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The Efficiency of Greedy Routing
in Hypercubes and Butterflies

George D. Stamoulis and John N. Tsitsiklis, Member, IEEE

Abstract— We analyze the following problem: Each node of
the d-dimensional hypercube independently generates packets
according to a Poisson process with rate ). Each of the packets
is to be sent to a randomly chosen destination; each of the
nodes at Hamming distance k from a packet’s origin is assigned
an a priori probability p*(1 — p)?~*, Packets are routed under
a simple greedy scheme: each of them is forced to cross the
hypercube dimensions required in increasing index-order, with
possible queueing at the hypercube nodes. Assuming unit packet
length and no other communications taking place, we show that
this scheme is stable (in steady-state) if p < 1, where o™= )\p is
the load factor of the network; this is seen to be the broadest
possible range for stability. Furthermore, we prove that the

average delay 7" per packet satisfies T < 1—“_%, thus showing

that an average delay of O(d) is attainable for any fixed p < 1.
We also establish similar results in the context of the butterfly
network. Our analysis is based on a stochastic comparison with
a product-form queueing network.

1. INTRODUCTION

A. Problem Definition—Summary of the Results

During the execution of parallel algorithms in a network
of processors, it is necessary that processors communicate
with each other in order to exchange information. This is
accomplished by routing messages through the underlying
interconnection network. In the present paper, we consider a
problem that arises in this context: the nodes (processors) of a
hypercube network generate packets at random time instants;
each packet has a single destination, which is selected at
random. We discuss a simple greedy scheme for routing these
packets and we analyze its steady-state stability and delay
properties. The results to be derived extend to the butterfly
network.,

We consider the d-dimensional binary hypercube (or d-
cube); e.g., see [2]. This network consists of 2¢ nodes,
numbered from 0 to 2¢ — 1. Associated with each node z is a
binary identity (24, ...,21), which coincides with the binary
representation of the number z. For j € {1,...,d}, we denote
by e, the node numbered 27-1; that is, all entries of the binary
identity of e; equal O except for the jth one (from the right),
which equals 1. For two nodes z and y, we denote by z &y the
vector (24 ® Yd, - .-, 21 D y1), where @ is the symbol for the
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XOR operation. The d-cube has d2¢ arcs; each arc is directed
and connects two nodes whose binary identities differ in a
single bit; see Fig. 1(a), where the 3-cube is depicted. That is,
arc (z,y) exists if and only if, for some m € {1,...,d},
z; = y; for i # m and 2, # ym; this is equivalent to
y = z ® ey, for some m € {1,...,d}. Such an arc is said
to be of the mth fype; the set of arcs of the mth type is called
the mth dimension. Note that (2, y) stands for a unidirectional
arc pointing from z to y; of course, if arc (z, y) exists, so does
arc (y, z). The Hamming distance between two nodes z and y
is defined as the number of bits in which their binary identities
differ; it is denoted by H(z,y). Any path from z to y contains
at least as many arcs as the Hamming distance between z and
y. Moreover, there always exist paths that contain exactly that
many arcs; these paths are shortest. It is easily seen that the
diameter of the d-cube equals d.

The underlying assumptions for communications are as
follows: Each piece of information is transmitted as a packet
with unit transmission time. Only one packet can traverse an
arc at a time; all transmissions are error-free. Each node may
transmit packets through all of its output ports and at the same
time receive packets through all of its input ports. Each node
has infinite buffer capacity. Finally, for analytical convenience,
the time axis is taken to be continuous. (Our results can be
easily extended to the slotted case; see [17].)

In many of the routing problems that are discussed in the
literature, there is a finite set of packets to be routed to their
destinations, and all packets are assumed to be available at
time zero; these are static routing problems. In contrast, in this
paper, we assume that new packets are generated at random
times over an infinite time horizon; problems of this type
are called dynamic. We assume that each node of the d-cube
generates packets according to a Poisson process with rate A;
different nodes generate their packets independently of each
other. Each packet has a single destination, which is selected
randomly according to the following probability distribution:

Pr[a packet generated by node z is destined for node z]
- pH(z,z)(l _p)d—H(:z,z)’ (1)

where p € (0,1]; different packets make their selections
independently of each other.

Notice that the problem just defined is invariant under
translation; that is, if each hypercube node is renamed from x
to z @ y* (where y* is a fixed d-bit string), then the statistics
of the various random variables are not affected.

It is seen from (1) that for p = 1 the destination distribution

2
is uniform; that is, each node (including its origin) is equally
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Fig. 1. (a) The three-dimensional hypercube. (b) The equivalent network Q
for the three-dimensional hypercube.

likely to be chosen as a packet’s destination. This is the case
usually considered in the literature (see Section I-B); in most
of the related works, a packet’s origin is not a permissible
destination; however, it is easily seen that our results (when
rescaled appropriately) also apply to this case. Also note
that for p < % the destination distribution favors nodes at
shorter distance from a packet’s origin; in this case, packet
transmissions tend to be more localized.
As will be proved in Section II-A, the inequality

pdze'f,\p <1

is a necessary condition for stability; p will be called the load
factor of the system. Therefore, it is of particular interest to
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devise a routing scheme that is guaranteed to be stable for all
p < 1. Moreover, it is desirable that such a scheme does not
introduce excessive delay; a reasonable delay objective is to
require that for every p < 1, the average delay is of the order
of d. It is plausible that these objectives might be attained if we
let each packet choose a shortest path leading to its destination
and attempt to traverse this path as fast as possible. However,
the performance of such greedy schemes has not been analyzed
rigorously in the literature. In this paper, we prove that the
following greedy scheme has the desired properties: consider
a packet originating at node x and destined for node z; this
packet will be routed through that shortest path (from z to z)
in which the hypercube dimensions are crossed in increasing
index-order. (Such paths are often referred to as canonical.)
For example, a packet travelling from node (0,0, 0,0) to node
(1,0,1,1) in the 4-cube would follow the path

(0,0,0,0) — (0,0,0,1) — (0,0,1,1) — (1,0,1,1).

It will be proved that this simple routing scheme is stable for
all p < 1, which is the broadest possible stability region. By
the term “stable” it is meant that the time spent by the nth
packet in the system converges in distribution (as » — o) to
a limiting random variable, which is finite with probability 1.
Moreover, it will be established that, for p < 1, the delay T
induced by the scheme satisfies

P <1<

dp+p2(l -p)

1-p
of particular interest is the upper bound on the delay, which
guarantees that, for any fixed p, each packet reaches its
destination in an average time ©(d). Notice also that under
heavy traffic (i.e., for p — 1) the delay T increases as 1%/). It
will be established that such a behavior under heavy traffic
is optimal for any fixed d; indeed, it will be proved that
lim,_1[(1 — p)T] > 0 under any legitimate routing scheme.
The results above may be easily extended to the d-
dimensional butterfly, a switching network that can be viewed
as an “unfolded” version of the d-cube; see Section IV~A and
[2]. In this context, it is assumed that packets are generated at
one of the fronts of the butterfly and destined for a randomly
chosen node at the opposite front; the destination distribution
is identical to that presented in (1), except for the fact that
and z belong to opposite fronts of the butterfly. Notice that
crossing the dimensions in increasing index-order is the only
legitimate choice of paths for the butterfly. Thus, the scheme
simply reduces to greedy routing; this will be seen to be stable
for all p < 1, where p is now defined as pd=8f)\ max{p, (1-p)};
moreover, for p < 1, the average delay T satisfies

Ap Al -p)
e TP )
dp d(1-p)

<T<L .
R T v e Yo

Again, the delay T is ©(d) for any fixed p < 1, which is
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the optimal order of magnitude; also, the behavior of 7' under
heavy traffic will be seen to be optimal, for any fixed d.

To the best of our knowledge, these results are new.
Moreover, our analysis provides the first proof that some
routing scheme (on either the d-cube or the butterfly) is
stable for all p < 1 while satisfying the requirement for
O(d) average delay; proving that greedy routing has these
properties has been a long-standing open question in the
routing literature. Also, this is the first routing scheme for
which the bounds on the delay are expressed in simple
formulae involving the system’s parameters p and d. Finally,
the approach for deriving the aforementioned results is new as
well: it is established that the hypercube (resp., the butterfly)
behaves as a queueing network with deterministic servers
(each corresponding to an arc) and with Markovian routing
among the various servers; then, by using sample path argu-
ments, it is shown that the delay induced by this queueing
network is dominated by that corresponding to a product-form
network. This kind of approach relies on the assumption of
Poisson arrivals; nevertheless, we hope that our analysis will
be suggestive of the efficient perfomance of greedy routing
under more general packet-generating processes; in fact, the
conditions for stability derived in our analysis are much more
general.

B. Survey of Previous Work

There exists a considerable literature on hypercube routing,
especially for static problems; see [18], {191, [15], [7], [20],
[11], [2], [4] and the references therein. Reference [7] also
contains a scheme for routing continuously batches of per-
mutations, by pipelining. This leads to a scheme that can be
applied to the problem studied in this paper; however, such
a scheme would be stable only for quite small values of the
load factor and would not satisfy our desire to have stability
for every p less than 1.

The dynamic routing problem of this paper has been dealt
with in several articles, which we discuss below; all of them
assume that the destination distribution is uniform. Abraham
and Padmanabhan [1] have constructed an approximate model
for this problem, under various assumptions on the buffer
capacity of the nodes. In particular, they assume that packets
advance in the respective paths independently of each other;
the model involves some parameters, which are determined
by solving a system of non-linear equations. Greenberg and
Hajek [9] have provided an approximate analysis for the case
of deflection routing. Greenberg and Goodman [8] study the
case of a square mesh. More recently, Leighton [13] proved
that greedy routing in the square mesh has very satisfactory
average performance. Bouras et al. [3] considered the same
problem in the context of Banyan networks; however, we are
unable to follow some of the steps in the analysis therein.
Mitra and Cieslak [14] and Hajek and Cruz [10] have dealt
with similar problems in the context of the extended Omega
network; the analysis is again approximate and is based
on “Kleinrock’s independence assumption.” Finally, another
dynamic routing problem, was analyzed by Stamoulis and
Tsitsiklis in [16], where it was assumed that packets generated
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at random instants and at random nodes of the hypercube must
be broadcast to all nodes.

II. PRELIMINARY RESULTS FOR THE HYPERCUBE

A. The Necessary Condition for Stability

We start with an observation to be used several times in the
analysis. Consider a fixed packet P generated at node z. Let
B; denote the event that packet P will choose a destination
z such that z; # x;; notice that if event B; occurs, then P
will have to cross an arc of the :th dimension in order to
reach its destination. It is a straightforward consequence of
the definition of the destination distribution [see (1)] that the
following is true:

Lemma 1: For any fixed packet P, events By,...,B, are
mutually independent, with Pr[B;] = p for 1 = 1,...,d.
Independence prevails both with and without conditioning on
the origin of the packet. a

Lemma 1 essentially implies the following: In order to
choose the binary identity of its destination, packet P flips
each of the bits of the identity of its origin z; each bit-flip
is performed with probability p, independently of the others.
Notice also that the average number of bit-flips performed
equals dp; therefore, under any routing scheme, each packet
will have to traverse at least dp hypercube arcs on the average.

Next, we derive the necessary condition for stability. The
average total number of packets generated in the network per
unit time equals A2%. Thus, by the conclusion of the previous
paragraph, it is seen that during each time unit an average total
demand for at least A2%dp packet transmissions is generated in
the system. Since at most d2¢ packet transmissions may take
place per unit time, it follows that the system can be stable
only if A2¢dp < d2<. Thus, we obtain the following necessary
condition for stability under any routing scheme:

pPEp <1, 2
where p will be called the load factor of the system. This
terminology is appropriate, because when p ~ 1 all hypercube
arcs are almost always busy, even if no redundant packet trans-
missions take place. Notice that (2) is a necessary condition
for stability under more general arrival processes. Furthermore,
this condition can be strengthened to p < 1, unless all arrival
processes are deterministic.

B. Lower Bounds on the Delay

First, we establish a universal lower bound on the steady-
state average delay T per packet; that is, a bound that applies to
any routing scheme. Recall that T is defined as the stationary
average of the time elapsing between the moment a packet is
generated until it reaches its destination.

Proposition 2: The average delay T per packet induced by
any routing scheme satisfies

T > max{dp, pD(2%; p)}

P
ZQ(dP-l-pm), Vp<1,
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where D(2%;p) is the average delay for the M/D/2¢ queue
with unit service time and arrival rate 2%p. O

Proof: Consider a fixed packet P generated at node z;
if its random destination satisfies 2; # z1 (that is, if event
B; occurs for P), then P will not reach its destination until
it traverses at least one arc of the 1st dimension. Let W be
the average time until a packet crosses the 1st dimension, with
the convention that packets that never do so contribute zero
to this average; clearly, T > W. It is straightforward to see
that the value of W can only decrease if we introduce the
following conditions:

(a) Each packet for which event B; has not occured never
crosses the 1st dimension.

(b) Each packet for which event B; has occured is available
upon its generation at all nodes; moreover, such a
packet will only cross the first available arc of type 1.

Under these assumptions, the 22 arcs of the first dimension
operate as an M/D/2¢ queue. The input stream of this queue
consists of all packets for which event 3; occurs; by Lemma 1,
this stream is Poisson with rate A2%p = 2¢p. The average delay
induced by this queue equals D(2%; p); since only a fraction p
of the packets “joins” this M/D/2? queue, we have

W > pD(2% p). A3)

Recall now that T > W and T > dp (see Sectiom II-A); these
facts together with (3) imply that

T > max{dp, pD(2% p)}. )
Furthermore, it is known [6] that

D% p) > 1 L;
(2%p) 2 + )

combining this with (4), it follows that

T= Q(maX{dP’pJ’pm})
=t +rprts)

where we have also used the inequality max{a,a2} >
3 (01 + az). The proof of the result is now complete. Q.E.D.

The universal lower bound of Proposition 2 shows that
lim,—1[(1 = p)T] > 0, for any fixed d, under any routing
scheme. As far as asymptotics with respect to d are concerned,
the bound appears to be loose, due to the presence of the factor
2%. Below, we establish a sharper lower bound applying to a
restricted but fairly broad class of routing schemes.

As suggested by the proof of Proposition 2, a scheme
that comes close to attaining the universal lower bound for
the delay T' (if there exists such a scheme) would schedule
transmissions adaptively. This claim is further supported by
Proposition 3, which establishes a lower bound on T under
oblivious schemes. Under an oblivious scheme, each packet
selects its path, possibly using randomization, independently
of the existing traffic and insists on traversing the selected path
(see [5]); we also assume that all rules for path selection are
time-independent.

Proposition 3: The average delay T per packet induced by
any oblivious routing scheme satisfies

p
T=Q (dp + p'l—_—p) . O

Proof: This proof is similar to that of Proposition 2. We
consider a node z and an arc (y, y & e;); under any oblivious
scheme, the following is true: for each packet generated at
z, the event that arc (y,y @ e;) is the first arc of type 1
to be crossed by such a packet is independent of any events
involving other packets. Let g, , be the probability of the event
that was just described. Then,

241

Z Qoy 2 P,

y=0

vz € {0,...,2¢ - 1}, 5)

because it is with probability p that some packet generated by
node z will necessarily cross an arc of the 1st dimension. Let
W be the average time until a packet crosses the 1st dimension
for the first time, with the convention that packets that never
do so contribute zero to this average; clearly, T > W. For any
oblivious routing scheme, the value of W can only decrease
if we introduce the following conditions:
(a) Each packet to cross the 1st dimension is only delayed
at the first time it does so.
(b) Each packet to cross arc (y,y ® e;) is available at node
y upon its generation.
Under these conditions, each arc (y,y @ e;) is fed by a
group of 2¢ Poisson streams. We denote by r,, the total arrival
rate of the compound Poisson stream; obviously, we have

241

Ty = A Z dz,y:
=0

Clearly, arc (y,y®e;) behaves as an M/D/1 queue with unit
service time. Therefore (see [12]), the average delay W, per
packet joining this queue is given as follows:

vy € {0,...,2¢ — 1}. 6

Ty

(e}
Using this, we obtain

241 241

,\2d Z W Azd Z ”[ 2(1—ry)] M

Combining (5) and (6), we have

241

3y 2 A2%. ®)

y=0

Notice now that [l + 57"—] is a convex and increasing
function of r; therefore, in light of (8), the right-hand quantity
in (7) is minimized when r, = Ap for all y € {0,...,2¢ - 1}.
Thus, it follows that
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This together with the facts 7 > W and T > dp proves that

ool i)

and the result follows. Q.ED.

III. THE MAIN RESULTS FOR THE HYPERCUBE

In this section, we analyze an efficient greedy routing
scheme for the hypercube network. As already mentioned in
Section I-A., the scheme is as follows: Each packet proceeds
towards its destination by crossing the dimensions required in
increasing index-order. To clarify matters, consider a packet
P generated at node z and destined for node z; let T1ye ..,k
be the entries in which the binary identities of z and z differ,
with 41 <42 < --- < ig; then, packet P follows the path

T—zde; s zxde; Dey, > - > 2Pe;, P Pey;, = 2.
Whenever several packets present at a node y wish to traverse
the same arc, then priority is given to the one that arrived at
y the first. Note that this scheme is oblivious.

It will be seen in Section III-A that, under this scheme, the
hypercube is equivalent to a queueing network with certain
useful properties. The analysis in Sections III-B and -C deals
with the performance of this equivalent queueing network.

A. The Equivalent Queueing Network

It is straightforward that, under our routing scheme, the
d-cube may be viewed as a queueing network, with d2¢
deterministic FIFO “servers”; each “server” has unit service
duration and corresponds to a hypercube arc. This equivalent
queueing network (to be referred to as Q) has the following
properties (see Fig. 1(b) for an illustration):

Property A: The external arrival stream at any arc (z,z ®
e;) is Poisson with rate Ap(1 — p)*~'; streams corresponding
to different arcs are mutually independent.

To see this, consider a packet P generated at node z of
the d-cube; with probability p(1 — p)*~! the destination of P
satisfies 23 = #1,...,%;-1 = 7;; and 2; # x; (see Lemma
1). Since packets cross the hypercube dimensions in increasing
index-order, it follows that each of the packets generated by
node z will join the queue for arc (z, z @ e;) with probability
p(1 —p)t.

Property B: After crossing arc (y,y & e;), a packet will
never traverse again an arc (z,z @ e;) with j € {1,...,3}.
Thus, the equivalent network Q is a layered network; that
is, its “servers” are organized in d levels, with the ith level
comprising all arcs (y,y @ ;) for y € {0,...,2¢ — 1}, ie.
all arcs of the ith dimension. Upon “service completion” at a
certain level, a packet either joins a queue at a higher level or
it departs from the network.

Property C: Routing is Markovian. In particular, upon
crossing arc (y,y @ e;), a packet takes one of the following
actions: either it joins the queue at arc (y @ e;,y S e; © ¢;)
with probability p(1 — p)?~*~! for j = i + 1,...,d; or it
departs from the network with probability (1 — p)¢—*. After
crossing arc (y, ydeq), a packet departs from the network with
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probability 1. Different packets take their routing decisions
independently of each other.

The validity of property C can be easily seen if we visu-
alize a packet’s propagation through the network as follows.
Upon generation, the packet decides whether or not to cross
dimension 1; the probability that it decides positively equals
p. If it does so, then it takes its step on this dimension and
then it decides whether or not to cross dimension 2; if it does
not decide to cross dimension 1, then it considers crossing
dimension 2, etc.

B. Stability for p < 1

In the previous subsection, we established that, under the
routing scheme analyzed, the hypercube is equivalent to a
queueing network Q with Markovian routing. In this subsec-
tion, we derive a sufficient condition for stability of the routing
scheme. First, we prove the following result:

Lemma 4: The total arrival rate at any arc of the d-cube
equals A\p = p. 0

Proof: By symmetry among the hypercube nodes, all arcs
belonging to the same dimension j have the same total arrival
rate §;. Furthermore, the total arrival rate for the jth dimension
equals 2¢)\p, because each of the packets generated within the
d-cube crosses the jth dimension for an expected number of p
times. Hence, we have 240; = 2¢)\p, which gives §; = Ap = p
forall j € {1,...,d}. Q.E.D.

Notice now that the equivalent network Q has the following
properties:

(a) Q is acyclic (Property B).

(b) Each “server” is fed externally by a Poisson process.

Arrival processes corresponding to different “servers”
are independent. (Property A.)

(c) Service times corresponding to different packets and/or

different “servers” are (trivially) independent.

(d) Routing is Markovian (Property C).

These properties allow us to apply a result on the stability of
acyclic networks; see [21, p. 246]. It thus follows that network
Q is stable if the total arrival rate for each “server” is less than
unity. By stability it is meant that the time spent by the nth
packet in the system converges in distribution (as n — oo) to
a limiting random variable, which is finite with probability 1
and independent of the initial state. Recalling the equivalence
of Q with the hypercube (under our greedy routing scheme)
and using Lemma 4, we reach the following conclusion:

Proposition 5: The greedy routing scheme under analysis
is stable for all p < 1. d

In light of the necessary condition for stability p < 1 (see
Section II-A), it is seen that the routing scheme under analysis
has optimal stability properties. In fact, the stability result of
[21] applies to more general arrival processes and so does
Proposition 5.

C. Delay Bounds

In this subsection, we establish upper and lower bounds
for the average delay 7' induced by the routing scheme under
analysis. Starting with the upper bound (which is the most
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interesting result), we will show that T < —L forall p < 1.
The basic idea for proving this result is as follows

If the service discipline at the “servers” of the equivalent
network Q is changed from FIFO to Processor Sharing (PS),
then the average delay per packet increases; under the PS
discipline, Q becomes a product-form network, and its delay
is easily computed.

Recall that under the PS discipline all customers present at a
server receive an equal proportion of service simultaneously;
see [21, p. 354]. For example, consider a deterministic PS
server, with unit service rate; assume that it has two customers
to serve, with the first customer arriving at time O and the
second at time %; upon arrival of the second customer, the
first one has % units of service remaining; however, due to
the presence of the second customer she will be served at
rate 4; thus, she will depart at time 1 + 22 = I; similarly,
it can be seen that the second customer wrll depart at time
2. Notice that we are using the term “service rate” for a PS
server (rather than the term “service duration”), because the
time duration for which a customer receives service depends
on previous and future arrivals.

The proof of the upper bound on the delay 7' makes use
of several lemmas that establish sample path results; these we
present next. Throughout, we assume that the network starts
empty at time 0.

Lemma 6: Consider a deterministic FIFO server with unit
service duration. For a fixed sequence #;,%g,... of arrival
times, let Dy, Dy, ... denote the corresponding sequence of
departure times. Snmrlarly, let Dl,Dg, . be the departure
times for a deterministic PS server, with unit service rate, fed
by the same input stream. There holds

D;<D;, fori=1,... O

Proof: Clearly, we have Dy = ¢; + 1. In the context of
the PS server, the 1st customer will depart at time ¢ +1 only if
no other customers arrive until that time; otherwise, the server
will be slowed down, and the 1st customer will depart later
than #; + 1. It follows that

Di>ti+1=D;. 9)

It is well-known that the PS discipline is work-conserving; see
[21, pp. 353-354. That is, the unfinished work W (t) at time ¢
is the same for both the FIFO and the PS servers considered.
By definition of W (t), we have

Di=t; + W(ti-)+1, fori=1,... (10)

We now consider the ith arrival at the PS server, where i > 2.
If W(t;—) = 0, then reasoning similarly as in proving (9), it
follows that D; > ¢;4+1 = D;. Assume now that W(ti—) #0;
it is straightforward that customers depart from a deterministic
PS server in the order they arrive; hence, the ith customer may
depart only after an amount W(¢;—) + 1 of work has been
finished by the server. Therefore, we have

Di>t;+ W(t;=)+1=D;,

where we have also used (10). The proof of the lemma is now
complete. Q.E.D.
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Let there be two streams of events, one occurring at times
T1,T2,... and the other at times q,75,... If 7, < 7/ for
i = 1,..., then the latter stream of events will be said to
be a delayed version of the former. For example, as implied
by Lemma 6, for any fixed arrival stream, the departing stream
of a deterministic PS server is a delayed version of the one of
the corresponding FIFO server.

Lemma 7: Let there be a deterministic FIFO server with
unit service duration. Let D1, D, ... (tesp. D}, D},.. ) be the
sequence of departure times corresponding to a fixed sequence
tl,tz,.. (resp. t1,t5,...) of arrival times. If ¢; < ¢ for
2 = 1,..., then

D, <D}, fori=1,... O

Proof: There holds
Dy=t1+1and D; = max{D;_1,t;} + L fori=2,...;
similarly,
Di=t{+1and D} = max{D,_,,t;} + 1 fori=2,..

Using these facts and the assumption ¢; < ¢, fori =1, ..., the
result follows by a straightforward inductive argument. Q.E.D.
The result to be established next is based on Lemmas 6
and 7; generalizing this result will lead to the upper bound on
the delay induced by our greedy routing scheme. We consider
the queueing network G depicted in Fig. 2(a). This consists
of three deterministic FIFO servers with unit service duration,
denoted by S, S and S3. Customers completing service at S;
or S either depart from the network or they join the queue at
S3; routing decisions are Markovian. Obviously, G is a layered
network (see Section III-A). We define a sample path w of G
as the following collection of information:
(a) The external arrival times at servers Sy, Sy and Sj3.
(b) The routing decision taken by the sth customer upon
‘service completion at S; (resp. Sp) fori=1,...
Clearly, given a sample path w, network G evolves in a
deterministic fashion. The result to be proved is as follows.
Lemma 8: Let G be a network identical to G except for
the fact that PS service discipline applies for the servers of
G (instead of FIFO); see Fig. 2(b). For a particular sample
path w, let B(t) [resp. B(t)] denote the number of customers
departing from G (resp. G) during the interval [0, ]; there holds

B(t)> B(t), vt>o. ]

Proof: First, we consider a network G’ obtained from G
by changing the service discipline only at S; and Sy (from
FIFO to PS); see Fig. 2(c).

We define as the output stream of a server the stream of
customers completing service therein, including those that do
not depart from the network. Notice that server S; is not
affected at all by the presence of the other two servers; the
same statement applies for server Ss. Therefore, applying
Lemma 6, it is seen that the output stream of server S
in G’ is a delayed version of that corresponding to S; of
G. Recalling also that the routing decisions of customers
completing service are the same for networks G and G’, it
follows that the substream of customers departing from G’ at
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Fig. 2. (a) Network G. (b) Network G. (c) Network G'.

Sy is a delayed version of the corresponding substream in G.
Similar statements apply for the streams stemming from So.

Next, we consider the stream feeding Ss in G’; this stream
is a delayed version of that feeding Ss in G, because each
arrival at Sz of G’ corresponds to an arrival at S5 of G that
occurs no later. [Recall the aforementioned “comparison” of
the output streams of S (resp. S») in the two networks and the
coupling of the routing decisions.] Therefore, applying Lemma
7, the output stream from S3 of ¢’ is a delayed version of that
corresponding to S3 of G. The former output stream is delayed
further when the service discipline at S5 of G’ is changed from
FIFO to PS. This modification (which yields network G) does
not affect the streams of customers departing from the 1st
level. Therefore, for each of the servers of G, its departing
stream is a delayed version of that of the corresponding server
of G; this proves the result in question.

Its should be noted that customers joining S3 may get out of
order when changing the service discipline; thus, a particular
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customer may depart earlier from G than from G. Nevertheless,
this does not affect the validity of the lemma. Q.E.D.

Next, we generalize Lemma 8. In the context of the network
Q, a sample path w is defined as the collection of information
comprising all external arrival times and all routing decisions.
Notice that routing decisions at each “server” are identified
by the order they are taken, not by the identity of the packets
deciding; e.g., “the 1st packet to cross arc (e; @ eg,e;) will
advance to (e1,e; @ e3), the second such packet will depart,”
etc. Such an identification of the routing decisions is legitimate
due to the fact that routing in Q is Markovian. Similarly as in
Lemma 8, we denote as O the network obtained from Q after
changing the service discipline of all “servers” from FIFO to
PS.

Lemma 9: For a particular sample path w, let B(t)[resp.
B(t)] denote the number of packets that have departed from
Q (resp. Q) during the interval [0,¢]; there holds

B(t)> B(t), Vvt>o. O

Outline of the Proof: This proof is done by extending the
argument used in proving Lemma 8. In particular, one has to
replace the FIFO “servers” by PS ones, on a level-by-level
basis, starting from the 1st level and moving one level at a
time. At the jth step of this process, all streams stemming
from levels 1,...,5 — 1 remain the same, while all streams
stemming from levels j,...,d are delayed. The only subtle
point of this proof lies on the fact that packets may get out
of order at certain steps; see also the proof of Lemma 8.
Nevertheless, this creates no difficulty, due to the assumed
coupling of routing decisions. If one insists on tracing the
path followed by a particular packet [say the first to drrive
at “server” (0,e;)] it may occur that this changes at some
step of the process described above; this is of no importance,
because the “comparison” of the various streams still applies,
even though the streams may consist of different packets at
each step. Q.E.D.

Now. that we have established Lemma 9, we can easily prove
the following result: _

Proposition 10: Let N(t) [resp. N(t)] denote the grandom)
total number of packets present in network Q (resp. Q) at time

‘t. There holds

N(t) <x N(t), Vi>0. |

Proof: On a sample path basis, there holds N(t) =
B(t) — A(t), where A(t) [resp. B(t)] is the number of
arrivals at (resp. departures from) network Q during [0,¢]; a
similar relation holds for network Q Using Lemma 9, we
have N(t) < N(t) on a sample path basis. Relaxing the
coupling of the arrival processes and the routing decisions
in the two networks, we obtain the stochastic inequality in
question. -Q.E.D.
Notice that Proposition 10 (and Lemma 9) applies for all
layered networks with Markovian routing and deterministic
FIFO servers (possibly with different service times); in par-
ticular, if the FIFO discipline is changed to PS, then the
total number of customers in such a network increases in the
stochastic sense.
Next, we present the main result of this subsection.
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Proposition 11: The delay T of the greedy routing scheme
under analysis satisfies
dp

T< =, Vp <1, a
Proof: As established in [21, pp. 93-94], network Q
is of the product form, provided that it is stable. Since the
total arrival rate for each “server” equals p (as was the
case under the FIFO discipline), the steady-state probability
that a particular “server” of Q hosts n packets equals (1 —
p)p™. Therefore, the steady-state average total number N of
packets present in Q equals N = d2d—f- This together with
Proposition 10 implies that the average total number N of
packets present in network Q (in steady-state) satisfies

N<deP_

amn

Recall now the equivalence of network Q with the d-cube
under the greedy routing scheme analyzed. By Little’s law,
the average delay T induced by this scheme satisfies

N Np
This together with (11) proves the result. Q.E.D.

It should be noted that the steady-state average number of
packets N is guaranteed to exist. This is because, for p < 1,
network Q empties infinitely often for each sample path; this
also applies to network Q, because of Proposition 10 (which
holds on a sample-path basis as well). When Q empties it
regenerates and this property suffices for our purposes; the
technical details ate omitted.

Next, we comment on the number of packets stored per
hypercube node. The steady-state average number of packets
per node equals 7; this satisfies 2% < dy2. Thus, it is
seen that, for any ﬁxed p, the average size of the queue
built at each node is O(d). In fact, one can show that the
total number of packets within the d-cube is O(d2?¢) with
high probability. Indeed, by Proposition 10 and the product-
form property of Q, the random variable lim;_ ., N(¢) is
stochastically dominated (in steady-state) by the sum of d2¢
independent geometrically distributed random variables with
expected value TE—P. Using the Chernoff bound, it follows that,
for t — co, N(t) < d2%1£-(1 + ¢) with high probability, for
any ¢ > 0.

As a final result, we present a lower bound on the delay T
which is a little sharper than the lower bound of Proposition
2 (at most by a factor of 2).

Proposition 12: The delay T of the greedy routing scheme
under analysis satisfies

T>dp+p Vp < 1. O

_r_
2(1-p)’

Proof: Let N; denote the stationary average number of
packets in the queue for an arc of the jth dimension. Since
each dimension comprises 2¢ arcs, there holds

d
N =3 2N;.
Jj=1

(13)
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Each arc of the 1lst dimension is only fed by a Poisson
stream with rate p < 1; using the expression for the average
size of an M/D/1 queue (see [12]), it follows that

o2

M 2(1-p)

=p+ (14)

Recall now that, for j > 2, arc (x,z @ e;) has a total arrival
rate of p; since each packet stays at an arc for at least one
time unit, we have N; > p for j = 2,...,d. Combining this
with (13) and (14), we obtain

N>dvp+2i L.
=EPTE )
this together with (12) proves the result. Q.E.D.

Next, notice that, by Propositions 11 and 12, we have (for
fixed p)

NI’E

llm[(l - p)T] < dp.

It is an interesting open problem to close the gap in the
above inequality. It is conjectured that for all p € (0,1), the
upper bound is tight (within a factor independent of d). This
conjecture is based on the fact that, for p € (0, 1), each packet
P faces additional contention for each dimension it crosses;
that is, P contends with packets that had not entered the path of
P up to this point. On the other hand, it is easily seen that the
lower bound is tight for p = 1. Indeed, in this case, each packet
generated at node z is destined for node Z, where each entry of
the binary identity of z is the complement of the corresponding
entry of x; thus, by crossing the hypercube dimensions in
increasing index-order, packets generated at different nodes

follow disjoint paths; this easily gives that T = d + 5=2— =p)

IV. GREEDY ROUTING ON THE BUTTERFLY NETWORK

In this section, we extend the results derived for the hyper-
cube to the butterfly network. First, we briefly describe the
basic properties of this network.

A. The Butterfly Network

The d-dimensional butterfly is an “unfolded” version of the
d-cube. It consists of (d + 1)2¢ nodes, organized in d + 1
levels, with each level having 2¢ nodes. In particular, for
j € {1,...,d + 1}, the nodes of the jth level are denoted
by [z;j] where z € {0,...,2¢ — 1}. For j # d + 1, each
node [z; 7] is connected to two nodes, namely [z;j + 1] and
[z®ej; 7 +1]; see Fig. 3(a), where the 2-butterfly is depicted.
Therefore, there exist two types of arcs:
a) Arcs of the form [z; 5] — [z; j+ 1], which are referred to
as straight arcs; for notational convenience, arc [z; j] —
[z;7 + 1] will be denoted by (z;7;s).

b) Arcs of the form [z;j] — [z @ e;;5 + 1], which are
referred to as vertical arcs; for notational convenience,
arc [z;j] — [z @ e;; 7 + 1] will be denoted by (z; j; v).
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Fig. 3. (a) The two-dimensional butterfly. (b) The equivalent network R for
the three-dimensional butterfly.

We view the butterfly as a switching network: packets are
generated at the 1st level and destined for the (d + 1)st level.
It is easily seen that for each origin-destination pair [z; 1] and
[2;d + 1] there corresponds a unique path, which consists of
d arcs. In particular, let 41, ..., be the entries in which the
binary identities of « and z differ, with i; < i3 < -++ < 4.
Then, the path from [x;1] to [2;d + 1] contains exactly &
vertical arcs, namely

(#3111 V), (T @ e1;92;v), ..., (T D er - D eqy_,;ik3V);

the remaining d — k arcs of the path are straight arcs. Notice
that these k vertical arcs correspond to the arcs traversed by a
packet travelling from z to z in the d-cube, when dimensions
are crossed in increasing index-order.
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B. Preliminary Results

The dynamic routing problem to be analyzed is essentially
the same as that in the context of the d-cube. That is, each node
of the 1st level independently generates packets according to a
Poisson process with rate \; all packets have unit transmission
time. Each packet has a single destination in the (d + 1)st
level; this destination is selected randomly, according to the
following rule:

Pr|[a packet generated by node [z;1] is destined
for node [z;d + 1]] = pH®*)(1 — p)d-H(=2),

where p € [0,1]; recall that H(z,z) denotes the Hamming
distance of the binary representations of z and z. Again,
different packets make their selections independently of each
other. Notice that, for p = % the destination distribution is
uniform over the nodes of the (d+1)st level; that is, each such
node is equally likely to be chosen as a packet’s destination.

First, we note that a result analogous to Lemma 1 applies;
however, in the present context, B; corresponds to the event
that a packet has to traverse a vertical arc stemming from the
Jjth level. Furthermore, notice that arcs (z;1;s) and (z;1;v)
may only be traversed by packets generated by node z.
Therefore, packets to traverse arc (z;1;v) form a Poisson
stream with rate Ap; similarly, packets to traverse arc (z;1;s)
form a Poisson stream with rate A(1 — p). Recalling that
all packets have unit transmission time, it follows that the
inequalities Ap < 1 and A(1 — p) < 1 are both necessary
conditions for stability of any routing scheme. Combining
these conditions, we obtain the following result: Stability may
prevail only if

pE Amax{p,1-p} < 1. (15)

Notice that, for given A, the maximum value of p occurs for
p=3. For p > 1, the vertical arcs become the bottleneck of
the system; for p < %, the straight arcs become the bottleneck
of the system (cf. Lemma 14 below).
Next, we present a universal lower bound on the average
delay T per packet.
Proposition 13: Under any routing scheme, there holds
Ap A(1-p)
Fitrr o O P aa-p ©
Proof: When no idling occurs, the value W, (resp. W)
of the average delay induced by arc (z;1;v) [resp. (z;1;s)]
equals that of an M/D/1 queue with arrival rate Ap [resp.
A(1 — p)] and unit service duration; when idling occurs, these
delay values are larger. Thus, we have [12]
Ap
2(1 - Ap)
AMl-p)
21-21-p)]
Note that after a packet arrives at the second level, it requires
at least d — 1 more time units until it reaches its destination;
thus, it is seen that, under any routing scheme, the average
delay T per packet satisfies

T>d-14+pW,+(1-p)W.,.
This together with (16) proves the result.

W,>1+ and

We>1+ (16)

QED.
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Equation (15) as well as Proposition 13 demonstrate the
limitations applying to the performance of any routing scheme.
The scheme to be analyzed below is the simplest possible:

Packets are routed in a greedy fashion; that is, each packet
advances at its respective path as fast as possible. When several
packets contend for the same arc, then priority is allotted on
a FIFO basis.

In fact, given that there is only one path per origin-
destination pair, greedy routing is the most natural scheme
arising in the context of the butterfly. It will be shown in
Section IV-C that this simple scheme is very efficient.

C. Performance Analysis of Greedy Routing

Similarly with the hypercube (see § 3.1), under greedy
routing, the butterfly may be viewed as a queueing network
R with d2%+1 deterministic FIFO “servers”; each of them has
unit service duration and corresponds to an arc. Furthermore,
R is acyclic and routing is Markovian. In Fig. 3(b), we present
the network R corresponding to the two-dimensional butterfly.

Next, we investigate the stability properties of our greedy
routing scheme; for this purpose, we need the following simple
result, whose proof is omitted.

Lemma 14: The total arrival rate at each arc (z; 7;s) equals
6s = A(1 — p). Also, the total arrival rate at each arc (z; j;v)
equals 6, = Ap. O

Similarly with Section III-B, the sufficient condition for
stability of the equivalent network R (and of the greedy
routing scheme) is obtained by applying the result of [21, p.
246]; this condition is as follows:

Proposition 15: Greedy routing on the butterfly is stable if

Ap<1 and AMl-p) <1,
or equivalently pd-—-ef)\max{p, 1-p}< 1. a
In light of the necessary condition for stability in (15), it is
seen that greedy routing in the butterfly has optimal stability
properties. We now establish the upper bound for the average
delay T per packet induced by greedy routing.
Proposition 16: There holds

dp d(1 - p)
T< .
_1-—/\p+1—/\(1—p)’ Vp<1 a
Proof: By Little’s law, we have
N
T=—
S an

where IV is the average total number of packets present in the
equivalent network R in steady-state. We now consider the
network R, which is identical to R except for the fact that
all of its “servers” operate under a PS discipline; let N be
the corresponding average total number of packets. Since R
is a layered network with Markovian routing, we can apply
Proposition 10; see also the comment on the generality of that
result, following its proof. Therefore, we have
N<N. (18)

In the stable case (ie., for p < 1), network R is of
the product form [21, pp. 93-94]. Recalling also Lemma
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14, it follows that the stationary probability that a particular
“server” (z; f;v) [resp. (z;;s)] of R hosts n packets equals
(1 = Ap)(Ap)™ (resp. [1 — A(1 — p)][AM(1 — p)]™). Since there
exist d2¢ “servers” of each of the two types, it follows that

Ap Al -p)
N = d2? 4 .
d2 1_/\10+dz T =)

This together with (17) and (18) proves the result. Q.ED.

Next, we comment on the number of packets stored per
node of the butterfly; first, notice that only the nodes of
levels 1,...,d have to store packets. An overall estimate of
the expected number of packets per node is provided by the
quantity %;, which satisfies

N Ap

N . AMl=p) def
d2¢d = 1-)p

1-X1-p) ¥

+

This estimate is quite favorable because it suggests that the
“overall” average queue-size per node is O(1) for any fixed
p. However, it is not guaranteed that this bound holds for
the average number of packets stored by the nodes of each
individual level. It is conjectured that this is actually the case;
the following result provides strong evidence for this claim:
for any j € {1,...,d}, the total number of packets stored
by the nodes of levels 1,...,j does not exceed jqup(l +e€)
with high probability, for any € > 0. This result may be proved
by applying stochastic domination between the first 5 levels of
networks R and R, and using the product-form property of R.

Using Propositions 13 and 16 and the definition of p it
follows that

3 max{p, 1=} < limf(1 = p)T] < dmax{p, 1 - .
It is an interesting open problem to close the gap in the above
inequality. As in the case of hypercubes (see the end of § 3.3),
it is conjectured that the upper bound is tight for all p € (0,1);
for p = 0 and for p = 1, the lower bound is tight, because
packets originating at different nodes follow disjoint paths.

V. CONCLUDING REMARKS

In this paper, we analyzed a problem where the nodes of the
hypercube network generate packets at random time instants,
according to independent Poisson processes. Each packet
has unit transmission time and is destined for a randomly
selected node; in a special case, the destination distribution
is uniform. We considered a simple greedy routing scheme,
where each packet crosses the hypercube dimensions required
in increasing index-order. We proved that this scheme has
optimal stability properties and, when stable, it induces an
average delay T' = ©O(d) per packet; the bounds on the
average delay were given in simple closed-form expressions.
Our analysis was based on a new approach, which relates
the behavior of the hypercube (under the routing scheme
considered) to that of a queueing network with Markovian
routing. Using the same idea, we extended the results to the
butterfly network, thus proving the efficiency of greedy routing
in this context.
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It would be of interest to analyze the problem under an
arbitrary destination distribution. For this case, it may be
profitable to “mix” the packets by first sending each of them to
arandom intermediate node, as is.done for the permutation task
in [18] and [19]. Such a “mixing” may result in improved delay
properties under medium traffic, at the expense of reducing the
maximum traffic that may be sustained by the system.

In an even more general version of the problem analyzed,
it may be assumed that each packet is destined for a different
subset of nodes; it may also be assumed that the packets
received by a node influence the packet-generating process
of this node as well as the lengths and destinations of the new
packets. This situation arises in the distributed execution of
iterative algorithms. Analyzing this general problem seems to
be a rather challenging and interesting direction for further
research.
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