTW B-TRPTW 
No release times O(B22B + n) [81 O(B?nS) 

or deadlines (Theorem 7) 

Release times O(B2nS) Strongly NP-complete 
only (Theorem 6) even if B = 1 [lo] 

Deadlines on1 y O(B2 nS) [I 11 ? 

General time Strongly NP-complete Strongly NP-complete 
windows even if B = 1 [6] even if B = 1 [6] 

other problem parameters. We refer to the resulting problems as B-TSPTW and 
B-TRPTW. It turns out that if the processing times are zero for all jobs, then 
B-TSPTW and B-TRPTW can be solved by polynomial time algorithms, fairly 
similar to the algorithms of [ l l ] .  (Of course, the running time of these algo- 
rithms is exponential in B.) If we allow for different processing times, the 
picture is more varied, as seen in Table 111. These results are proved in Sec- 
tions 5-7. 

We note that problems with a bound B on the number of nodes arise naturally 
in the context of manufacturing systems. For example, suppose that we have a 
single machine and that each node of the graph corresponds to a different job- 
type (or batch). We can then interpret the length of an arc as the "set-up" time 
spent by the machine before it can start processing jobs of a different type. In 
this context, it is natural to assume that the number of job-types is bounded by 
a small constant B, while allowing for a large number of jobs to be executed 
over a long time horizon. Scheduling problems incorporating set-up times when 
switching between job-types have been studied in [2] and [ l l ] .  The context for 
[2] was provided by a computer system that can run several different programs; 
set-up times here correspond to the time needed to load appropriate programs 
or compilers into the main memory. 

Finally, in Section 8, we consider another special case that seems to arise 
often in practice. In particular, we assume that there exists an integer D such 
that the number of jobs J, for which t E [r,, dl] is bounded by D for all t. Note 
that if the time windows of different jobs are not large, and if these time 
windows are spread fairly uniformly in time, then such an assumption is likely 
to hold with a reasonably small value of D. We refer to the resulting problems 
as TSPTW(D) and TRPTW(D). We establish that the natural dynamic program- 
ming algorithm has complexity o ( r ~ D ~ 2 ~ )  for TSPTW(D) and O(TD22D) for 
TRPTW(D), where T is an upper bound on the duration of an optimal schedule. 
This agrees with experimental results reported in [5] for some related problems. 
We finally show that TRPTW(D) is NP-complete even if D = 2, and, therefore, 
it is very unlikely that our pseudopolynomial time algorithm can be made 
polynomial. 
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II. THE LINE-TSPTW WITH ZERO PROCESSING TIMES 

Throughout this and the next two sections, we focus on problems defined on 
the line. In particular, each job location x; is an integer. Furthermore, in this 
section, we assume that the processing time hi of each job is equal to 0. The 
problem is clearly trivial if r; = 0 and di  = a for all i. It was shown in [I21 that 
the problem can be solved in O(n2) time (via dynamic programming) for the 
special case where d i  = w for all i, that is, when we only have release times. We 
now show that the same complexity is obtained for the special case where ri = 0 
but the deadlines are arbitrary. 

Theorem 1. The special case of Line-TSPTW in which hi = ri = 0 for all i can 
be solved in O(n2) time. 

Proof. Since the processing and release times are zero, it follows that each 
job is immediately executed the first time that the server visits its location. In 
particular, if the server has visited locations a and b, with a 5 b, then all jobs 
whose location belongs to the interval [a, b] have been executed. 

Let us assume that the job locations have been ordered so that x ,  I x2 I . - . 
5 x,. Let i* be such that x * = xi.. (The existence of such an i* can be assumed 
without any loss of generality; for example, we can always insert an inconse- 
quential job at location x * .) We assume that I xi - x *( I d; for all i; otherwise, 
the problem is infeasible. Let us fix some i, j with 1 5 i 5 i* 5 j 5 n. Consider 
all schedules in which the server visits location x, for the first time at time t and 
has executed all jobs in the interval [xi, xj] within their respective deadlines. 
Let V-(i, j) be the smallest value o f t  for which this is possible, and let V-(i, j) 
= w if no such schedule exists. We define V+(i, j) similarly, except that we 
require that the server visits location xj (instead of xi) for the first time at time t. 
Note that according to the preceding verbal definition we have the convention 
V -(i*, j) = w for i* < j. (The reason is that the server starts at xi* and therefore 
the requirement that xj be visited before the first visit of xi* is impossible.) 
Similarly, V+(i, i*) = m for i < i*. We then have the following recursion: 

Vt(i*, j )  = xj - x*,  j > i*, 

U+(i ,  j) = min [V+(i, j - 1) + x, - xj-l, V-(i, j - 1) + xj - xi], 

i < i* < j ,  

{ r ,+ ( i , j ) ,  i f U + ( i , j ) S d j ,  
V+(i ,  j )  = i < i* < j ,  

otherwise, 

U-(i, j )  = min [V-(i + 1, j )  + xi+, - xi, V+(i + I ,  j) + x, - x;], 

i < i* < j, 



U -(i, j), if U -(i, j )  5 di, 
V - ( i ,  j )  = i < i* < j. 

otherwise, 

Using this recursion, we can compute V + ( I ,  n) and V-(1, n) in O(n2) time. The 
minimum of these two numbers is the cost of an optimal solution, with a value 
of infinity indicating an infeasible instance. An optimal solution can be easily 
found by backtracking. 

Thus, Line-TSPTW, with zero processing times, is polynomial when we 
have only release times or only deadlines. Interestingly enough, the problem 
becomes difficult, when both release times and deadlines are present, as we 
show next. This settles an open problem posed in [12] and [15]. 

In our NP-completeness proof, we use the well-known NP-completeness of 
the satisfiability problem 3SAT defined as follows: We are given n Boolean 
variables v l ,  . . . , v, and m clauses CI . . . . , C ,  in these variables, with three 
literals per clause.* The problem consists of deciding whether there exists a 
truth assignment to the variables such that all clauses are satisfied. 

We will also need a modified version of 3SAT, which we call MSAT. Here 
different clauses correspond to different time stages, and the variables are 
allowed to change truth values from one stage to another; however, the only 
change allowed is from T (true) to F (false). Furthermore, when the truth value 
of a variable changes, we allow it to be undefined for (at most) one stage in 
between. 

Formally, an instance of MSAT is defined as follows: We have nK variables 
vi(k), i = 1, . . . , n, k = 1, . . . , K, and K clauses D l ,  . . . , D K ,  with three 
literals per clause. Furthermore, for each k, only the variables vi(k), i = 1, . . . , 
n, or their negations, can appear in clause D k .  An extended assignment is one 
whereby each variable vi(k) is assigned a truth value in the set {T, F, *). The 
problem consists of deciding whether there exists an extended assignment that 
satisfies the following constraints: 

(a) If k < K and vi(k) f T, then ~ ( k  + 1) = F. 
(b) For every k, either there exists some i for which vi(k) = *, or the truth 

assignment is such that the clause Dk is satisfied. 

Notice that, by definition, an "undefined" variable u;(k) = * can take care of 
clause Dk even if the variable vi(k) does not appear in D k .  Furthermore, notice 
that there is no point in letting vi(l) = F, for any i. The reason is that letting 
ui(l) = * is at least as good as ~ ~ ( 1 )  = F, for the purpose of satisfying clause D l ,  
and imposes the same constraint ~ ~ ( 2 )  = F. We thus add to the definition of 
MSAT the requirement vi(l) # F for every i. For the same reason, we also 
require that ui(K) # T for every i. 

Lemma 1. MSAT is NP-complete. 

*We only consider instances in which a variable can appear in a clause at most once, 
either unnegated or negated. 
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Proof. We will reduce 3SAT to MSAT. Given an instance (vl , . . . , v, , C I  , 
. . . , C,) of 3SAT, let K = m(n + 1). The clauses in the instance of MSAT are 
essentially the same as C,  , . . . , C,, but repeated n + 1 times. Formally, if k = 
i + m l ,  where i=  1 , .  . . , m , a n d f = O , .  . . , n , a n d i f C k =  ( aORbORc) ,  then 
Dk  = [a(k) OR b(k) OR c(k)]. Here, each one of a ,  b, c is one of the variables vj 
o r & ,  j =  I , .  . . , n .  

Suppose that we have a YES instance of 3SAT and let us fix a satisfying 
assignment. We then define an extended assignment for the instance of MSAT 
by letting vi(k) = vi for all i, k. [Keeping in line with the discussion preceding 
the lemma, we need the following exceptions: If vi = F ,  let ~ ( 1 )  = *; also, if 
vi = T, let vi(K) = *.I Clearly, this has all the desired properties and we have a 
YES instance of MSAT. 

Conversely, suppose that we have a YES instance of MSAT, and let us fix an 
extended assignment to the variables vi(k) with the desired properties. We split 
the set {I,  . . . , K )  into (n + 1) segments, each segment consisting of m 
consecutive integers. Property (a) in the definition of MSAT easily implies that, 
for any fixed i and for each segment, the value of vi(k) is fixed to either T or F, 
with the possible exception of one segment. [The latter would be a segment on 
which vi(k) changes from T or * to F.]  By throwing away n segments (one 
segment for each i), we are left with a segment on which the value of vi(k) stays 
constant for all i. We then assign to vi the value of vi(k) on that segment, for all 
i. Since each clause Dk is satisfied, and since each clause Ck is "represented" in 
each segment, it follows that the assignment to the vi's satisfies all of the 
clauses in the instance of 3SAT. rn 

We now move to the proof of our main result. In this proof, we find it 
convenient to visualize an instance of the problem in terms of a two-dimen- 
sional diagram (see, e.g., Fig. I), where the horizontal axis corresponds to time 
and the vertical axis corresponds to location in space. The time window associ- 
ated to each job is represented by a horizontal segment connecting points (ri, 
xi) and ( d i ,  xi). The path traversed by the server corresponds to a trajectory 
whose slope belongs to {- I,  0, 1). 

Theorem 2. Testing an instance of Line-TSPTW for feasibility is strongly NP- 
complete, even in the special case where the processing times hi are zero. 

Proof. The problem is clearly in NP. We will reduce MSAT to Line- 
TSPTW. Let there be given an instance of MSAT with variables vi(k), i = 1, 
. . . , n, k = 1, . . . , K, and clauses D l ,  . . . , D K .  We will construct an 
equivalent instance of Line-TSPTW. For easier visualization, we will actually 
construct the two-dimensional representation [in ( x ,  t)-space] of the latter in- 
stance. 

We first construct a convenient "gadget" Gi(k) associated to each variable 
vi(k). Suppose that k is even and that neither vi(k) nor its negation appears in 
the clause D k .  Then, the gadget Gi(k) is as shown in Figure l(a). It consists of 
four jobs Vi(k), Vi(k), Ji(k), Jl(k). The windows for jobs Ji(k) and Jl(k) have 



FIG. 1. The "gadget" Gi(k) when k is even. (a), (b), and (c), correspond to the cases 
where vi(k) does not appear in Dk, or appears in Dk unnegated, or appears in Dk 
negated, respectively. Brackets are used to indicate release times and deadlines. The 
dashed lines have slope 1 or -1 and are shown only to indicate the relative positioning 
of the jobs and some paths that the server could possibly follow. 

width 1. There is a release time for job Vi(k) and a deadline for job V,(k). For 
now, we leave the deadline of Vi(k) and the release time of Vi(k) unspecified. 
They will be determined later when we connect the gadgets together. 

Note that between the execution ofjobs Ji(k) and J,!(k) the server has enough 
time to execute job Vi(k) (by moving northeast and then southeast) or job Vi(k) 
(by moving southeast and then northeast), but not both. We interpret the serv- 
er's choice as an (extended) truth assignment to vi(k): Executing V,(k) or Vi(k) 
corresponds to vi(k) = T or  vi(k) = F, respectively; executing neither corre- 
sponds to vi(k) = *. We say that the delay in executing Ji(k) [or J,!(k)] is 0 or I 
depending on whether Ji(k) [or J,!(k)] is executed at the beginning or the end of 
its time window. We say that there is a delay reduction at gadget Gi(k) if the 
delay of Ji(k) is 1 and the delay of Jl(k) is 0. It is clear from Figure l(a) that a 
delay reduction is possible only if vi(k) = *. 

Suppose now that vi(k) appears unnegated in clause Dk. Then, the corre- 
sponding gadget G;(k) is as shown in Figure I(b). The main difference from 
the previous case [cf. Fig. ](a)] is that a delay reduction is possible not only if 
vi(k) = * but also if vi(k) = T. Finally, if vi(k) appears negated in Dk, Gi(k) is 
constructed in a symmetrical fashion [see Fig, l(c)]. In this case, a delay 
reduction is possible if vi(k) = * or  vi(k) = F. 

So far, we have discussed the case where k is even. If k is odd, the gadgets 
Gi(k) are constructed by taking the gadgets of Figure 1 and turning them upside 
down. 

The construction of the instance of Line-TSPTW is completed by indicating 
how to connect together the gadgets Gi(k). This is done as follows (see Fig. 2 
for an illustration): 

(a) We have certain jobs Q O ,  Q I ,  . . . , Q K ,  with zero window width, which 
force the server to visit certain points in the (x, t)  diagram. 

(b) If k is even and k f K ,  Qk and Q k + ,  are located so that the server has to 
visit Jl(k + 1) with unit delay and J,(k + 1) with zero delay. 
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FIG. 2. Connecting the gadgets Gi(k)  to form an instance of Line-TSPTW. In this 
figure, K = 4 and n = 3. Dashed lines have slope 1 or - 1 and are shown only to indicate 
the relative positioning of the jobs. 

(c) If k is odd and k # K, Qk and Qk+,  are located so that the server has to 
visit J,(k + 1) with unit delay and Jl(k + 1) with zero delay. 

(d) If the server executes Ji+l(k) [respectively, Ji-,(k)] right after Jl(k), the 
delay of Ji+,(k) [respectively, Ji-l(k)] is equal to the delay of Jl(k). 

(e) We identify job Vi(k) with job vi(k + I), k = 1, . . . , K - 1. The release 
time (respectively, the deadline) of that job is determined by the struc- 
ture of the gadget Gi(k) [respectively, Gi(k + I)]. 

(f) Thejobs vi( l )  and Vi(K), i = 1, . . . , n ,  are removed from the gadgets in 
which they should have appeared. 

It is not hard to see that the gadgets can indeed be connected as described 
above. Furthermore, this can be done with the largest integer in the instance of 
Line-TSPTW being bounded by a polynomial function of n and K. 

As a consequence of conditions (b), (c), and (d), the constructed instance has 
the following key property. For the server to execute all of the jobs Ji(k) and 
J((k), i = 1, . . . , n,  as  well as  the jobs QkP1 and Q k ,  within their respective 
deadlines, it is necessary and sufficient that there be a delay reduction between 
the execution of Qk-l  and Q k .  This happens if and only if either: 

(a) vi(k) = * for some i, in which case a delay reduction occurs by skipping 
both jobs Vi(k) and Vi(k); or 

(b) the clause Dk becomes true. For example, if vi(k) appears unnegated in 
D L ,  setting vi(k) = T, that is, executing Vi(k), causes a delay reduction 
[see Fig. I(b)]. 

We conclude that the requirement of executing the jobs Ji(k), Jl!(k) i = 1, . . . , 
n, and Q k P I ,  Qk within their respective time windows is equivalent to satisfying 
clause D k ,  in the sense required for the problem MSAT. 



We now prove the equivalence of the constructed instance to the original 
instance of MSAT. Suppose that we have a YES instance of MSAT and con- 
sider a satisfying extended truth assignment. We construct a feasible schedule 
for Line-TSPTW. In this schedule, the jobs Q o ,  Q l ,  . . . , Q K  are executed in 
sequence. In between Qk-I  and Q k ,  we execute J l ( k ) ,  J ; ( k ) ,  . . . , J , (k ) ,  JA(k), 
if k  is odd. (If k  is even, the same jobs are executed but in a different order.) We 
execute job V i ( l ) ,  between J i ( l )  and J,r ( l ) ,  if and only if u i ( l )  = T. For I < k  < 
K ,  we execute job Vi (k )  [respectively, job %(&)I between J;(k) and J,! (k) ,  if and 
only if ~ ( k )  = T [respectively, ui(k) = F ] .  Finally, we execute job v i ( ~ ) ,  
between J i ( K )  and J I ! ( K ) ,  if and only if u ; ( K )  = F .  For k  = 1 ,  . . . , K - 1 ,  if job 
V , ( k )  is not executed between Ji(k)  and J l ! (k ) ,  then ui(k) # T, which implies that 
ui(k + 1 )  = F ,  and job Vi(k  + 1 )  is executed between J;(k + I )  and Jl(k  + 1). 
Since V i ( k )  and C ( k  + 1 )  are the same job, all jobs of the type Vi (k )  are 
executed within their deadlines. Furthermore, for each k ,  since clause D k  of 
MSAT is satisfied, there is a delay reduction in the path from Qk-!  to Q k ,  and 
job Q k  can be executed at the required time. 

Conversely, given a feasible solution of Line-TSPTW, we construct an ex- 
tended truth assignment, by reversing the argument in the preceding para- 
graphs. In particular, if no job Vi (k )  or E ( k )  is executed between J;(k)  and 
J , ! (k ) ,  we set u;(k) = *. Each clause Dk is satisfied since Q k  is executed in time. 
Furthermore, suppose that k  < K and ui(k) # T. Then, V i ( k )  is not executed 
between J; (k )  and J l ! (k ) .  Thus, K ( k  + 1 )  is executed between Ji(k  + 1) and 
Jl!(k  + I ) ,  which implies that u;(k + 1 )  = F ,  as desired. 

Finally, since all of the data in the constructed instance are bounded by a 
polynomial in n and K ,  we have established strong NP-completeness of Line- 
TSPTW. 

Ill.  LINE-TSPTW WITH GENERAL PROCESSING TIMES 

The special case in which ri = 0  and d i  = 03 for each i is trivial. If there are 
both release times and deadlines, the problem is strongly NP-complete even if 
all jobs were at the same location [6]  (see also [ 7 ] ,  p. 236); note that this is a 
pure scheduling problem. If we only have deadlines ( r ;  = O ) ,  the problem is 
open. Finally, if we only have release times, our next result shows that the 
problem is NP-complete. However, we have not been able to establish strong 
NP-completeness or the existence of a pseudopolynomial algorithm. 

Theorem 3. The special case of Line-TSPTW in which d i  = for all i is NP- 
complete. 

Proof.  We use the NP-completeness of the PARTITION problem defined 
as follows: An instance is described by m positive integers z l ,  . . . , z , .  Let 
K = CEl z i .  The problem is to determine whether there exists a set S C {I, 
2 ,  . . . , m) such that CiEs z i  = K l 2 .  

Given an instance ( z , ,  . . . , z,) of PARTITION, we will construct an in- 
stance of Line-TSPTW. The server starts at x* = 0 .  There are m jobs J I  , . . . , 
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J, .  Each job Ji  is at location xi  = iH, has a release time ri = (2i - 1)H, and a 
processing time equal to H, where H = 2K + 1 .  There is also a job J ,+ ,  at 
location (m + l )H  with zero processing time and release time r,+I equal to 
(2m + l ) H  + 3Kl2.  There is also a job Jmt2 ,  at location 0, with zero processing 
time and with release time rm+2 = rm+ + K / 2  + (m + l )H  = (3m + 2)H + 2 K .  
We finally introduce m jobs J ;  , . . . , J A .  Job J,! is at location x,! = xi  - z; = iH 
- z ,  and has a processing time equal to z i  and a release time rl equal to r i  + H = 

2iH. The question is whether there exists a feasible schedule for the server in 
which the execution of all jobs has been completed by time r ,+2 .  

Suppose that we have a YES instance of PARTITION and let S C { I ,  . . . , 
m} be such that X i E s  z i  = K l 2 .  Consider the following schedule: The server 
executes jobs J 1  , . . . , J,+* in this order. Furthermore, for each i E S, the 
server executes J,! between Ji  and Ji+ ,  . To execute J I ! ,  i  E S,  the server travels 
zi  units backward, spends z ;  time units for processing, and then retraces the zi 
units that were traveled backward. Thus, executing each J J ,  i E S ,  causes a 
delay of 3zi  time units. Therefore, the server will reach job J m + I  at time (2m + 
l )H + 3 XiEs z i  = (2m + l ) H  + 3Kl2 = r , + ~ .  Thus, J,+, can be executed 
immediately. Then, on the way back (from J,+,  to Jmt2), the server pauses to 
execute the jobs J,! for i  4 S. Hence, it will reach and execute job Jm+2 at time 
r , + ~  + (m + l ) H  + X i g S  z i  = r m + l  + (m + 1)H + Kl2  = r m t z ,  and we have a 
YES instance of Line-TSPTW. 

For the other direction, suppose that we have a YES instance of Line- 
TSPTW, and let use consider a schedule that reaches Jm+2 at time r , + ~ .  We will 
show that this schedule must be of the form considered in the preceding para- 
graph. First, it is clear that Jm+2  is the last job to be executed. Let S be the set of 
all i  such that job J,! is executed before J , + I .  The server leaves job J,+I no 
earlier than time r m + l ,  reaches J,+z no later than time r m + ~  = r m + ~  + (m + l ) H  
+ Kl2 ,  and has to travel a distance of (m + l)H in between. Thus, there are 
only K / 2  time units available for processing on the way from J,+I to Jm+2. Since 
H = 2K + 1 > Kl2 ,  it follows that all of the jobs J 1 ,  . . . , J ,  have been 
executed before J , + ] .  Furthermore, 

During the schedule, a distance of at least 2(m + l ) H  has to be traveled (from 
0 to job J,+l and back), and a total of K + m H  time units have to be spent for 
processing. Since r,+2 = (3m + 2)H + 2 K ,  it follows that there is a margin of 
only K time units that can be "wasted" by following a trajectory other than a 
straight line. If i < j and job J;  were to be executed afterjob J j ,  the server would 
have to travel at least 2H units more than the minimum required. Since 2H > 
K ,  this is more than the available margin and we conclude that the schedule 
executes J I ,  . . . , J,+I in their natural order. 

Suppose now that the schedule executes job JI before job J ; .  Then, the 
execution ofjob J; starts later than time rl = 2iH. From that point on, the server 
must travel t o  J,+! and back to 0 [this needs (m + 1 - i)H + (m + l ) H  units of 



travel time] and spend (m + 1 - i)H time units for processing jobs J ; ,  . . . , J,. 
Thus, the server reaches J m + 2  later than time (2i + m + 1 - i + m + 1 + m + 
1 - i)H = (3m + 3)H > (3m + 2)H + 2K = r m + ~ ,  contradicting the assumption 
that J,! was executed before J;. 

Because of the preceding arguments, the set S determines completely the 
order in which the jobs are executed. In particular, the server "wastes" a total 
of 2 ZiEs zi time units for excess travel time, in order to execute each job Jr , i E 
S, after the corresponding job J;. On the other hand, the available margin for 
excess traveling is exactly K. Thus, ZiEs zi I K/2. This, together with Eq. (I), 
shows that CiEs ti = K/2 and we have a YES instance of PARTITION. W 

IV. THE LINE-TRPTW 

Our only new result for the Line-TRPTW is a corollary of Theorem 2. We 
note that the problem of testing an instance of Line-TRPTW for feasibility is 
identical to the problem of testing an instance of Line-TSPTW for feasibility. 
Thus, Theorem 2 implies that feasibility of Line-TRPTW is strongly NP- 

.complete, even in the absence of processing times. 
Let us also note that Line-TRPTW with deadlines only and general process- 

ing times is NP-complete but it is not known whether it is pseudopolynomial or 
strongly NP-complete. 

V. BOUNDED NUMBER OF LOCATIONS AND 
ZERO PROCESSING TIMES 

We now treturn to the more general problem in which the job locations 
correspond to the nodes of a complete directed graph G. We consider the 
problems B-TSPTW and B-TRPTW, which are the special cases of TSPTW and 
TRPTW in which the number of nodes of G is at most B. The problems consid- 
ered in this and the next two sections resemble and have a partial overlap with 
those considered in [ l l ] .  The main principle behind our positive (polynomial 
time) results has been introduced in [ I l l  and is the following: If for each 
location we can determine ahead of time the order in which the jobs are to be 
executed, then dynamic programming leads to a polynomial time algorithm. 
Our results and complexity estimates are farily similar to those in [ l l ] .  A 
difference is that [ I l l  assumes the release times to be zero. 

Our first result provides a polynomial time algorithm for the B-TSPTW. 

Theorem 4. If the processing times are zero, then B-TSPTW can be solved in 
time O(B2nB). 

Proof. We will use an algorithm of the dynamic programming type. Let us 
sort the jobs at a node i in order of increasing release times, and let Jik be the kth 
such job. Let r;k and dik be the release time and deadline of J i k  , respectively. Let 
K;  be the number of jobs at node i. Since processing times are zero, we can 



TRAVELING SALESMAN AND REPAIRMAN PROBLEMS 275 

assume that a job is executed the first time subsequent to its release time that 
the server visits its location. In particular, for each location, jobs are executed 
in order of increasing release times. 

We will say that the server is in state s  = (i, n  1 ,  n 2 ,  . . . , nB)  if the following 
hold: 

(a) The server is currently executing the nith job at node i. 
(b) For each node j, the server has executed exactly the first n, jobs at that 

node, and each such job has been executed by its respective deadline. 

Note that we have O(BnB) states. For each state s ,  let V ( s )  be the earliest 
time at which the server could reach state s, with V ( s )  = a if it is impossible for 
the server to reach state s .  We have V ( x * ,  0 ,  . . . , 0 )  = 0  and V ( i ,  0 ,  . . . , 0 )  = 
c(x* ,  i )  for every i # x * .  Furthermore, V ( i ,  n l ,  . . . , ns)  is equal to 

max {riSn,, min [ V ( j ,  n l  , . . . , n i - I  , n; - 1 ,  n ; + ~ ,  . . . , ns)  + c ( j 9  i ) l }  
j = l ,  ..., 6 

if U ( i ,  n , ,  . . . , nB)  I d i s j ,  and V ( i ,  n l ,  . . . , n B )  = a if U ( i ,  n ~ ,  . . . , n B )  > 
d;*ni 

The optimal cost of the B-TSPTW problem is given by mini V ( i ,  K I ,  . . . , 
K g )  and an optimal feasible solution can be found by backtracking. Since only 
O(B)  arithmetic operations are needed in order to evaluate each V ( s ) ,  the 
complexity estimate follows. 

In the complexity estimate of Theorem 4, we have ignored an O(n log n) term 
corresponding to the preprocessing required in order to sort the jobs at each 
location. This term is small compared to O(B2nB), as long as B > 1. This 
comment also applies to all other complexity estimates in Sections 5-7. 

For the 9-TRPTW problem, the situation is slightly more complex. Here, a 
dynamic programming algorithm has to keep track of both time and waiting 
time, which leads to a pseudopolynomial time algorithm. We show that a poly- 
nomial time algorithm is, in fact, possible, if some extra care is exercised. The 
argument is again similar to that in [ I  I ] .  

Let T  be any easily computable upper bound on the duration of an optimal 
schedule. For example, T could be the value of the largest deadline. Alterna- 
tively, if the deadlines are infinite, T could be taken as the largest release time 
plus a bound on the duration of any tour that visits all nodes of the graph. 

Theorem 5. If the processing times are zero, then B-TRPTW can be solved in 
time O(B2nBT), where T  is any upper bound on the duration of an optimal 
schedule and n is the number of jobs. Alternatively, it can be solved in time 
O(BZn B2+ I ) .  



Proof. We order the jobs at each node and define s = (i, n l  , . . . , nB) as in 
the proof of Theorem 4. We say that the server is at state (t, s) if at time t the 
server is at location i and has executed exactly the first nj jobs at node j without 
violating their deadlines; furthermore, the nith job at node i is executed at time 
t. Let W(t, s) be the minimum possible sum of the already incurred waiting 
times if the server is at state (t, s);  we let W(t, s) = m if this is not feasible. The 
problem of computing W(t, s) for all t and s is a standard dynamic programming 
problem. We have O(TBnB) possible states and from each state there are O(B) 
possible next states. The cost of a transition from a state (t, j ,  n l  , . . . , nB) to a 
state (t ' ,  i, n l ,  . . . , ni- l ,  ni + 1, n i+l ,  . . . , nB) is given by (n - Xf=l nk) (t '  - 
t). The dynamic programming algorithm solves such a problem in time 
O(B2nBT); this proves the first part of the result. 

Suppose that the server is at state (t, j ,  n l  , . . . , nB) and that its next state is 
(t ' ,  i, n l  , . . . , n;-1, n, + 1, n i + l ,  . . . , nB). We claim that if the server is 
following an optimal schedule, then t '  must be equal to 7 = max{ri,,,+ I , t + c( j ,  
i)}. Indeed, the problem constraints yield t '  2 7. Also, if t '  > 7, then the server 
could execute the (ni + 1)st job at location i at time 7, and wait a t  that location 
until time t ' .  The net effect would be a reduction of the waiting time, thus 
contradicting optimality. We can therefore impose the additional constraint 
that the only allowed transitions are of the form (t, s) + (t', s f )  where t '  = 

m a ~ { r ~ , , , + ~ ,  t + c ( j ,  i)} for some i, j. We will show shortly that this limits the 
number of reachable states. 

Let t be the length of a path in the graph G, with at most n arcs. Let L be the 
set of all such t. (We allow paths with repeated nodes. We also include the 
empty path, so that 0 E L.) Let 5 = {t + 7 1 t E L and 7 E (0, r , ,  . . . , r,}}. 
Given that the schedule starts at time 0, and given the nature of the allowed 
transitions (cf. the preceding paragraph), an easy inductive argument shows 
that any sequence of transitions leads us to a state of the form (t, s )  with t E 5. 
So, the dynamic programming recursion only needs to be carried out over such 
states. 

Note that each element of L is of the form X(i,j, aic(i, j), where each ai is an 
integer bounded by n. Since there are only B(B - 1) values of (i, j) to be 
considered, we conclude that L has O(nB'B-") elements. It follows that 3 has 
~ ( n ~ ' - ~ + ~ )  elements. Accordingly, the number of states (t, s) to be considered 
by the dynamic programming algorithm is ~ ( B n ~ n ~ ' - ~ + ' ) ,  leading to a total 
complexity of o ( B ~ ~ ~ ' + ~ ) .  

VI. THE TSPTW WITH A BOUNDED NUMBER OF LOCATIONS 

We now study the B-TSPTW problem for the general case where processing 
times are arbitrary. 

In the special case where there are neither release times nor deadlines, the 
problem is equivalent to the standard TSP and can be solved in time O(B22B + 
n) [8]. (The additive factor of n in the complexity estimate is due to the need to 
compute the sum of the processing times.) 

Next, we consider the case where we only have release times. 



TRAVELING SALESMAN AND REPAIRMAN PROBLEMS 277 

Theorem 6. The special case of B-TSPTW in which we only have release 
times (all deadlines are infinite) can be solved in time O(B2nB). 
Proof. A simple interchange argument shows that, for each location, the 

jobs at that location can be executed in order of increasing release times. Once 
we sort the jobs in order of increasing release times, the argument is identical to 
the proof of Theorem 4. The state s = (i, nl  , . . . , nB) indicates the server's 
location and the number of jobs that have already been executed at each loca- 
tion. A similar dynamic programming algorithm applies, provided that we prop- 
erly incorporate the processing times in the dynamic programming equa- 
tion. 

For the case where we only have deadlines, the problem can be solved in 
time O(B2nB) by a simple modification of Theorem 3 of [I I]. The reason is that 
the jobs in each location can be executed in order of increasing value of di + hi. 
(This was first proved in [I41 for the case B = 1.) Finally, if we have both 
release times and deadlines, the problem is strongly NP-complete even for B = 

I, as remarked in the beginning of Section 3 [6]. 

VII. THE TRPTW WITH A BOUNDED NUMBER OF LOCATIONS 

Testing for feasibility in the case where we have both release times and 
deadlines is equally hard as for the B-TSPTW and is therefore strongly NP- 
complete, even if B = 1. For the case where we only have deadlines, the 
problem is open for B r 2; it is polynomially solvable if B = 1 [14]. In the case 
where we only have release times, the problem is strongly NP-complete, even 
for B = 1 1101. The last case to be considered is the subject of our next theorem. 

Theorem 7. The special case of B-TRPTW in which there are neither release 
times nor deadlines can be solved in time O(B2nB). 

Proof. A simple interchange argument shows that, for each location, the 
jobs at that location should be executed in order of increasing processing times. 
We can they say that the server is at state s = (i, n I , . . . , nB) if it is at location i 
and has already executed, for each location j, the nj "shortest" jobs located at 
j. Let W(S) be the least possible total waiting time that has to be incurred before 
the server can get to state s. There is a total of O(BnB) states. From each state 
s ,  the server can move to B other states and the dynamic programming recur- 
sion for computing each. W (s) needs O(B) operations. 

VIII. BOUNDED NUMBER OF ACTIVE JOBS 

We say that a job i is active at time t if t E [ri, di]. Let A(t) be the set of all 
active jobs at time t. In this section, we restrict to instances in which the 
cardinality of A(t) is bounded by D for all t, where D is some integer constant. 
We refer to the resulting problems as TSPTW(D) and TRPTW(D). 

Theorem 8. TSPTW(D) can be solved in time O(nD22D). 



Proof. For any S C {I ,  . . . , n) and i E {I, . . . , n), we say that the server is 
at state (i, S )  at time t if: 

(a) We have i E S and the execution of job Ji starts at time t. 
(b) For each j E S ,  the execution of job J, was started at some time t ,  

satisfying tj 5 t and tj dj. 
(c) For each j $Z S, we have dj r t and the execution of job Jj has not yet 

started. 

We say that (i, S )  is reachable if it is feasible for the server to get to that state at 
some time t; let F(i, S )  be the minimum possible such time. If (i, S )  is not 
reachable, let F(i, S )  = m. Thus, the optimal cost for our problem is equal to 
mini F(i, {I, . . . , n)). Furthermore, F(i, {i)) is easily computed for each i. 

Suppose that (i, S) is reachable and let S f  = S U {j). Then, state (j, S') can be 
reached via (i, S), at time F(i, S) + hi  + c(i, j) ,  provided that no deadlines are 
violated, that is, if F(i, S )  + hi + c(i, j )  5 minkgs dk. If the'latter condition 
holds, we associate to state ( j ,  S f )  a label with the value of F(i, S )  + hi  + c(i, 
j); we say that a label has been propagated from (i, S) to (j, S f )  and that ( j ,  S f )  
can be reached from (i, S).  The value of F ( j ,  S ' )  is given by max{rj, U( j ,  S)}, 
where I/( j, S )  is the minimum of all labels associated with ( j ,  S). We have F ( j ,  
S ' )  = m if there are no labels associated with ( j ,  S). 

The above discussion defines an algorithm based on label propagation. (It is 
just a particular implementation of forward dynamic programming.) The key 
property is that we do not have to do  any work for any state (i, S)  that does not 
have any associated labels. Thus, the complexity of the algorithm is propor- 
tional to the number of reachable states, times a bound on the number of labels 
propagated from any given state. 

We first bound the number of reachable states. Suppose that (i, S )  is reach- 
able. Let t = F(i, S). Let Q = { j  ) d, < t) and R = { j  ) r, > t). Then, Q C S and 
S n R = 0. Thus, S = Q U S f ,  where S '  C A(t). Note that ifA(t) is known, then 
Q is uniquely determined. (In particular, Q = { j  ( dj < mink,*(,, dk}.) If follows 
that S is uniquely determined by specifying A(t) and then specifying a subset Sf  
of A(t). We observe that, as t varies, the set A(t) only changes O(n) times. 
Thus, there are O(n) choices for A(t) and, having fixed A(t), there are 0(2D) 
choices for S'. We conclude that there are O(D2D) choices for S and the total 
number of reachable states is O(nD2D). 

Suppose that state (i, S)  is reachable and suppose that states ( i , ,  S U {i,)), 
. . . , (i, , S U {i,)) can all be reached from (i, S). Thus, we can reach state ( ik ,  
S U {ik}) immediately after state (i, S) ,  without violating any deadlines, which 
implies that di, r r , ,  fork, e = 1, . . . , m. Thus, maxk ri4 5 mink di4 and there is 
a time at which all jobs i ,  , . . . , i, are active. It follows that m 5 D and at most 
D labels are propagated from each state. Using this, the desired complexity 
estimate follows. 

In the proof of Theorem 8, we have implicitly assumed that given a state (i, 
S) ,  we can determine the O(D) states that can be reached immediately after (i, 
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S), in O(D) time. This can be easily achieved provided that some preprocessing 
is performed on the problem data. For example, the O(n) possible choices of 
A(t) should be determined during a preprocessing phase. The complexity of this 
phase depends on the data structures employed and the representation of the 
input. If the jobs are available sorted according to their deadlines, preprocess- 
ing could take only O(n) time. We omit the details but note that the preceding 
comments apply to our next result as well. 

Theorem 9. TRPTW(D) can be solved in time O(TD22"), where T is an upper 
bound on the time horizon of the problem. 

Proof. Let the state (i, S )  have the same meaning as in the proof of Theo- 
rem 8. For any state (i, S) ,  and time t, let W(i, S, t) be the minimum possible 
total waiting time accumulated, subject to the constraint that the server is at 
state (i, S )  at time t. Let W(i, S ,  t) = a3 if (i, S )  is unreachable. We compute 
W(i, S ,  t) by propagating labels with the values of W(i, S ,  t) (forward dynamic 
programming). As argued in the previous proof, there are O(D2D) choices for (i, 
S). There are also T choices for t. Finally, from any (i, S), we can reach directly 
~ n l y  O(D) other states; thus, whenever W (i, S ,  t)  < m, O(D) labels are propa- 
gated, leading to the desired complexity estimate. 

The algorithms developed in this section are quite similar to the algorithms in 
[4] and [5], as far as  the use of forward dynamic programming and label propa- 
gation is concerned (though the problems considered in these references are 
different). Although no complexity estimates were provided in these refer- 
ences, the experimental results they have reported are qualitatively consistent 
with Theorems 8 and 9. In particular, [5] reports that "solution times increase 
linearly with problem size." Indeed, this is what is predicted from Theorems 8 
and 9 if we assume that T is proportional to n and that D is held constant. 

As in [4] and [5], the practical performance of the algorithms can be speeded 
up substantially by introducing certain additional tests that quickly identify 
unreachable states and save the effort of trying to propagate labels to them. 

Note that the algorithm of Theorem 9 is pseudopolynomial. The following 
result shows that there is little hope for improvement. 

Theorem 10. TRPTW(D) is NP-complete even in the special case where D = 

2 and the processing times are zero. 

Proof. We start from the 0-1 KNAPSACK problem that is known to be NP- 
complete. An instance of this problem consists of nonnegative integers z,, 
. . . , z,, r l ,  . . . , T,, and K. The problem consists of finding a set S C (1, . . . , 
n} that maximizes EiEs zi subject to the constraint XiEs ri 5 K. We will now 
construct an equivalent instance of TRPTW(2), with zero processing times. 

Consider a directed graph with nodes ul , . . . , u n + ~ ,  vl , . . . , v, , w l  , . . . , 
w,, connected as  shown in Figure 3. The label next to each arc denotes its 
length. Here Ai = (2nK + l)zi and Q = max{K, maxi 7i} + 1. Note that the 



FIG. 3. A section of the graph constructed in the proof of Theorem 10. 

triangle inequality is satisfied. We can turn this graph into a complete one by 
letting c(i, j) be the length of a shortest path from node i to node j. [Let c(i, j) 
be a very large number, if no such path exists.] There is a job Wi at node wi and 
a job Vi at node v i ,  for each i. The jobs Wi and Vi have a common release time 
ri = 2(i - l)Q + Zj: A, and a common deadline d i  = ri  + Q + Ai + K. Since Q 
> K, it is easily checked that di < r i + ~ .  Finally, there is a job U,+I  at node u,+, 
whose release time r,,, and deadline d ,+ l  are both equal to 2nQ + K + C,EI Aj. 
Again, it is easily checked that r,+l > d , .  Therefore, we can only have two 
active jobs at a time, as required for an instance of TRPTW(2). 

It is clear that in order for the server to get from node ui to node u ; + ~ ,  it has 
two options. 

(a) Go to w i ,  then to vi, then to u;+,  . This takes time Ai + 2Q; we call this 
the fast path. 

(b) Go to v i ,  then to w;, then to ui+ ,  . This takes time A; + 2Q + r i ;  we call 
this the slow path. 

For any schedule, let S C (1, . . . , n) be the set of all i such that the server 
takes the slow path from ui  to ui+,  . Note that the deadline for job U,+, imposes 
the constraint 

Note that ri ( i  # n + I )  is the shortest path length from u l  to ui and therefore 
does not impose any constraint on the schedule. Furthermore, the constraint of 
Eq. (2) implies that the server is not allowed to get to node u, any later than time 
ri + K. It follows that the release time and deadline constraints are inconse- 
quential and will be ignored in subsequent discussion. 

Given a schedule. let 

Then, the server reaches node ui at time r, + D ; .  If it takes the slow path to 
ui+,  , then the sum of waiting time suffered by Viand W i  is equal to  2(ri + D i )  + 
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Q + A;. If it takes the fast path, this sum is equal to 2(ri + D;) + Q + 2A;. By 
comparing the two expressions, we see that our instance of TRPTW(2) is 
equivalent to minimizing 2 Xi"=I D i  - XiEs A; with respect to S,  subject to the 
constraints (2) and (3). Given that each Ai  is a multiple of 2nK + 1, whereas 2 
XY=I Di  has to be bounded by 2nK [cf. Eqs. (2) and (3)1, an equivalent problem is 
to maximize ZiEs A; subject to Eq. (I). Given that each Ai  is proportional to z i ,  
this is equivalent to the original instance of the 0-1 KNAPSACK problem. H 

IX. CONCLUSION 

We have studied the complexity of several variants and special cases of the 
traveling salesman and repairman problems in the presence of time windows 
and processing times. Although our study has settled the complexity of many of 
these variants, there is still a number of open problems. In particular, we have 
not determined the complexity of those problems in Tables I to I11 that have a 
question mark. 

In another interesting variant, we could have assumed that the width of the 
time windows is bounded by an integer W. If we assume that each job has a t  
least unit processing time, it is easily seen that either the problem is infeasible 
or  the number of active jobs is bounded by 2 W. Therefore, by the results of 
Section 8, this special case of TSPTW (respectively, TRPTW) can be solved in 
polynomial (respectively, pseudopolynomial) time. 

Discussions with Harry Psaraftis and Francois Soumis are gratefully acknowledged. 

REFERENCES 

[I] F. Afrati, S. Cosmadakis, C. H. Papadimitriou, G. Papageorgiou, and N. Papa- 
konstantinou, The complexity of the traveling repairman problem. Theor. Info. 
Appl. ZO(1) (1986) 79-87. 

[2] J. Bruno and P. Downey, Complexity of task sequencing with deadlines, set-up 
times and changeover costs. SIAM J. Comput. 7(4), 1978 (393-404). 

[3] M. Desrochers, J. K. Lenstra, M. W. P. Savelsbergh, and F. Soumis, Vehicle 
routing with time windows: Optimization and approximation. Vehicle Routing: 
Methods and Studies (B. L. Golden and A. A. Assad, Eds.). Elsevier, Amsterdam 
(1988) 65-84. 

[4] J. Desrosiers, P. Pelletier, and F. Soumis, Plus court chemin avec contraintes 
d'horaires. R.A.I.R.O. Recherche Operationelle 17(4) (1983) 357-377. 

[5] J. Desrosiers, Y. Dumas, and F. Soumis, A dynamic programming solution of the 
large-scale single-vehicle dial-a-ride problem with time windows. Am. J. Math. 
Management Sci. 6(3-4) (1986) 301-325. 

[6] M. R. Garey and D. S. Johnson, Two-processor scheduling with start times and 
deadlines. SIAM J. Comput. 6 (1977) 416-426. 

[7] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the 
Theory of NP-Completeness. W. H. Freeman, San Francisco (1979). 

[8] M. Held and R. M. Karp, A dynamic programming approach to sequencing prob- 
lems. J. SIAM lO(1) (1962) 196-210. 

[9] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnoy Kan, and D. B. Shmoys, Ed., The 
Traveling Salesman Problem. Wiley, New York (1985). 



[lo] J. K. Lenstra, A. H. G. Rinnoy Kan, and B. Brucker, Complexity of machine 
scheduling problems. Ann. Discrete Math. 1 (1977) 343-362. 

[ l l ]  C. L. Monma and C. N. Potts, On the complexity of scheduling with batch setup 
times. Operations Res. 37 (1989) 798-804. 

[12] H. N. Psaraftis, M. M. Solomon, T. L. Magnanti, and T.-U. Kim, Routing and 
scheduling on a shoreline with release times. Management Sci. 36(2) (1990) 212- 
223. 

[13] M. W. P. Savelsbergh, Local search in routingproblems with time windows. Ann. 
Operations Res. 4 (198516) 285-305. 

[14] W. E. Smith, Various optimizers for single-stage production. Naval Res. Logis- 
tics Q. 3 (1956) 59-66. 

[15] M. Solomon and J. Desrosiers, Time window constrained routing and scheduling 
problems. Transportation Sci. 2a1) (1988) 1-13. 

Received September 1990 
Accepted November 1991 ' 


