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Abstract—Two sensors obtain data vectors x and y, respec-
tively, and transmit real vectors m,(x) and ni,(y), respectively,
to a fusion center. We obtain tight lower bounds on the number
of messages (the sum of the dimensions of 7, and m,) that
have to be transmitted for the fusion center to be able to
evaluate a given function f(x, y). When the function f is linear,
we show that these bounds are effectively computable. Certain
decentralized estimation problems can be cast in our framework
and are discussed in some detail. In particular, we consider the
case where x and y_are random variables representing noisy
measurements and f(x,y) = E[z|x, y], where z is a random
variable to be estimated. Furthermore, we establish that a stan-
dard method for combining decentralized estimates of Gaussian
random variables has nearly optimal communication require-
ments.

Index Terms—Decentralized estimation, distributed computa-
tion, data fusion, communication complexity, lower bounds.

I. INTRODUCTION AND PROBLEM FORMULATION

ET there be two sensors, S, and S,, respectively.

Sensor S, (respectively, S,) obtains a data vector
x € R™ (respectively, y € R"). Sensor, S, (respectively,
S,) transmits to a fusion center a message i (x) [respec-
tively, 7i,(y)]. Here, mi;: ™ — R" and ri,: R" —» R
are vector-valued functions that we call message functions.
Finally, the fusion center uses the values of the received
messages to evaluate a given function f: R7*" > R,
For this to be possible, the received messages must con-
tain enough information; in particular, the function f
must admit a representation of the form

2()’))

for some function h: ®"*7 - RS, Here & is some
subset of R™*" representing the set of all pairs (x, y)
that are of interest. For example, we might have some
prior knowledge that guarantees that all possible observa-
tion pairs (x,y) lie in &. For reasons to be explained
later, we also require the functions m,, m,, and h to be
continuously differentiable. In the sequel, we will occa-
sionally refer to the functions #i,, ni,, and A as a commu-
nication protocol.

flx, y) = h(#iy(x), Vix,y) €%, (1.1)
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The above described framework is a generic description
of the process of data fusion. Data are collected at geo-
graphically distant sites and are transmitted, possibly after
being compressed, to a fusion center. The fusion center
needs these data for a specific purpose. No matter what
this purpose is, it can be always modeled as the task of
evaluating a particular function of the data. For example,
suppose that x and y are random variables, representing
noisy observations. Let z be a vector random variable to
be estimated, and suppose that we wish the fusion center
to compute the mean square estimate E[z|x, y]. Assum-
ing that the joint probability distribution of (x, y,z) is
known, E[z|x, y] can be expressed as a function Flx, ),
and we are back to the model introduced in the preceding
paragraph.

From now on, we adopt the above framework. We
assume that the function f and the data domain £ are
given. Our objective is to choose the message functions
m, and mi,, in some desirable manner. An obvious solu-
tion to our problem is to let /i (x) =x and Ai,(y) =y
This corresponds to a centralized solution whereby all
available data are transmitted to the fusion center. How-
ever, if communication is costly, as it sometimes is, there
could be an advantage if less information were transmit-
ted. We may thus pose the problem of choosing the
message functions /7, and 7i, so as to minimize the
number r =r; +r, of real-valued messages that are
transmitted by the two sensors (recall that r; is the dimen-
sion of the range of #71;), subject to the constraint that f
can be represented in the form (1.1). The minimal possi-
ble value of r will be called the communication complexity
corresponding to f and & and will be denoted by C( i),
where the subscript “1” denotes the fact that the func-
tions ni; and K are assumed to be in C! (i.e., continuously
dlfferentlable) functions. We will also cons1der the cases
where the functions #i,, i,, and K are restricted to be
linear or analytic. For these cases, we use Cy, (f: &) and
CAf: %) to denote the corresponding communication
complexity. Clearly, one has Ci( fie)<Cfi®) <
Clm (f ’ f)

A couple of remarks about out model of communica-
tion are in order.

1) The assumption of continuous differentiability is in-
troduced in order to eliminate some uninteresting
communication protocols. For example, if no
smoothness condition is imposed, then each sensor
S, can simply interleave the bits in the binary expan-
sions of each component of its data vector and send
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the resulting real number to the fusion center, thus
sending a single real-valued message. Upon receiv-
ing this message, the fusion center can easily decode
it and determine the value of x and y. Thus, with a
total of two messages, the fusion center can recover
the values of x, y and thus evaluate flx, y). Such a
communication protocol is not interesting since it
basically amounts to sending all the information
collected by the sensors to the fusion center. We are
interested instead in a protocol that can somehow
intelligently compress the information contained in
the values of x, y and send to the fusion center only
that information that is relevant to the evaluation of
f(x, y). As we shall see later, the smoothness condi-
tion on the message functions succeeds in eliminat-
ing uninteresting communication protocols such as
the one described above. The differentiability re-
quirement on the function # of (1.1) is qulte mild
and not unnatural given the assumption that /7, and
ni, are differentiable.

2) We have assumed that messages are real valued, in
contrast to the digital communication often used in
practice. Although such a continuous model of com-
munication cannot be implemented exactly using
digital devices, it is nonetheless a useful idealization
for certain types of problems. For example, most (if
not all) of the parallel and distributed numerical
optimization algorithms are usually described and
analyzed as if real numbers can be computed and
transmitted exactly [5]. In addition, there is a fair
body of literature in which data are communicated
and combined for the purpose of obtaining a central-
ized optimal estimate [6], [7], [18], [19], [21]. This
literature invariably assumes that real-valued mes-
sages are transmitted. The schemes proposed in these
papers are often evaluated on the basis of the num-
ber of transmitted messages. However, there has
been no work that tries to derive the minimal num-
ber of required messages, and this is where our
contribution lies. Another motivation for using a
continuous communication model, as opposed to the
discrete-model often used in the theoretical com-
puter science community [22], is that it opens the
possibility of applying tools from analysis, algebra,
and topology to the systematic study of communica-
tion complexity problems. It is also worth noting that
a similar continuous framework has been success-
fully applied to the study of computational complex-
ity [3], [4].

Our formulation of the data fusion problem can be
regarded as an extension of the one-way communication
complexity model first introduced and studied by Abelson
[1]. In particular, Abelson considered the situation where
two processors P, P, wish to compute some real-valued
function f(x, y) under the assumption that the value of x
(respectively, y) is given only to P, (respectively, P,) and
that the messages (real valued) can be sent only from P,
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to P,. Our setting has a similar flavor, except that we are
dealing with a different “organizational structure.” It is
also worth noting that Abelson’s model of continuous
communication protocols has an interesting parallel in the
field of mathematical economics; in the latter field, the
problem of designing a communication protocol is formu-
lated as a problem of designing a decentralized process
that performs a desired economic function [8], [9], [16].
Subsequent to Abelson’s initial work, there have been
several other studies [2], [14], [15] of the communication
complexity of various specific problems under more gen-
eral continuous models of communication (e.g., allowing
messages to be sent in both directions). The discrete
counterpart of Abelson’s formulation was introduced in
[22] and was followed by many studies of the communica-
tion complexity of specific graph and optimization prob-
lems (e.g., [10], [11], [17], [20D.

This paper is organized as follows. In Section II, we
consider the case where f is linear and £ is a subspace of
R™*7 and we restrict ourselves to linear protocols. We
motivate this problem in the context of decentralized
estimation of Gaussian random variables, under the as-
sumption that the statistics of the underlying random
variables are commonly known. We obtain a complete
characterization of the corresponding communication
complexity Cy, (f+ &), together with an effective algo-
rithm for determining it. In the process of deriving these
results, we solve a problem in linear algebra that could be
of independent interest. In Section III, we extend the
results of Section II to the case of a general nonlinear
function f and general communication protocols. In par-
ticular, we show that for the case of decentralized Gauss-
ian estimation, the restriction to linear message functions
does not increase the communication complexity. In Sec-
tion IV, we consider a variation of the Gaussian case
treated in Section II. The main difference from Section II
is that the covariance matrix of the observation noise at
any particular sensor is assumed to be known by that
sensor but not by the other sensor or the fusion center.
We apply a result from Section III and obtain a fairly
tight bound on the communication complexity. In particu-
lar, we show that a standard method for combining decen-
tralized estimates has nearly optimal communication re-
quirements. To the best of our knowledge, this is the first
time that a result of this type appears in the estimation
literature.

We shall adopt the following notational conventions
throughout this paper. For any matrix M and N of size
I X m and I X n, respectively, we use [M, N] to denote
the matrix of size ! X (m + n) whose columns are the
columns of M followed by the columns of N. We let
r(M) be the rank of M, and M7 its transpose. For any
differentiable function f: R"*" — R of two vector vari-
ables x € ®™ and y € R", we use the notation V, f(x, y)
[respectively, V, f(x, y)], to denote the m-dimensional (re-
spectively, n- d1mens1onal) vector whose components are
the partial derivatives of f with respect to the compo-
nents of x (respectively, y). If i /77 > R s a vector
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function with component mappings f,, f,,"**, f;, then vf

will denote its Jacobian matrix whose i-column is given b

the gradient vector Vf,. Similarly, V, f (respectively, V,f

will denote the matrix whose ith column is V, f; (respec-
tively, V, 1.

II. DECENTRALIZED GAUSSIAN ESTIMATION
WITH LINEAR MESSAGES

In this section, we consider a simple decentralized
estimation problem in which all of the random variables
involved are Gaussian and all the message functions are
linear. We will give a complete characterization of the
communication complexity for this problem, together with
an effective method for computing it. The results in this
section and the techniques developed for proving them
will provide insight and motivation for the results in the
next section, where the general nonlinear case will be
considered.

Let z € R! be a zero-mean Gaussian random variable
with known covariance matrix P,,. Suppose that the sen-
sors S, and S, collect data about z according to the
formulas

x=H;z+ v, Q.1

y=H,z + v,, (2.2)

where H,, H, are some m X[ and n X [ matrices, re-
spectively, and v, € R™, v, € R" are zero-mean Gauss-
ian noise variables, not necessarily independent. Let R be
the covariance matrix of (v,,v,). Suppose that the fusion
center is interested in computing f(x, y) = E[z|x, y], the
conditional expectation of z given the observed values x
and y. Assuming that v, and v, are independent of z, we
have

fx,y) = Elelx, 1 = B3], @3
where F is a matrix satisfying
P, H" = F[HP_ H" + R] 24

with
2.5)

If the inverse of [HP,,H” + R] exists, then

oottt - )]
(2.6)

Suppose that the matrices P,,, H,, H,, and R are known
to both sensors §,, S, as well as the fusion center. Then,
(2.3)-(2.6) imply that

flx,y) = Ax + By, 2.7

for some matrices A, B (of size I X m and ! X n, respec-
tively) depending on P,,, R, H,, and H,. Notice that the
matrices A and B can be regarded as constant since they
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can be precomputed and can be assumed to be available
at the sensors and the fusion center.

The set & of possible data pairs is the support of the
probability distribution of (x,y) and our Gaussian as-
sumptions imply that it is a subspace of R™*". If the
covariance matrix HP,,H” + R of (x, y) is positive defi-
nite, then it is clear that & = R™*". On the other hand,
if this matrix is singular, then (x,y) takes values in a
proper subspace of R™*", with probability 1. In other
words, we have either

g=8m" (2.8)

or

2 = {(x,y)|Cx + Dy = 0}, 2.9)

where C and D are some matrices of size k X m and
k X n, respectively, and k is some positive integer. The
entries of C and D can be determined from P,,, H,, H,,
and R, so both C and D can be viewed as commonly
known by the sensors and the fusion center.

Under the restriction to linear message functions, we
have the following characterization of the communication
complexity.

Theorem 2.1: Let f(x,y) and & be given by (2.7) and
(2.8)-(2.9). Suppose that the matrices P,,, H;, H,, and R
are known to both sensors S;, S, as well as the fusion
center. We then have

r(A) +r(B), if&=R"""
Cin (f: &) = { ming {r(4 = XC) + r(B — XD)},
if = {(x,y)|Cx + Dy = 0},
(2.10)

where the minimum is taken over all possible real matri-
ces X of size | X k, and where k is the number of rows of
C and D.

Proof: Consider any communication protocol for
computing f with linear message functions. Let 77i,(x) =
M, x and 7i,(y) = M,y be the message functions used by
sensor S, and S,, respectively, where M; is a matrix of
size r; X m and M, is a matrix of size r, X n. (So, r; and
r, are the number of messages sent to the fusion center
from sensor S; and S,, respectively.) By (1.1), there exists
some final evaluation function A such that

Ax + By = flx, y) = h(m,(x), m(y))
= i(Mx, Myy), V(x,y)eg. (211

We consider two cases.
Case 1. & = R™"". By (2.11), Ax + By is a function of
M,x and M,y. So, there holds

Ax + By = 71(0,0) = constant,
for all (x, y) satisfying
M x =0,

M,y =0, (x,y) e ™", (2.12)
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Thus, (x, y) must be orthogonal to the rows of the matrix
[ A, B] whenever (x, y) satisfies (2.12). In other words, the

null space of
M, O
0 M,

is contained in the null space of [ A4, B]. It follows that
there exist matrices N; and N, of appropriate dimensions

such that
M, 0
0 M|

B=N,M,,

[A, B] = [N]’ Nz][

Therefore, we have
A =NM,

which further implies r(A4) <r(M,) <r, and r(B) <
(M) <r,. Thus, r=r, +r,>r(A) + r(B), which
proves Cp, (f; R™*") > r(A) + r(B).

We now show that Cy, (f; R™*") < r(A4) + r(B) by
constructing a communication protocol for computmg f
with r(A4) + r(B) linear message functions. This is ac-
complished as foliows. By the singular value decomposi-
tion, A can be written as 4 = EF for some matrices E
and F of size I X r(A) and r(A) X m, respectively. Fur-
thermore, A4 is known to both sensors S,, S, and to the
fusion center. Thus, the decomposition 4 = EF can be
precomputed so that both the sensors and the fusion
center know the value of E and F. Now let sensor S, use
the message function ni,(x) = Fx, which clearly takes
r(A) messages. Upon receiving the value of Fx, the fusion
center can compute Ax by using the formula Ax = E(Fx).
By an identical argument, the value of By can also be
computed with r(B) linear messages from the sensor S2
As a result, the fusion center can compute flx,y) =
+ By with a total of r(A4) + r(B) linear messages, whlch
proves Cy, (f: R™*") < r(A) + r(B), as desired.

Case 2: We now assume that & = {(x, y)|Cx + Dy = 0}.
Again, by (2.11), we have

Ax + By = h(0,0) = constant,
for all (x,y) € R™*" satisfying
M x =0, M,y =0, Cx + Dy = 0.

Therefore, the null space of the matrix

cC D
M, 0
0 M,

is contained in the null space of the matrix [ A4, B]. As a
result there holds

C D
[4,B]=[X,P,P]|M O,
0 M,
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for some matrices X, P;, and P, of appropriate dimen-
sions. Thus, we have

A=XC+PM, B=XD+P,M,,

which implies

r(A—XC)=r(PM) <r(M)) <r,
and

r(B—XD) =r(P,M,) <r(M,) <r,.

Therefore, r(A — XC) + r(B — XD) <ry + r,, which
implies Cy, (f; ) > miny {r(A4 — XC) + r(B — XD)}.

It remains to prove C,, (f; %) < min, {r(4 — XC) +
r(B — XD)}. To do this, fix any matrix X that attains the
minimum in the expression miny {r(4 — XC) + r(B —
XD)}. Notice from (2.9) that flx,y) = Ax + By = (4 —
XC)x + (B — XD)y, for all (x,y) € &. By the singular
value decomposition of 4 — XC and B — XD and using
an argument similar to the one used in Case 1, we see
that (4 — XC)x can be computed with r(4 — XC) linear
messages from sensor S;, and (B — XD)y can be com-
puted with r(B — XD) linear messages from S,; thus,
flx,y) = (4 — XC)x + (B — XD)y is computable with a
total of 7(A4 — XC) + r(B — XD) linear messages. By the
choice of X, we have Cy, (f; ) < miny {r(4 — XC) +
r(B — XD)}, as desired. Q.E.D.

Generically, the matrices 4 and B in the estimation
equation (2.7) shall have full-row rank (that is, rank /) and
the covariance matrix of (x, y) is nonsingular. Therefore,
according to Theorem 2.1, a total of 2/ (linear) messages
are needed in order to enable the fusion center to make
the desired estimation. (Recall that / is the dimension of
the vector z being estimated.) The data fusion schemes
that have been previously proposed in the literature [6],
[7], [18], [19], [21] involve exactly 2/ messages and are
therefore generically optimal. In the event where either A
or B is row-rank deficient, then a local data compression
is possible and sending Ax and By is no longer optimal.
We illustrate this point by the following simple example.

Example 2.1: Let

-1
o]

1 1 1
Hl:[l 1]’ H2=[1

and suppose that z, v,, v, are independent zero-mean
Gaussian random vectors (in R?2) with autocovariance
being equal to I. Consider the model

x=Hz+uy
y=H,z +v,.

Simple calculation shows that the covariance matrix of
(x, y) is nonsingular and that

Elzlryl=ax+ By = |1 ew o[ 1 1

4 511 1 si-1 —1]”
Therefore, according to Theorem 2.1, a total of two mes-
sages are needed to compute E[z|x, yl. Indeed, the sen-
sors §;, S, can simply send, respectively, the values
(1,1)7x, (1,1)7y to the fusion center. From the above
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formula, these two messages are clearly sufficient for the
computation of E[z|x,y]. Thus, sending Ax and By,
which would take four messages, is not optimal.

In Example 2.1, the covariance matrix of (x, y) is non-
singular. Next, we consider a situation where the covari-
ance matrix of (x, y) is singular.

Example 2.2: Let z,, v,, and v, be some independent
zero-mean scalar Gaussian random variables with stan-
dard deviation equal to 1, and let z, = —z,. Consider the
data fusion model

SNt RS
IR ER

It can be seen that the covariance matrix of (xy, x,, y;, ¥,)
is singular; in fact, we have & = {(x,y) € R*x, + x, +
y; +y, =0} and C =[1,1} and D = [1,1]. In this case,

we use (2.3)—(2.5) to obtain
111 o Ir1 o
E[o 1]x+5[0 1]”

Thus, we have r(A) + r(B) = 2 + 2 = 4, Under normal
circumstances (i.e., & = R*), four messages are required
to fuse the data. However, due to the singularity of the
covariance matrix of (x, y), a local data compression at
both sensors is possible. Specifically, since z, +z, =0
with probability 1, the knowledge of the value z, is
- sufficient for the fusion center to recover z,; noting that
z; = (x; +y,)/2, we can simply let the sensors send x,
and y, to the fusion center, which takes only two mes-
sages. On the other hand, one can verify directly that

m}n{r(A - XC) +r(B — XD)}

(s 2] )

lly ]

where the minimum is attained at X = (1,0)7. Thus,
Theorem 2.1 implies that using two messages is optimal
and no further data compression is possible.

Theorem 2.1 has provided a complete but nonconstruc-
tive characterization of the communication complexity of
computing E[z|x, y] with linear message functions, for
the Gaussian case. In order to turn Theorem 2.1 into a
useful result, we show below that C,, (f; %) and the
minimizing matrix X in (2.10) are effectively computable
(in polynomial time). The intuition behind this result can
be drawn by considering the following two extreme cases.
Suppose that C = —D = I. Then, C,, (f; &) =
miny {r(A4 — X) + r(B + X)}. Choosing X = — B, we see
that Cy;, (f; £) < r(A + B). On the other hand, using the
inequality r(A4 — X) + r(B + X) = r(A4 + B), for all X,
we have Cy, (f: %) > r(A4 + B), and, therefore,
Cyi, (f; ) = r(A + B). For another extreme case, sup-

Elz|lx,yl =Ax + By =
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pose that D = 0. Then, Cy;, (f; ) = r(B) + miny r(A +
XC). Lemma 2.1 below shows that miny r(A4 + XC) is
computable in polynomial time. The proof of the polyno-
mial computability of Cy, ( f:#) in the general case is
based on a combination of these techniques, as can be
seen in the proof to follow.

Theorem 2.2: Suppose that the entries of the matrices
A, B, C, and D are all rational numbers. Then, there is a
polynomial time algorithm (in terms of the total sizes of
the entries of 4, B, C, and D) for computing min , {r(A
— XC) + r(B — XD)}.

Remark: By transposing, we see that the minimization
min, {r(A — CX) + r(B — DX)} is also solvable in poly-
nomial time.

Proof: The proof of Theorem 2.2 consists of a se-
quence of lemmas.

Lemma 2.1: For any rational matrices 4 and C, there
exist square invertible matrices P and Q such that

a) P and Q depend only on C and are computable in
polynomial time;

b)if Y=XP and A=AQ"!, then r(4 +XC)=
r((A, + Y,, A,]), where Y; is a submatrix of Y given
by a certain partition Y = [Y,,Y,] of the columns of
Y, and [A4,, 4,] is a corresponding partition of A
(partmoned in the same way as Y = [V}, Y, ]);

¢) min, r(A + XC) = r(A4,). In particular, min r(A4
+ XC) is computable in polynomial time.

Our next lemma, which is based on Lemma 2.1, reduces
the original rank minimization problem to a simpler one.

Lemma 2.2: Let A, B, C, and D _be some rational
matrices. Then, there exist matrices Al, Az, Bl, and B2
with

m)i(n{r(A - XC) +r(B — XD)}
o (A0 + W i)+ o{[ B+ . B])).

Moreover, the matrices /fl, A,, I§1, and ]§2 can be
computed in polynomial time from 4, B, C, and D.

The proofs of Lemmas 2.1 and 2.2 are lengthy and have
been relegated to the Appendix.

Lemma 2.3: For any rational matrices 4, B, C, and D,
there holds.

mgn{r([A +X,CD) +r((B +X,DD)

=minr(4 — B + CY + DZ) + r(C) + r(D),
Y, Z

(2.13)

where the minimum is taken with respect to all matrices
of the proper dimensions.

Proof- We first show that the left-hand side of (2.13)
is no smaller than the right-hand side. To do this, we first
notice

r(lA+X,CD) =r([A+CY+ X,CD,
#([B +X,D]) =r([B-DZ+X,D)),

VY, (2.14)
VZ. (2.15)
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Suppose that the minimum of min, {r({4 + X,C] +
r((B + X, D))} is attained at some X*. Then, using the
above relations, we have

r([A +X*,C]D) +r([B+X*,D]
=r(l4+CY+X*,CD) ++([B—-DZ + X*,D])
=r([A+ CY +X*,CD

+r({B - DZ* + X*,0D + r(D)
>r(lA -B+CY+DZ*,C) + r(D)
=r(A— B+ CY* +DZ*) + r(C) + r(D)
> r}r}xg r{A—-B+ CY+DZ)+r(C) +r(D),

where the second equality follows from choosing a Z* so
that the columns of D become perpendicular to the
columns of B — DZ* + X*. (Such a Z* can be found by
solving for Z* the system DT(B — DZ* + X*) = (. This
system clearly has a solution when D has full rank. The
case where D does not have full rank can be easily
reduced to the full-rank case by throwing away some of
the columns of D and letting the corresponding rows of
Z* be equal to zero.) The first inequality follows from the
general matrix inequality r(M) + r(N) > r(M + N), for
all M and N; the third equality follows from choosing Y*
so that the columns of C are orthogonal to the columns of
A - B+ CY* + DZ*.

To show the other direction of the inequality, suppose
that the minimum in the expression miny , r(4 — B +
CY + DZ) is attained at some matrices Y* and Z*. Then,
using (2.14) and (2.15) we see that

r(l4 +X,CD) +r([B+X,DD
=r([A+ CY* + X,CD + r([B - DZ* + X, D).

Letting X* = —B + DZ* and using the above relation,
we obtain

r{d +X*,CD) + r([B + X*, D))
=r({A—-B+ CY* +DZ*,C]) + r(D)
<r(A— B+ CY* + DZ*) + r(C) + r(D)

= r;u? r(A—-B+ CY+DZ) +r(C) + r(D),
where the inequality follows from the general matrix
inequality r((M, N)) < r(M) + r(N), for all M and N;
the last step is due to the definition of Y* and Z*. This
complets the proof of (2.13). QED.

We are now ready to complete the proof of Theorem
2.2. By Lemma 2.2, it suffices to show the polynomial time
computability of

mm{ ([4+w, 4,]) +r([B, +w, 32])}

for some known (and polynomially computable) matrices
A, A2, Bl, and 32 By Lemma 2.3, we only have to argue
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that miny , (A, — B, + A,Y + B,Z) is computable in
polynomial time [cf (2.13)1 Lettmg

|

we have
min r( A, - B, + A,Y + B,Z)
Y,.Z

= m}n r(A~1 - B+ [/IZ,EZ]X)

~ ~ - ~ 1T
_ m}i{nr(A{ ~ BT + X"[ 4,,B,] )

and the result follows from Lemma 2.1(c). Q.ED.

Theorem 2.2 provides a method for evaluating
Cy., (f: ) [as given by (2.10)]. The proofs of Lemmas 2.1
and 2.2 (see the Appendix) show that the running time of
this method is roughly equal to the running time of
preforming several Gaussian eliminations and matrix in-
versions plus that of evaluating the rank of several matri-
ces. It is still an open question whether there exist more
efficient algorithms for computing C,, (f; ). We also
remark that the proof of Theorem 2.2 also provides us
with a (polynomial time) algorithm for constructing a
minimizing matrix X and a corresponding optimal com-
munication protocol.

To close this section, we remark that Theorems 2.1 and
2.2 can be extended in a straightforward manner to the N
sensor case. In particular, suppose x! € R, xV € R
are the observations obtained by the N sensors. Then, by
the property of Gaussian random variables, there exist
some matrices A',--+, AV such that

Flxt e, x™) Lo xNT = Alx! +

Let £ denote the support of the probability distribution
of (x'---,xV). Thus, & = R™* " *"~ unless the covari-
ance of (x',---, x™) is singular in which case x',-+-, x" are
linearly related and

&= {(x',, xV)ICx + - +C¥x" = 0}

for some matrices C',---,C". By an argument similar to
that used in Theorems 2.1 and 2.2, we can show

= E[z|x +ANxN.

C]in (ﬁ '?)
r(AY) + - +r(AY), g =RNmt "ty
= {miny {r(A4' = XC") + -+ +r(4AY — XCM)},
it & = {(x',, xMICx! + =+ +CVxV = 0};

Furthermore, the above minimum rank can be computed
efficiently (i.e., in polynomial time).

I11. THE GENERAL NONLINEAR CASE

_In this section, we consider the case where the function
f is nonlinear and fairly arbitrary. Accordingly, we allow
the message functions to be nonlinear as well. In terms of
the decentralized estimation context, this is the situation
that would arise if we were dealing with the optimal
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estimation of non-Gaussian random variables. We derive
general lower bounds on the communication complexity
for solving this problem. Our results imply that the lower
bound of Theorem 2.1 remains valid even with general
message functions. Thus, the restriction to linear message
functions does not increase the communication complex-
ity for the case of Gaussian random variables. We will
also consider in_this section the case of computing a
rational function f(x, y) by using communication protocols
whose message functions and final evaluation function are
analytic. We will use some analytical tools to obtain an
exact characterization of the communication complexity.
This result will be used in Section IV, in our further
analysis of decentralized Gaussian estimation.

In what follows, we assume that &, the set of possible
observation pairs for the two sensors S, and S,, is de-
scribed by

7 = {(x, MIgi(x,y) = 0,8,(x,y) < 0;
xeR" ye ‘ﬁ”}, (3.1)

where g R™" —» R and g,: X" — R are some
given differentiable functions, with ¢;,¢, some positive
integers. When g, =g, = 0 we have & = R"*", which
corresponds to the case where the pair (x,y) is unre-
stricted.

Let f: ™*" — R° be a differentiable function of two
vector variables x and y (x € ™, y € ®"), and let
g = (g}, &,). Our result is the following.

Theorem 3.1: Suppose that & [as defined by (3.1)] is
nonempty. Suppose that either Vg(x) (the Jacobian of g)
has full rank for all (x,y) € £, or that g is a linear
mapping. Then, for any z = (x,y) € &, we have

c(ﬁﬁ)zégj{4wﬂzy—zguxx—@§unj

+r(VAD) - VEDX - VgY)). G2

Here, the minimum is taken over all matrices X and Y of
appropriate dimensions, subject to the constraint that all
entries of Y are nonnegative.

Proof: Consider any optimal communication protocol
for computing f(x, y) over & (i.e., with a minimum num-
ber of messages). Let #i;: ™ — R and ni,: R” > K™
be its message functions which are assumed to be continu-
ously differentiable. Here, r, (respectively, r,) is equal to
the number of messages sent from sensor S, (respectively,
S,) to the fusion center. From equation (1.1), we have

f_(x, y) = E(ﬁll(x), ’—ﬁz(y))v

where % is a continuously differentiable function. We
need the following simple lemma.

Lemma 3.1: Let p: R'— R°, g R'— R, and
7»: R’ > R be three continuously differentiable func-
tions. Suppose that the set & = {z € R'|g\(2) = 0, §,(2)
< 0} is nonempty and that p(z) is constant over &. Let
7 = (g,, g»). If Vq(z) (the Jacobian of g) has full rank for

V(x,y) €%, (33)
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all z € !, or if 7 is a linear mapping, then there exists a
matrix function A(z) of size ¢; X s and a matrix function
B(z) = 0 (componentwise) of size ¢, X s, so that Vp(z) =
V7 () A(2) + Vg,(2)B(2), for all z € .

Proof- Let p; be the ith component function of D
i = 1,---, 5. Consider, for each i, the following constrained
optimization problem:

min p,(z). (3.4)

ze%

By assumption, each z satisfying ¢3(z) = 0 and g,(z) < 0
is an optimal solution to (3.4). Since the regularity condi-
tion on the Jacobian of g or the linearity of g ensures the
existence of a set of Lagrange multipliers, the necessary
condition for optimality (12, p. 300D gives Vp,(z) =
V7 (2)a z) + Vg, (2)b(2), for some vector function a,(z)
of dimension ¢, and some vector function b,(z) = 0 (com-
ponentwise) of dimension ¢,, for all i =1,-,s. Writing
these relations in matrix form yields the desired result.
R Q.ED.
By (3.3), flx,y) — h(m(x),7i(y)) = 0 for all (x,y)
satisfying g)(x,y) = 0 and 2,(x,¥) <0. Let plx,y) =
flx,y) — h(m(x), m(y) and let gix,y) = gx, y),
7,(x,y) = 8,(x, y). Then, p, g, and g, satisfy the assump-
tions of Lemma 3.1. Thus, there exist some matrix func-
tions Q,(x,y) and Q,(x,y) = 0 such that Vplx,y) =
V7,(x, YO(x, y) + Vgy(x, y)Q,(x, y), for all (x,y) €Z.

Equivalently, for all (x,y) € &, we have

L [vm, 0 Q|| .
Vf - _, S| = V8@ + V8 0s.
0 VA, |lv. h

Fix any (x,y) € & and let X = Q,(x, y)and Y = Q,(x, y).
The above relation implies that

V'ﬁlv:ﬁﬁ = fo_ Vg X - V&Y, (3.5)
Vi, Vi h = V,f - V,8,X = V,8Y. (3.6)
Since Vi, is a matrix of size m X rj, we obtain
ri > r(Vnt;)
= r(Vrﬁlvﬁﬁ)
= F(fo?* ng_)IX - Vx§2Y), (37)

where the last step is due to (3.5). Similarly, (3.6) yields
524%f—ng—%gyy
Therefore,
CI(]F;Z?) =r +r
= r(vx}?— ng)lX - Vx§2y)
(V- V6 X - v,2Y)
> mn{4zf—ng—z@Y)
Y20, X

r(W 7= V8% - VaY)),



1558

for all (x,y) € &. This completes the proof of Theorem
3.1. . Q.E.D.

We remark that when f and & are given by (2.7) and
(2.8)-(2.9) then the right-hand side of (3.2) reduces to the
right-hand side of (2.10). This implies that Cy, ( fig)=

C( £; #). In other words, for the problem of estimating a
Gaussian random variable, the restriction to the linear
message functions does not increase the communication
complexity. It is not clear how such a restriction on the
message functions will affect the communication complex-
ity for estimating general random variables.

A disadvantage of Theorem 3.1 is that it only provides a
lower bound for the communication complexity C,(f; £).
It is not known in general how far away this lower bound
can be from C,(f; £). However, we show next that if f is
a rational vector function, then we can obtain tight lower
bounds in a local sense, for the class of analytic communi-
cation protocols (Theorems 3.2 and 3.3). We need to fix
some notation.

Notation: Let f = ( f1 f,) be a (vector) rational func-
tion and let & (the domain of f) denote the open subset
of fR”’*” over which f is well defined (finite). For i =
1,---, 5, and for any n-tuple a = (a,,", @,) and m-tuple
B= ( B, B,,) of nonnegative integer indexes, we define
the functions f*: @ — R and fP: & — R by letting

fr(x,y) it (x,y)
S y) = —(x,y),
dyllz;yzZ ces &yn"
3 Bf,
B — !
fP(x,y) P axﬁm(x’y)' (3.8

(We use the convention f = f,.) Furthermore, a notation
such as span{V,f*(x, y): Yy € D,, Vi, a} will stand for
the vector space spanned by all vectors of the form
V.f*(x, y) that are obtained as y varies in a set D, and
as [ and « vary within their natural domains. Finally, for
any finite index set I and collection {«;: i € I} of vectors,
we use [a;: i € I]to denote the matrix whose columns are
given by the vectors a; € 1.

Theorem 3.2: Let 9/ denote the domain of f Let D,
and D, be two nonempty subsets of ™ and R”", respec-
tively, with D, X D, c9. Consider an analytic communi-
cation protocol, consisting a total of r, + r, messages, for
computing f over & = D, X D,, where r; (respectively,
r,) denotes the number of messages sent to the fusion
center from sensor S, (respectively, S,). Then

ry

v

max dim span [foi“(x, y):VyeD,Vi, a}, 3.9
x€D,

r

v

mz})x dim span {VyfiB(x,y): VxeD,, Vi, B}. 3.10)
yeD,

Proof: Due to symmetry, we shall only prove (3.9).
Let the message functions be denoted by 77 (x), ni,(y)
and let the final evaluation function be denoted by h. We
then have from (1.1),

flx, y) = k(i (x0), m

my()), Y(x,y) € D X D,.
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Fix any x € D,. Differentiating the above expression with
respect to y yields

[, y) = hg (i (), my (), y),

Yy €D, Vi, (3.11)

where A} is a suitable analytic function. We now differ-
entiate both sides of (3.11) with respect to x to obtain

V 2 (x, y) = Vi (x) Vi e (7,(x), iy (y), y),
Vy €D, Vi. (3.12)

Thus, for all y € D, and for all i, the vector V, f*(x, y) is
in the span of the columns of the matrix v, 7 m (x). Since
the number of columns of V77 ,(x) equals r;, it follows
that

r, > dimspan {V,f*(x,y): Vy € D, Vi, a}.

Since the above relation holds for all x € D,, we see the
validity of (3.9). Q.E.D.

It should be clear from the proof that Theorem 3.2
remains valid if the function f is merely analytic, rather
than rational.

We continue with a corollary of Theorem 3.2 that will
be used in the next section.

Corollary 3.1: Let f be a rational function with domain
2. For any analytic protocol that computes f over an
open set £ Cc9, the number of messages r; and r,
transmitted by sensors §; and S,, respectively, satisfy

ry = rank [V f*(x,y):i,al, Vix,y) ¥
ry > rank [V, f*(x,y):i,a].  V(x,y) €Z.

Proof: Given (x,y) € ¥ cZ, let D, and D, be some
open sets containing (x, y) and such that D, >< D,cg,
and apply Theorem 3.2. Q.E.D.

We now provide a partial converse of Theorem 3.2 by
showing that the lower bounds (3.9) and (3.10) are tight in
a local sense.

I-JCt f(x’ y) = (fl(x, y), fz(x: y)5'“> fs(‘x’ y)) be a COHCC-
tion of rational functions to be computed by the fusion
center, where x € R™, y € R". Suppose that fi(x,y) =
px,¥)/qx,y),i = 1,5, where p; and g, are relatively
prime polynomials. We assume that all of the p;’s and g,’s
are nonzero polynomials. Note that each p; and g, (i =
1,---, ) can be written in the form

pilx,y) = h
B=(Byy, BB

q:(x,y) = M qig(X)yfryfe -
B=(By, . BIEF

where each p;;, g;5 is a suitable polynomial and % is a
finite set of n-tuples of nonnegative integers. Symmetri-
cally, we can write

pi(x,y) = >

a=(a;,,

q,(x,y) = >

a={(ay, ",

pig(X)yfryfr e yle,

B (3.13)

Pia(YIX{1x3> e xpm,

a,, )EX

Gia (W) xfixg? e xom, (3.14)

a,)ey
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where each p;,, g;, is a suitable polynomial and & is a
finite set of m-tuples of nonnegative integers. We let

t, max r[VpiB(x),Vq,-B(x):l giss,Beﬁ],

xeR™
(3.15)
(3.16)

t, YE%r[Vpia(y),tia(y): l<i<s,acw].

Finally, let D, and D, be the (open) sets of points at
which the maxima in (3.15) and (3.16), respectively, are
attained. Our result is the following.

Theorem 3.3: Let flx, y) = (p,(x, y)/q,(x, y),-
p(x,¥)/q(x,y)) be a rational (vector) function (x e
Rm y € R, where p;, q; (i = 1,---, 5) are relatively prime
polynomials. Let 2 = {(x, y)lg{x, y) # 0, Vi}. Suppose
that (0,0) €2 and that p,(0,0) # 0 for all i. Then, for
any (x,y) €2 n (D, X 5) there exists an open set &
of the form & =D, D, containing (x,y) such that
D, X D, co n (D, xD)and

t, = max dim span {foi"‘(x,y): Vy €D, Vi, a}, (3.17)

xeD,

t, = maxdlmspan{Vf (x,y):VxeD
yeD,

D, Vi,B} (3.18)

and
Cw(f )=t +1t,

where ¢, and ¢, are defined by (3.15) and (3.16), respec-
tively.

Proof: For notational simplicity, we shall prove (3.17),
(3.18), and (3.19) only for the case s = 1 (i.e., f is a scalar
rational function). We will thus omit the subscrlpt i from
our notation. The general case of s > 1 can be handled by
modifying slightly the proof given below.

Fix some (x*, y*) € N (D, XD) Let D, XD, c9
N (D, X D ) be an arbitrary open set containing (x*, y*).
The Valldlty of (3.17) and (3.18) follows directly from
Theorem 3.3 of [13]. Theorem 3.2 yields

(3.19)

CfiD,xD,) 21, +1,. (3.20)
It only remains to show that (3.20) holds with equality.
To do this, we need to construct an analytic communica-
tion protocol for computing ﬂx, y) over some open sub-
set D, x D, of & N (D, X D,) containing (x*, y*). Let
B, €& and B, CF be such that |B,| + |5,| = t, and

r[VpB(x*),Vqﬁl(x*): BB, B eu@z] =1. (321)

Similarly, we let &/, C.& and &, C.& be such that || +
oz, | = t, and

rlVp,(y*),9Yq,(y*): a €, & €yl =1,. (3.22)

Consider the communication protocol with 7,(x) =
{pg(x), qgx): BB, B €B} and with #Ai,(y) =
{p.(1),q,(y): a €, a €,). Clearly, the total num-
ber of messages used in this protocol is equal to ¢, + ¢,.
We claim that this protocol can be used to compute
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f(x, y) over some open set D, X D, containing (x*, y*).
We need the following lemma whose proof can be found
in {15, Theorem A.1]. (In fact, Lemma 3.2 was proved in
[15] only for continuously differentiable functions. But its
proof easily generalizes to the analytic functions.)

Lemma 3.2: Let @ be an open subset of R’ Let
F: @ —» R* be an analytic mapping such that

max r(VF(z)) =s.
zel

Suppose that f: @ — 3 is an analytic function with
property
Vf(z) € span{VF(2)},

Then, there exists some analytic function /2 such that
f(2) = h(F(2)) for all z € @, where &' is some open
subset of &.

Consider the polynomial mapping F: ™" —
R+t defined by F(x,y) = (m(x), niy(y)). Clearly,
max, , r(VF(x,y)) = t, + t,. Moreover, we have

VF(x,y)

| VA () 0
a 0 Vi, (y)

_ I VPs() | | Vgp(x) 0 0
- o 'l o I'|VPO||[Va.OM|

(3.23)

Vzea@.

:BEB,B €PB,,a €A, EMZ],

for all x and y, where the second step follows from the
definition of 7i,(x) and ,(y). On the other hand, by
differentiating f(x, y) = p(x, y)/q(x, y) and using (3.13)
and (3.14), we obtain, for all (x,y) sufficiently close to
(x*, y*), that

Vf(x,y) € span{Vp(x,y), Vq(x, y)}
. V.p(x,y) | | Veq(x, y)
= span Vyp(x,y) s qu(x,y)
.p(x,y)
span{[ PRy ] {Vp(x y)]
v,q(x,y) 0
0 1 %q(x, y)
Vps(x) | [ Vgg(x) 0
Span{[ 0 H o ]’[Vpa(y)}’
0 . o
Vg, | pes ac

Vpg(x) | | Vgq(x) 0
Span{[ f [ Bo ]’[Vpa(y)]’

0
0 7 !
Vg (y) | B EFLB €Ty a S, &l €,

N

n
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where the last step follows from (3.15) and (3.16) and the
fact that (3.21) and (3.22) hold for all (x,y) close to
(x*, y*). This, together with (3.23), implies Vf(x,y) €
span {VF(x, y)} for all (x, y) near (x*, y*). Thus, we can
invoke Lemma 3.2 (with the correspondence s . + 1,
and z < (x,y)) to conclude that there exists some ana-
lytic function h: R%* — R such that f(x,y) =

h(F(x,y)) for all (x,y) near (x*,y*). Since F(x,y) =
(m(x), i, (y)), we see that f(x,y) can be computed on
the basis of the messages 7i,(x) and 7i,(y) over some
open subset D containing (x*, y*). Now take an open
subset of D with the product form D, X D, such that
(x*,y*) € D, X D,. This completes the proof of Theorem
3.2 Q.ED.

In essence, Theorem 3.3 states that the lower bounds of
Theorem 3.2 are tight, in a local sense, for the class of
analytic communication protocols. The adjective “local”
stands for the fact that the protocol of Theorem 3.3 works
only for (x,y) in a possibly small open set D, X D,.
Theorem 3.3 also provides an alternative way of comput-
ing ¢, and ¢, [cf. (3.17) and (3.18)]. This is particularly
useful since in some applications the computation of ¢,
and ¢, as defined by (3.15) and (3.16), respectively, can be
quite involved, whereas the computation of ¢, and ¢, as
given by (3.17) and (3.18), respectively, is relatively simple;
see the proof of Theorem 4.1 for an example.

We note that, instead of quoting the results of [13], w
could have proved the lower bound C(f: D) >t + t
directly from Theorem 3.1. However, such an approach 1s
more complicated. Finally, note that Theorem 3.2 asserts
the existence of a local analytic protocol with ¢, +¢,
messages. Ideally, we would like to have a rational proto—
col (in which both the message functions and the final
evaluation functions are rational, instead of analytic),
which uses only ¢, + ¢, messages, and which is global (in
the sense that the domain & of the protocol coincides
with the domain 9 of f)

IV. DECENTRALIZED GAUSSIAN ESTIMATION
REVISITED

In this section, we consider a variation of the decentral-
ized Gaussian estimation problem of Section II. In con-
trast to Section II, we will now assume that some of the
statistics of the random variables involved are only locally
known. We shall apply the results from Section III to
obtain some tight bounds on the number of messages that
have to be transmitted from the sensors to the fusion
center and establish near optimality of a natural commu-
nication protocol.

Let z € ®™ be an unknown Gaussian random variable
to be estimated by the fusion center. Let there be two
sensors §; and S, that are making observations of z
according to

u=Hz+v,
w=H,z+v,,

“4.1n
4.2)

where u € R" (respectively, w € R") denotes the data
vector observed by S, (respectively, S,). Here, v, and v,
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are n-dimensional Gaussian noise vectors, independent of
z and independent of each other. Also, H, and H, are
two coefficient matrices of size n X m. We note that, in
practice, the number n of observations obtained by each
sensor is typically much larger than the dimension m of
the random variable z to be estimated. For this reason,
we will be focusing on the case n > m. Finally, we have
assumed in our model that the number of observations »
made by each sensor is the same: this is no loss of
generality, however, since one can add zero rows to one of
the H matrices.

Let R, and R, be the covariance matrices of v, and
v,, respectively. Let P,, be the covariance matrix of z,
which we assume for simplicity to be positive definite. We
assume that the fusion center wishes to compute the
conditional expectation E[z{u,w]. Assuming the existence
of the inverse in the equation below, we have

Elzlu,w] = P, _HT[HP, HT + R]_l[x], (43)
where
H, R,
H= [Hz]’ 0 R, 4.4

Note that the invertibility of HP,,H + R is equivalent
to assuming that the support of the distribution of (u,w)
is all of :!2". For this case, the results of Section T show
that if the matrices P,,, H;, and R, (i = 1,2) are com-
monly known by the sensors and the fusion center, then
the communication complexity is equal to 2m. Let us now
assume that P,, is known by the two sensors and the
fusion center, while the matrices H,, R, are known only
to sensor §; and the matrices H,, R, are known only to
sensor §,. This case can be quite realistic. For example,
the coefficients of H, might be determined locally and
on-line by sensor §; (as would be the case if sensor S,
were running an extended Kalman filter). Also, the entries
of R, might be estimated locally and on-line by sensor S,
by computing the empirical variance or autocorrelation of
past observations. In both of the cases described above,
the values of H, and R, would be known only by sensor
S;.

In relation to the notation used earlier in the present
paper, we have x = (H,, R, u), y = (H,, R,,w), and the
function to be computed by the fusion center is

flx,y) = f(H,, R ,u; Hy, Ry, w)
- T T “Hu
=P, HT[HP,,HT + R| [W] (4.5)

where H and R are given by (4.4). Note that P,, does not
appear as an argument in the left-hand side of (4.5),
because it is considered as a commonly known constant.

Finally, we let & be the set of all (H,, R}, u, H,, R,,w)
such that R, and R, are symmetric positive definite
matrices. (Note that on £, the matrix HP,,H” + R is
guaranteed to be invertible.)
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Theorem 4.1: Let ]7 and £ be as above and assume that
n > m. Then,

m2+mst(ﬁ?) <m? + 3m.

Proof: The upper bound follows from well-known
formulas for the combining of measurements. We repeat
the argument here for the sake of completeness. As is
well known (see e.g., [6], [7D, we have

1

Elzlu,w] = [P + HIR'H, + HIR;'H,|”

[HIR 'u + HIR;'w]. (4.6)
This suggests the following protocol Sensor §, transmits
HIR;'x (m messages) and H{R{'H, to the fusion cen-
ter. The latter is a symmetric matrix of dimension m X m.
Since the off-diagonal entries need only be transmitted
once, m(m + 1)/2 messages suffice. The situation for
sensor S, is symmetrical, and we see that the total num-
ber of transmitted messages is equal to m? + 3m. It is
clear from (4.6) that these messages enable the fusion
center to compute E[z|u,w].

We continue with the proof of the lower bound. To
keep notation simple, we will only prove the lower bound
for the case m = n. The argument for the general case
(n > m) is very similar. In any case, it should be fairly
obvious that increasing the value of », while keeping the
value of m constant, cannot decrease the communication
complexity. (A formal proof is omitted.) Thus, any lower
bound established for the case n = m is valid for the case
n = m as well.

A further simplification of the proof is obtained by
considering the special case where P,, =1. As long as
m =n, and P,, is positive definite, any decentralized
estimation problem can be brought into this form, by
performing an invertible coordinate transformation to the
vector z. Thus, this assumption results in no loss of
generality.

Let

{H,le +R,

H,Hy
HyHY

H,HI + R,
and note that

£ T T -1l u

f* [HlaHZ]A IW]

We will now evaluate Vi f at (H,, R,) = (1,0). Note that
Vr, f is a matrix of size m(m + 1)/2 X m, because R,
has m(m + 1)/2 independent entries. A typical row of
this matrix, denoted by J f/ R, (i, j), contains the partial
derivatives of f with respect to a simultaneous change of
the (i, j)th and the (j, )th entry of R,. We now use the

formula VA™! = —47'VAA4 ! to see that the transpose
of
of
—\n,- 4.7
IR, (i, ) | e @7

[— - - e
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(which is an m-dimensional column vector) is equal to

40 0
- [H{.1]4 1[0 E,.,}A 1[%]
Here, E;

i for i #j denotes the m X m matrix all of
whose entries are zero except for its (i, /)th and (j, th
entries, which are equal to 1. For i = j, E;; has all zero
entries, except for the (i, )th entry, which is equal to 1. It
is now easily verified that

(4.8)

-1

41 _[HHT + R H,
b H 1
R —Ry'H, 49
| -HTR;' I+HIR'H|

Taking (4.9) into account, (4.8) becomes, after some alge-
bra,

E HTR 'u — E;(I + H/R{'H)w.
We differentiate once more, this time with respect to w,
and obtain

of
“\ R0, )

In terms of the notation used in Section III, each entry of
the matrix —E; (I + H[R; 'H,) corresponds to a function
of the form f. Our ob]ectrve being to apply Corollary 3.1,
we will now compute the gradient of a typical entry of
E;(I + H{R; 'H,), with respect to the variables of sensor

S 1. More preasely, we only take the gradient with respect
to R,. (By not taking the gradient with respect to some of
the components of x, we are essentially deleting some of
the rows of the matrix [V_f*(x, y): i, a], and this cannot
increase the rank of that matrix.) In fact, it is more
convenient to represent this gradient as an m X m sym-
metric matrix, rather than a vector of dimension m(m +
1)/2, with the entries in the upper triangular part corre-
sponding to the components of the gradient. It is then
understood that the rank in Corollary 3.1 will be com-
puted in the vector space of m X m symmetric matrices.
The (p, g)th entry of E;(I + H{R; 'H,) can be written
as e] E, (I + H/R{'H)e,, where e, and e, are the pth
and qth unit vectors, respectlvely We then use the for-
mula V,x"Ay = xy” + yx” to evaluate the gradient of the
above expression, with respect to Ry, at the point H, =
R, =I. (The correct formula is only T, We get the
symmetric form because V, stands for derivative in the
direction of 4;; and a; 31multaneously) The result is seen
to be —(e el E; + Eje,e;). Note that ee; 'E, + Eee;
q],lfl;b],andeeE +Eee E +qu,lfl—-j
Therefore the matrices e epE, ;T E i€y e span the vec-
tor space of symmetric matrices, Wthh 1s of dimension
m(m + 1)/2. In the notation of Corollary 3.1, the rank of
[V f2(x, y): i, @] evaluated at x* = (H,R,uw) =, Lu)

- = —E L+ HIR'H)).

R,=0
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and y* = (H,, R,,w) = (1,0,w) is at least m(m + 1)/2.

The desired lower bound now follows from Corollary
3.1, except for the minor difficulty that (x*,y*) & &.
(This is because in & we have required R, to be positive
definite.) However, an easy continuity argument shows
that the rank of [V, f*(x, y): i, a] remains at least m(m
+ 1)/2 in an open set around (x*, y*). Thus, we can
apply Corollary 3.1 to a point in the vicinity of (x*, y*)
that belongs to &, and the proof is complete. Q.E.D.

We should emphasize here that the decentralized esti-
mation problem considered by Theorem 4.1 is a nonlinear
one, even though the random variables involved are all
Gaussian. Recall that in the centralized setting the opti-
mal estimate of a Gaussian random variable is always
linear. However, in the decentralized setting this is no
longer the case as the matrices H,, R;, i = 1,2, are known
only locally at each sensor, thus making the optimal
estimate (4.5) to be computed by the fusion center a
nonlinear one. For such a nonlinear decentralized estima-
tion problem, what Theorem 4.1 asserts is far from obvi-
ous: at least m? + m messages are needed to compute the
optimal Gaussian estimate (4.5). This suggests that the
well-known data fusion scheme (4.6), which uses m? + 3m
linear messages, has nearly optimal communication re-
quirements.

As discussed in [18], the decentralized estimation for-
mula (4.6) corresponds to the data fusion scheme, whereby
each sensor computes a local optimal estimate using its
own data and then the fusion center combines these two
local estimates using a linear transformation. It is known
[18] that this fusion scheme is valid only when the noise
covariance matrix R is block diagonal. In particular, if the
measurement noises are correlated, then the locally opti-
mal estimates no longer carry enough information for the
computation of the globally optimal estimate. In other
words, m? + 3m messages will not be enough in this case.

Finally, we mention some possible extensions of Theo-
rem 4.1. First, we note that there is a gap of 2m messages
between the lower and upper bounds provided by Theo-
rem 4.1. Although for large m this gap is small compared
to the quadratic lower bound, it is still of interest to close
it. Also, we have, for the sake of simplicity, only stated
and proved the result for the two sensor case. We expect
the result (and the proof) of Theorem 4.1 to hold for the
general N sensor case (just like Theorems 2.1 and 2.2).

V. D1ScUSSION

In this paper, we considered the problem of minimizing
the amount of communication in decentralized estima-
tion. When the random variables involved are Gaussian,
we have obtained some tight bounds on the number of
messages that have to be communicated in order for a
fusion center to perform statistically optimal estimation.
Our results may provide useful insight and guidelines to
design communication protocols for the decentralized es-
timation problems when the communication resource is
scarce. While the paper was focused on static estimation
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problems, it might be interesting to consider extensions to
decentralized Kalman filtering problems.

APPENDIX
Proof of Lemma 2.1: Using Gaussian elimination, we can
write

c-rlf e

where P and Q are some invertible square matrices. Clearly, P
and Q are computable in polynomial time. Let 4 = AQ ! and
Y = XP. We then have

0 0

r(AQ-l +XP[6 g )

=r(z+y[g g])
=r(A4 + [Y;,0D
=r([A_1+Y1,A_2]),

r(A + XC) = r(A +XP[1 O]Q)

(AD

where we have partitioned Y into [Y},Y,] so that

1 0]
v[g o] -
and have partitioned A4 = [ A;, 4,] accordingly. This proves part
(b). Since P is invertible and Y = [Y}, Y,] = XP, we have from
A

min r(4 + XC) = min ([ 4 + v, 4,

=r(4,), (A2)

where the last step follows by taking Y, = —4,. Since Q can be
computed in polynomial time, we see that A, is also computable
in polynomial time, which further implies that r(A4,) can be
evaluated in polynomial time. Combining this with (A.2) yields
part (¢). Q.E.D.

Proof of Lemma 2.2: First, by Lemma 2.1, there exists some
linear transformation Y = XP under which

A+ XC) = r([4, + Y, A,), (A3)

where P and A’ are two matrices computable in polynomial
time and A’ = [ A4, A,] is partitioned according to the partition
Y = [Y,,Y,]. Under the same linear transformation ¥ = XP, we
have

r(B + XD) = r(B + YD)
=r(B+Y,D, + Y,D,), (A.4)
where

. . | D
D=P'D and D=|""

2

is partitioned according to Y = [Y}, Y,]. Using Lemma 2.1 again
(with the correspondence B + YD, © A, D, & C and Y, &
X), we obtain

min r(B +Y,D, + Y,D,) =r(B' + D), (A5)
Ys

where B’ and D’ are some matrices computable in polynomial
time from B, D,, and D,.
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Combining (A.3) and (A.4), we obtain
min{r(A + CX) + r(B + XD)}
X

min {ra, + v, 4D +r(B +Y,D, + v,0,)}

n}in {r([A’l + Y, 45D
1

+| min (B + Y,D, + Y,D
(Yz ’( 1 2 2))}

= Ir)llin {r([ A, + Y, 45D + r(B' + YD)}, (A.6)
. 1
where the last step follows from (A.5).

To complete the proof, we apply Lemma 2.1 to r(B' + Y, D').
In particular, there exists a linear transformation W =Y, P’ (P
is an invertible matrix computable in polynomial time) such that

r(B' +Y,D') =r(B, + W, B,) (A7)
for some matrices B, and B, which are computable in polyno-
mial time from B’ and D'. Here, W = [W,, W,] is some partition
of the matrix W. Under the same linear transformation W =
Y, P, we have

i

Py + Yy, 4D = ([ 4y + WP T 4])
r((AP + W, A4y))

r([ AP+ (W, W,], 45D,

I

where the second step follows from the invertibility of P’. Thus,
we have

min r([ 4 + Y;, 45,1 = min r([ 4P + [W,,W,], 4,])
W, W,

=r([(A4\P), + W,,0, 45D
= r([/fl + Wl,/fz]),

where the second step follows from choosing W, = (4, P'),,
which is obtained by partitioning A P' = [(4,P'),,(A,P'),] ac-
cording to the partition W = [W,,W,]; and in the last step we
have let A, = (A4,P"), and A4, = [0, 4,]. We now combine
(A.7) with (A.8) to obtain

n}/in{r([A’1 +Y, 45D +r(B' +Y,D)}
1

(A.8)

= min {r([A'1 +Y,A,D + r([1§1 + Wy, éz])>

min {(n;Vinr([Aq + ¥, 4D) + ([ B+ W, éz])}

il

min ([ + W &) + ([ B+ i 8]).

This, together with (A.6), implies
m);n {r(4 — XC) + r(B - XD)}
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= min{r(4 + XC) + r(B + XD)}
X
= min {r([ff1 + Wy, A,D + r([él + Wl,gz])>’
W,
as desired. Q.E.D.
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