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An Analysis of Temporal-Difference Learning
with Function Approximation

John N. Tsitsiklis,Member, IEEE and Benjamin Van Roy

Abstract—We discuss the temporal-difference learning algo- Parameters of the function approximator are updated upon
rithm, as applied to approximating the cost-to-go function of each observation of a state transition and the associated cost.
an infinite-horizon discounted Markov chain. The algorithm we The objective is to improve approximations of long-term future

analyze updates parameters of a linear function approximator on- t d tate t it b d. Th
line during a single endless trajectory of an irreducible aperiodic cost as more and more sfate transitions are observed. e

Markov chain with a finite or infinite state space. We present a trajectory of states and costs can be generated either by a
proof of convergence (with probability one), a characterization of physical system or a simulated model. In either case, we view
the limit of convergence, and a bound on the resulting approxi- the system as a Markov chain. Adopting terminology from
mation error. Furthermore, our analysis is based on a new line dynamic programming, we will refer to the function mapping

of reasoning that provides new intuition about the dynamics of .
temporal-difference learning. states of the Markov chain to expected long-term cost as the

In addition to proving new and stronger positive results than Ccost-to-go function.
those previously available, we identify the significance of on-  Though temporal-difference learning is simple and elegant,

line updating and potential hazards associated with the use of 4 rigorous analysis of its behavior requires significant sophisti-

nonlinear function approximators. First, we prove that diver- : . "
gence may occur when updates are not based on trajectories “21OM- Several previous papers have presented positive results

of the Markov chain. This fact reconciles positive and negative @bout the algorithm. These include [2]-{7], all of which only
results that have been discussed in the literature, regarding the deal with cases where the number of tunable parameters is the
soundness of temporal-difference learning. Second, we present ansame as the cardinality of the state space. Such cases are not
e e e v pesemes o o oy PaCUCal when ate spaces are lage o e, The more
approximator. 9 P general case, involving the use of function approximation,
_ _ _ ) is addressed by results in [8]-[12]. The latter three estab-
_Index Terms—Dynamic programming, function approxima-  jishy convergence with probability one. However, their results
tion, Markov chains, neuro-dynamic programming, reinforce- L . .
ment learning, temporal-difference learning. only gpply to a very limited class Qf functloq approximators
and involve variants of a constrained version of temporal-
difference learning, known as TD(0). Dayan [8] establishes
|. INTRODUCTION convergence in the mean for the general class of linear function

HE PROBLEM of predicting the expected long-term@pproximators, i.e., function approximators involving linear
future cost (or reward) of a stochastic dynamic systeg®mbinations of fixed basis functions, where the weights of
manifests itself in both time-series prediction and control. Afie basis functions are tunable parameters. However, this form
example in time-series prediction is that of estimating the net convergence is rather weak, and the analysis used in the
present value of a corporation as a discounted sum of its futip@per does not directly lead to approximation error bounds
cash flows, based on the current state of its operations.aninterpretable characterizations of the limit of convergence.
control, the ability to predict long-term future cost as a functiofchapire and Warmuth [9] carry out a (nonprobabilistic) worst
of state enables the ranking of alternative states in orderaase analysis of an algorithm similar to temporal-difference
guide decision-making. Indeed, such predictions constitute tle@rning. Fewer assumptions are required by their analysis, but
cost-to-go functionthat is central to dynamic programmingthe end results do not imply convergence and establish error
and optimal control [1]. bounds that are weak relative to those that can be deduced in
Temporal-difference learning, originally proposed by Suttotine standard probabilistic framework.
[2], is a method for approximating long-term future cost In addition to the positive results, counterexamples to vari-
as a function of current state. The algorithm is recursivants of the algorithm have been provided in several papers;
efficient, and simple to implement. A function approximatothese include [10], [11], [13], and [14]. As suggested by Sutton
is used to approximate the mapping from state to future coftt5], the key feature that distinguishes these negative results
from their positive counterparts is that the variants of temporal-
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to the steady-state probabilities, while divergence is possil#dso, Pineda [18] derived a stable differential equation for
when states are sampled from distributions independent tbé “mean field” of temporal-difference learning, in the case
the dynamics of the Markov chain of interest. Given that thef finite-state absorbing Markov chains. He also suggested
steady-state probabilities are usually unknown, the only viakdeconvergence proof based on a weighted maximum norm
approach to generating the required samples is to perform eentraction property, which, however, is not satisfied in the
line sampling. By this we mean that the samples should congisesence of function approximation. (The proof was corrected
of an actual sequence of visited states obtained either thro@jter the paper became available.)
simulation of a Markov chain or observation of a physical This paper is organized as follows. In Section Il, we provide
system. a precise definition of the algorithm that we will be studying.
In addition to the analysis of temporal-difference learnin§ections IlI-IX deal only with the use of linear function
in conjunction with linear function approximators, we provid@pproximators. In Section lll, we recast temporal-difference
an example demonstrating that the algorithm may diverd@arning in a way that sheds light into its mathematical
when a nonlinear function approximator is employed. Thefructure. Section IV contains our main convergence result
example should be viewed as a warning rather than a bantggether with our assumptions. We develop some mathemati-
all nonlinear function approximators. In particular, the functiof@l machinery in Section V, which captures the fundamental
approximator used in the example is somewhat contrived, aifi§as involved in the analysis. Section VI presents a proof
it is not clear whether or not divergence can occur with specifié the convergence result, which consists primarily of the
classes of nonlinear function approximators such as neuf@hnicalities required to integrate the machinery supplied
networks. by Section V. Our analysis is valid for general state spaces,
In this paper, we focus on the application of temporafUbject to certain technical assumptions. In Section VI, we
difference learning to infinite-horizon discounted Marko$hoW that these technical assumptions are automatically valid
chains with finite or infinite state spaces. Though absorbifgf the case of irreducible aperiodic finite-state Markov chains.
(and typically finite state) Markov chains have been tHa S'ectlon VIII,vye argue that the c;lass pflnflnlte—state Markov
dominant setting for past analyses, we find the infinite-horizGhains that satisfy our assumptions is broad enough to be
framework to be the most natural and elegant setting f8F practical mterest._ Section I_X contaln_s our converse con-
temporal-difference learning. Furthermore, the ideas used Yfprgence resu[t, which establishes the |r.nporta.nce of on-.lme
our analysis can be applied to the simpler context of absorbifig"Ping. Section X departs from the setting of linear function

Markov chains. Though this extension is omitted from thid pr.oximators,. presenting a divergent exa”?p'e involving a
paper, it can be found in [16], which also contains a mo'réonlmear function approximator. Finally, Section XI contains

accessible version of the results in this paper for the case /M€ concluding remarks.

finite state spaces.
The contributions in this paper are as follows. I

1) Convergence (with probability one) is established for In this section, we define precisely the nature of temporal-

the case where approximations are generated by line . ; S
T : . . _difference learning, as applied to approximation of the cost-to-
combinations of (possibly unbounded) basis functions . L . . .
L L . o function for an infinite-horizon discounted Markov chain.
over a (possibly infinite) state space. This is the first su

result that handles the case of “compact representatio hile the method as well as our subsequent results are
” . : np P ! rlﬁ)plicable to Markov chains with a fairly general state space,
of the cost-to-go function, in which there are fewe

. DEFINITION OF TEMPORAL-DIFFERENCE LEARNING

been estab_hshed even for the case of a lookup taj ms of an (infinite) transition probability matrix as opposed
repre.se.ntauon.) , i _to a transition probability kernel. The extension to the case of
2) The limit of convergence is characterized as the solutiqRe o state spaces requires the translation of the matrix no-
to a set of interpretable linear equations, and a boundio, into operator notation, but is otherwise straightforward.
placed on the resulting approximation error. __ We consider an irreducible aperiodic Markov chain whose
3) Our methodology leads to an interpretation of the limifiaies jie in a finite or countably infinite spaseBy indexing
of convergence and hence new intuition on temporghe states with positive integers, we can view the state space as
difference Igarning_ z_:md the dynam_ics of weight updatir_lg(.Ie setS = {1, ---, n}, wheren is possibly infinite. Note that
4) We reconcile positive and negative results concemiRge positive integers only serve as indexes here. In particular,
temporal-difference learning by proving a theorem thaach state might actually correspond to some other entity such
identifies the importance of on-line sampling. as a vector of real numbers describing the state of a physical
5) We provide an example demonstrating the possibility @fstem. In such a case, the actual state space would comprise
divergence when temporal-difference learning is used §3 5 countable subset of a Euclidean space.
conjunction with a nonlinear function approximator. ~ The sequence of states visited by the Markov chain is
At about the same time that this paper was initially submitlenoted by{:; | ¢ = 0,1, ---}. The dynamics of the
ted, Gurvits [17] independently established convergence wittarkov chain are described by a (finite or infinite) transition
probability one in the context of absorbing Markov chaingrobability matrix P whose(i, j)th entry, denoted by;;, is
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the probability that,,; = j given that:, = ¢. For any pair where¢ is viewed as anS| x K matrix whosekth column
(1, 7), we are given a scala(i, j) that represents the costis equal to¢y; that is
of a transition fromi to 5. (Extensions to the case where the -
one-stage costs are random is discussed in our conclusions o — | |
section.) Finally, we letx € (0, 1) be a discount factor. =\ oK
The cost-to-go function/*: S +— R associated with this | |
Markov chain is defined by — ¢'(1) -

J*(4) SE iat!}(it, it41) [ o =1 = #(n) -

t=0 Note that the gradient vector here is given by

assuming that this expectation is well-defined. It is often Vj(i r) = (i)
convenient to view/* as a vector instead of a function (its ’
dimension is infinite ifS is infinite). and we have
We consider approximations df: S — R using a function

J: SxRE — R, which we refer to as a function approximator.

To approximate the cost-to-go f’unction one usually tries Wherevj(r) is the Jacobian matrix whosth column is equal
choose a parameter vectore RE so as to minimize some to Vj(i ).
error metric between the function¥-, ») and J*(-).

Vi(r)=9o

S h b ¢ q In the case of linear function approximators, a more con-
uppose that we observe a sequence of statgenerated o ian representation of TRY is obtained by defining a

e}ccordmg to the transition probability matrik and that at sequence o€ligibility vectorsz, (of dimensionk) by
time ¢ the parameter vector has been set to some value

r:+. We define the temporal differenek corresponding to the
transition fromé, to i;44 by Zt

(XN *V I (i, 70)

M-

= |l
<

dt = g(it, it+1) + C)éj(it+1, 7’t) et j(it, 7’t).

(@X) " p(ir).

=~
Il
<

Then, fort = 0,1, .--, the temporal-difference learning

method updates; according to the formula With this new notation, the TD() updates are given by
t

Tt41 =Tt + 'Ytdt Z(C)é)\)t_ij(Lk, 7’t)

k=0 and the eligibility vectors can be updated according to

Tep1 =Tt + Yedr 2

wherery is initialized to some arbitrary vectoy; is a sequence ze41 = oAz + Plir41)

of scalar step sizes, is a parameter if0), 1], and the gradient

V.J(i, r) is the vector of partial derivatives with respect tdnitialized with z_, = 0.

the components of. Since temporal-difference learning is In the next few sections, we focus on temporal-difference

actually a continuum of algorithms, parameterized)pyit is learning as used with linear function approximators. Only

often referred to as TD\). in Section X do we return to the more general context of
In the special case of linear function approximators, thHgonlinear function approximators.

function J takes the form

K [ll. UNDERSTANDING TEMPORAL-DIFFERENCE L EARNING
J(@i, ) = Zr(k)d)k(i). Temporal-difference learning originated in the field of rein-
k=1 forcement learning. A view commonly adopted in the original
o ] , setting is that the algorithm involves “looking back in time
Here,r = (r(1), ---, r(K)) is the parameter vector and eacl correcting previous predictions.” In this context, the

¢ 1S a fixed scalar function defined on the state spéce _. . ..

. . . : eligibility vector keeps track of how the parameter vector
The functions¢; can be viewed as basis functions (or a8 0uld be adiusted in order to appropriatel modify prior
vectors of dimensiorS|), while eachr(k) can be viewed ) bprop y b

as the associated weight. predictions when a tempor_al-diffe.ren.ce is observeql._ln this
It is convenient to define a vector-valued functigns +— Paper, we talf,e a dlffgrent view Wh"f\h involves examining the
RE by leting¢'(i) = (¢1 (i), -+ » dic (). With this notation, steady—state behavior of the algo_rlthm and arguing that this
the approximation can also be written in the form charactenze; the Iong—'Ferm eyolutlon qf the param.eter' vector.
In the remainder of this section, we introduce this view of

j(i, ) =7 ¢(d) TD_()\) and provide an overvie\_/v of the ar_1a|ysis that it Ieao_ls

to, in the context of linear function approximators. Our goal is

or to convey some intuition about how the algorithm works, and
in this spirit we maintain the discussion at an informal level,

j(r) = or omitting technical assumptions and other details required to
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formally prove the statements we make. These technicalitids The TDA) Operator
will be addressed in subsequent sections, where formal proofsy streamline our analysis of TD) we introduce an oper-

are presented. ator that is useful in characterizing the algorithm’s dynamics.
This operator, which we will refer to as the TE)(operator,

A. Inner Product Space Concepts and Notation is indexed by a parametex € [0, 1] and is denoted by
We begin by introducing some notation that will make ouf Vi La(S. D) = La(S, D). Itis defined by

discussion here, as well as the analysis later in the paper, 0

more concise. Letr(1), -+, w(n) denote the steady-state (I™J)(H)=(1—X) > A™

probabilities for the process. We assume that(z) > 0 for m=0

alli € S. We define am x n diagonal matrixD with diagonal Sy . o

entriesr(1), - - -, m(n). It is easy to see thatz, y)p = =’ Dy B ;a 9lis, de41) + @S (i) | LO_L]

satisfies the requirements for an inner product. We denote -

the norm on the associated inner product spacéf blf, = for A <1, and

V{-, ¥p and the set of vector$J € R | ||J]lp < oo} oo

by Ly(S, D). As we will later prove,J* lies in Ly(S, D), (THJ)@) = E Zatg(it, iry1) | io = L] =J*(4)

and it is in this inner product space that the approximations t=0

J(_rt) = &r, eyolve. Regarding notation, we will also _keegor A = 1, so thatlimy; (TN = (TDI)() (under
using || - |.|’.W'thOUt a subscript, to denote the Eughdeag me technical conditions). The fact tHatY mapsLa(S, D)
norm on finite-dimensional vectors or the Euchdean-mducg 0 L(S, D) will be established in a later secti’on To
norm on finite matrices. (That is, for any mattik we have interpret the TDX) operator in a meaningful manner, note

Al = ma z= || Az][.) . o that for eachm, the term
We will assume that each basis functigp is an element

of Ly(S, D) so that{®r|r € RE} C Ly(S, D). For any pair
of functionsJ, J € Ly(S, D), we say that/ is D-orthogonal
to J (denoted byJ L pJ) if and only if (J, J)p = 0. For any
J € Ly(S, D), there exists a unique elemeite {®r*|r ¢ Is the expected cost to be incurred overtransitions plus an
RE} minimizing ||J — J||p over {®r*|r € RK}. This J is approximation to the remaining cost to be incurred, based on
referred to as thprojectionof .J on {®r|r € R} with respect J. This sum is sometimes called thex“stage truncated cost-

to (-, -)p. We define a “projection matrix” (more precisely,to-go.” Intuitively, if J is an approximation to the cost-to-go
projection operator)l that generates suchJawhen applied to function, them-stage truncated cost-to-go can be viewed as an

E

m
Z atg(ita it+1) + anl+lj(inl+l) | io = Z]
t=0

J. Assuming that the basis functioss, - - -, ¢ are linearly improved approximation. Sinc&M J is a weighted average
independent, the projection matrix is given by over them-stage truncated cost-to-go valug¥» J can also
be viewed as an improved approximation . fo. In fact, we
II = &(¢'DP)"1a'D. (1) Wil prove later thatI™ is a contraction orl»(S, D), whose

fixed point isJ*. Hence,I'™ J is always closer to/* than.J

(Note thatd’ D® is a K x K matrix.) For anyJ € L,(S, D), is, in the sense of the norf- | p.
we then have ] )
C. Dynamics of the Algorithm
IIJ =arg  min Il = J|lp. To clarify the fundamental structure of TE), we construct
Je{@rlreR®} a processX; = (i, t141, ). It is easy to see thak, is a
Markov process. In particulat,; andi;; are deterministic
FurthermoreJ = ILJ is the unique element di®r*|r € RE}  functions of X, and the distribution of,,, only depends on
such that(J — J)Lp¢y for all k € {1,-.-, K}. In other 4,,,. Note that at each timg the random vectoK, together
words, the difference betweehand.J is D-orthogonal to the with the current parameter vectey, provides all necessary

space spanned by the basis functions. information for computing-1. By defining a functiors with
The projectionIlJ* is a natural approximation to/*, ) L i =
given the fixed set of basis functions. In particul®lr/* is s(ry X) = (94, 7) + @t (G, r) = J (1, 7))2

the solution to the weighted linear least-squares problem here ¥ = (i, j, 2), we can rewrite the TDY) algorithm as
minimizing e
Tt-|—l =T =+ ’YtS(Tt, Xt)
T3 — J(r )2 , ,
ZW(L)(J (&) = J(r, 0) As we will show later, for any,, s(r, X;) has a well-defined
s “steady-state” expectation, which we denote By[s(r, X3)].

Intuitively, onceX, reaches steady state, the Tpalgorithm,

W'th rgspect tor. Note that the error ass_,ouated with gach _sta an “average” sense, behaves like the following deterministic
is weighed by the frequency with which the state is visite 'Igorithm'
| :

(If the state space were continuous instead of countable, t
sum would be replaced by an integral.) Fra1 =Tr + - Eo[s(Tr, X1)]
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Under some technical assumptions, the convergence of thish respect tor. If step sizes are appropriately chosérr;
deterministic algorithm implies convergence of TP(and will converge tolly.J*, wherell, is the projection matrix
both algorithms share the same limit of convergence. Our studith respect to the inner produét -)o. On the other hand, if
centers on an analysis of this deterministic algorithm. we replaceD with @ in the TD(\) algorithm for A < 1, the

It turns out that algorithm might not converge at all' We will formally illustrate

i , . i this phenomenon in Section IX.
Eols(r, X)) = &' DTV (@r) — @7) To get a better grasp on the issues involved here, let us

and thus the deterministic algorithm takes the form consider the following variant of the algorithm:
Topt = T + 1@ DTV (DF,) — OF,). Tipt =T+ nVIE)QETNV(@r) — o7,).  (3)

As a side note, observe that the execution of this determinishi¢té that by lettingQ) = D, we recover the deterministic
algorithm would require knowledge of transition probabilitie¥@riant of TD@). Each iteration given by (3) can be thought
and the transition costs between all pairs of states, and wififtS & steepest descent iteration on an error function given by
the state space is large or infinite, this is not feasible. Indeed, P N\ s Fir )2

stochastic approximation algorithms like TI)(are moti- ZQ(L)((T( )((I)”))(L) —Jr )"

vated by the need to alleviate such stringent information and

computational requirements. We introduce the determinisithe variable being optimized is, while r, remains fixed.)
algorithm solely for conceptual purposes and not as a feasiblete that the minimum of this (time-varying) error function

€S

alternative for practical use. at imet is given byllo TV (®7,). Hence, letting/, = o7,
To gain some additional insight about the evolutionFgf We might think OfHQT(’\)(Jt) as a “target vector,” given a
we rewrite the deterministic algorithm in the form current vector/;. We can define an algorithm of the form
Tea1 =T+ VI F)DIT N (PT,) — 071). (2) i1 = LUgTW () @)
Note that in the case of = 1, this becomes which moves directly to the target, given a current vector
- ) Intuitively, the iteration of (3) can be thought of as an
Tep1 =Tt = 5 V[IJ7 = @7l incremental form of (4). Hence, one might expect the two

algorithms to have similar convergence properties. In fact,
mgey do. Concerning convergence of the algorithm given by
(4), note that if7™ is a contraction of the norri - ||, then
AT — Flr )2 the compositionllo 7 V(-) is also a contraction of the norm
ZW(L)(J (1) = J(r, 1)) . - . X
I-lo, since the projectiofl is a nonexpansion of that norm.
However, there is no reason to believe that the projection
with respect tor. It is easy to show that if the step sizes arg[, will be a nonexpansion of the nori- ||p if D # Q.
appropriately choserp7, will converge tollJ*. In this caseloT™V(-) may not be a contraction and might
In the case ofA < 1, we can think of each iteration of theeyen be an expansion. Hence, convergence guarantees for the
deterministic algorithm as that of a steepest descent methggorithms of (3) and (4) rely on a relationship betwegh)
for minimizing andIL. This idea captures the issue that arises with variants
. g = of TD()\) that sample states with frequencies independent of
ZW(Z)((T(A)(@}))(Z) = J(r, 9 the d;n;mics of tr?e Markov procesg. In particularr,J the state
sampling frequencies are reflected in the ma€ixwhile the
with respect to-, given a fixed,. Note, however, that the errordynamics of the Markov process mak&* a contraction
function changes from one time step to the next, and therefauith respect to|| - ||p. When states are sampled on-line, we
it is not a true steepest descent method. Nevertheless, if M/e() = D, while there is no such promise when states are
think of 7(»)(®7,) as an approximation td*, the algorithm sampled by an independent mechanism.
makes some intuitive sense. However, some subtleties argor another perspective on TB( note that the determinis-
involved here. tic variant, as given by (2), can be rewritten in the form
To illustrate this, consider a probability distributiayf-)
over the state-spacé that is different from the steady-state Tiyr =Tt + 7 (AT + D)
distribution 7 (-). Define a diagonal matrix} with diagonal
entries ¢(1), ---, ¢(n). If we replace the matrixD in the
deterministic variant of TD(1) with the matrié¢, we obtain

which is a steepest descent iteration for the problem
minimizing

€S

€S

for some matrix4 and vectorb. As we will show later, the
contraction property of ™ and the fact thall is a projection
with respect to the same norm imply that the matrixis

= = &V J* — &F,||2 negative definite. From this fact, it is easy to see that the
Tt41 = T2 I 7t||Q . . . . . .
2 iteration converges, given appropriate step-size constraints.
which is a steepest descent method that minimizes However, it is difficult to draw an intuitive understanding
5 from the matrix A, as we did for the operator™™ and II.
Z q(@)(J* (i) = J(r, 1))? Nevertheless, for simplicity of proof, we use the representation

ics in terms of A and b when we establish that TRJ has the
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properties required for application of the available machinery2) Any ¢ > 1, there exists a constapf, such that for all
from stochastic approximation. This machinery is what allows g, ¢

us to deduce convergence of the actual (stochastic) algorithm o )

from that of the deterministic counterpart. BLf(1e)lio] < piq f*(i0)-

Implicit in the statement of this assumption is that certain
IV. CONVERGENCE RESULT expectations are finite. It will be seen later that their finiteness
In this section we present the main result of this papd8, @ consequence of earlier assumptions.
which establishes convergence and characterizes the limiur final assumption places fairly standard constraints on
of convergence of temporal-difference learning, when linelfte sequence of step sizes.
function approximators are employed. We begin by stating theAssumption 4:The step sizes;, are positive, nonincreas-
required assumptions. ing, and predetermined (chosen prior to execution of the
The first assumption places constraints on the underlyigdgorithm). Furthermore, they satisfy
infinite-horizon discounted Markov chain. Essentially, we as- 00
sume that the Markov chain is irreducible and aperiodic and Z% =00
that the steady-state variance of transition costs is finite. The t=0
formal statement follows.
Assumption 1:

1) The Markov chair, is irreducible and aperiodic. Fur- Z,th < 0.
thermore, there is a unique distributianthat satisfies pard

and

7P =z The main result of this paper follows.

Theorem 1: Under Assumptions 1-4, the following hold.

1) The cost-to-go functio™ is in Ly(S, D).

2) ForanyA € [0, 1], the TDQ\) algorithm with linear func-
tion approximators, as defined in Section Il, converges
with probability one.

Eolg(is, ir41)] < 00. 3) The limit of convergence* is the unigue solution of

) . . the equation
Our second assumption ensures that the basis functions used

with #(¢) > 0 for all 4; here,r is a finite or infinite

vector, depending on the cardinality ¢f Let Eo-]

stand for expectation with respect to this distribution.
2) Transition costgy(is, 4:41) satisfy

for approximation are linearly independent and do not grow TN (dr*) = &,
too fast. . i
Assumption 2: 4) Furthermorey* satisfie$
1) The matrix® has full column rank; that is, the basis X X 1 - " "
. . . = < — .
functions {¢. | k = 1, ---, K} are linearly indepen- [@r* = J*lp < 5 —~IILLJ" = J*[lp

dent.

. . e In order to place Theorem 1 in perspective, let us discuss
2) For everyk, the basis function);, satisfies P persp

its relation to available results. If one leté:) be theith unit
Eo[p3(ir)] < oc. vector for eachi, and if we assume that is finite, we are
dealing with a lookup table representation of the cost-to-go
The next assumption essentially requires that the Mark@ynction. In that case, we recover a result similar to those in
chain has a certain “degree of stability.” As will be showis] (actually, that paper dealt with the on-line TR (algorithm
in Section VI, this assumption is always satisfied when thgly for Markov chains involving a termination state). With
state-spacé is finite. It is also satisfied in many situations ofy |ookup table representation, the operafdr® is easily
praCtical interest when the s8tis infinite. Further discussion shown to be a maximum norm Contraction, the projection
can be found in Section VII. operatorll is simply the identity matrix, and general results
Assumption 3:There exists a functiorf: S — R* (the on stochastic approximation methods based on maximum
range is the set of nonnegative reals) satisfying the followingrm contractions [4], [5] become applicable. However, once
requirements. function approximation is introduced, the compositidfi*
1) For allig andm > 0 need not be a maximum norm contraction, and this approach
00 does not extend.
Z |E[p(ir) (irim)|io] — Eo[p(it) Giewm)]|| < f(io) Closer to our results is the work of Dayan [8] who con-
=0 sidered TDAQ) for the case of linear function approximators

and and established a weak form of convergence (convergence

) Lt ha_s been brought to our attention by V. Papavassiliou that this bound
Z ||E[¢(i‘r)g(i‘r+ma i‘r+nl+l)|i0] can be improved to
=0

1 -
[ &r* = 7*|Ip < -
VI —a)(1+a—2Xa)

[EANATTPS

- EO[d)(it)g(it—l—ma it-l—rn-{—l)]” < f(Lo)
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in the mean). Finally, the work of Dayan and Sejnowski [6]»(S, D), and

contains a sketch of a proof of convergence with probability 00
one. However, it is restricted to the case where the vectors Jr = Z(ap)tg
¢(i) are linearly independent, which is essentially equivalent =0

to having a lookup table representation. (A more formal proof, Proof: If the Markov chain starts in steady state, it
for this restricted case, has been developed in [7].) Some of the
remains in steady state, and therefore

ideas in our method of proof originate in the work of Sutton
[2] and Dayan [8]. Our analysis also leads to an interpretation X 1 0
of the limit of convergence. In particular, Theorem 1 offers an Eo Z a’g=(ie, ir1) | = 1—a an[g (it, Gr41)] < 00
illuminating fixed-point equation, as well as a graceful bound t=0

on the approximation error. Previous works lack interpretablghere we are using the Tonelli-Fubini theorem to interchange
results of this kind. the expectation and the summation, as well as Assumption

1-2). Sincelg(i, it41)] < 1+ g*(it, ir41), it follows that

V. PRELIMINARIES N ) )

: : . : d w(E|D ] aflgli, 'Lt+1)|‘10 =1
In this section we present a series of lemmas that provide Py =
the essential ideas behind Theorem 1. Lemma 1 states a oo

general property of Markov chains that is central to the = E, Zatlg(it, i) | < 0.
analysis of TDQ). Lemma 2 ensures that our assumptions —0

are sufficient to have a well-defined cost-to-go functidh
in Ly(S, D). Lemmas 3-6 deal with properties of the T(
operatorI» and the compositioflZM, as well as their fixed
points. Lemma 7 characterizes the steady-state expectatlo
of various variables involved in the dynamics of T(and
these results are used in the proof of Lemma 8, which deals
with the steady-state dynamics. Lemma 9 establishes that these
dynamics lead to convergence of the deterministic version
of the algorithm. Finally, we state a theorem concerning
stochastic approximation that will be used in Section VI, along
with the lemmas, to establish convergence of the stochastic
algorithm.

We begin with the fundamental lemma on Markov chains. =0

Lemma 1: Under Assumption 1-1), for any € L,(S, D),
we have||PJ||p < ||/]||p-

Sincer(¢) > 0 for all ¢, the expectation defining*(¢) is well
defined and finite.

sing the Tonelli-Fubini theorem to switch the order of
expectation and summation in the definition.5f, we obtain

Za 9 i, Gyl |L0 = L]

ofE[g(it, G41)]io = 1]

IIIz

o E[g(ir)lio = 4]

and it follows that

Proof: The proof involves Jensen’s inequality, the _ - t—
Tonelli-Fubini theorem, and the properyP = =’ JT= ;(O‘P) g-
|\PJ||% =J'P'DPJ To show thatJ* is in Ly(S, D), we have
2 o>
= (s ; 1%l < > ll(eP) gllp
p '
=1 t=0
n < t _
<> (i pr]fz < ; 9/l
=1 j=1 —
non _ llgllp
= Z Z ¥ p“ J2 1 —
j=1i=1 where the second inequality follows from Lemma 1. Note that
N we have
= > 7)) )
J=1 . . .
=173 - 1gls = > x| > pisgli, §)
i€S JES
Our first use of Lemma 1 will be in showing thdt is in < Zw(i) Zping(i, )
Ls(S, D). In particular, we have the following result, where ies jes
we use the notatio to denote the vector of dimensids| = FEolg* (¢, d141))
whoseith component is equal t&[g(é;, ir41)]é: = ©]. < oo

Lemma 2: Under Assumptions 1-1) and 2)*(¢) is well
defined and finite for every € S. Furthermore,J* is in by Assumption 1-2). It follows thaf* is in Ly(S, D). ]
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The next lemma states that the operatbt® maps [
L»(S, D) into itself and provides a formula for evaluating The next lemma states thdt is the unique fixed point of
TN . T,

Lemma 3: Under Assumption 1, for any € Ly (S, D) and Lemma 5: Under Assumption 1, for an\ € [0, 1], the
A€ [0,1], TW(J) is in Ly(S, D), and for A € [0, 1), we cost-to-go function/* uniquely solves the system of equations

have given by
TWVJ = (1= Z A™ <Z(@P)t§+ (ocP)m*lJ). Jr=TN g,
m=0 t=0

Proof: For the case oh = 1, the result follows directly
from the definition of'™». For \ € [0, 1), the fact that/* is a
(T J)(4) fixed point follows from Lemmas 2 and 3, the Tonelli-Fubini

Proof: We have

o theorem, and some simple algebra:
=1-0> A" N N
w TV = (1-0) Y <Z(aP)t§ + (aP)" LI )
CE|Y " atglin, i) + @ (i) | do = L] meo =0
t=0

oo m =(1-2) Z A™ <Z(O€P)t§
== Z v <Z a'E[g(ir) | io = 4] m=0 t=0

HaP) zwa)
+ anl—i—lE[‘](im-l—l) | io = L]> oo oo =
=(1-X AT aP)'g
and the formula in the statement of the lemma follows. ( )g::O <;( ) g)
We have shown in Lemma 2 thdlg||p < oc. Thus, for oo
A < 1, we can use Lemma 1 to obtain =(1-2X) Z AT,
(a9} m m=0
m t—
(1=X) z_:o)‘ ;(O‘P) g The contraction property (Lemma 4) implies that the fixed
m=e = b point is unique. ]
<(1—2) ™ e The next lemma characterizes the fixed point of the com-
< )g;o ; lgllo position II7Y). This fixed point must lie in the range of

II, which is the spacg®r|r € R} [note that this is a
o subspace ofLy(S, D), because of Assumption 2-2)]. The
Similarly lemma establishes existence and uniqueness of this fixed point,
0 which we will denote by®+*. Note that in the special case
<(1-X) Z A" b of A = 1 the lemma implies tha®+* = I1J*, in agreement
D m=0 with the definition of 7},
<allJ|lp Lemma 6: Under Assumptions 1 and ZI7™M(.) is a

for anyJ € Ly(S, D), by Lemma 1. This completes the proOf.contraction and has a unique fixed point which is of the form
’ ®r* for a unique choice of*. Furthermorey* satisfies the

< 0.

1=\ i AT (@P)m LT

m=0

]
Lemma 1 can also be used to show ti&Y is a contraction following bound:
on L»(S, D). This fact, which is captured by the next lemma, 1 -\
will be useful for establishing error bounds. [@7" = J¥lp < ——~[[ILJ" = J*||p.
Lemma 4: Under Assumption 1-1), for anyJ, J €
Ly(S, D) and A € [0, 1], we have Proof: Lemma 4 ensures thgt™ is a contraction from
_ a(l =) _ _ Ly(S, D) into itself, and from .J* is its fixed point by
|TNJ = TVT||p < ﬁHJ— Jlp <allJ = Jllp.  Lemma 5. Note that forJ € Lo(S, D), by the Babylo-
- a, . nian—Pythagorean theorem we have
Proof: The case ofA = 1 is trivial. For A < 1, the result
follows from Lemmas 1 and 3. In particular, we have 1|5 = [|TLJ)|3, + || = ILJ||%
|17V =TV |p = [|(1=A) Z A (@P) (T = ) sinceIlJ Lp(J — ILJ). It follows that I is nonexpansive,
foor p and thus the compositioll7M(.) is a contraction. Hence,
o0 HT™(.) has a unique fixed point of the fordr*, for some
<(1=-X Z AT = J|p r*. Because the functiong;(-) are assumed to be linearly
m=0 independent, it follows that the choice of is unique.
_a(l=X) J_7 Using the fact that/* is in Ly(S, D) (Lemma 2) and is
T l-a) 1= Jlp- the fixed point of 7™ (Lemma 5), we establish the desired
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bound. In particular, we have

[@r* = J*[|p <[[@r" = 1L {|p + [IIL]" = ¥
=T (@r*) = ILT*||p + |ILT* = J*|1p
<TN(@r*) = J* b + I = J*||p

a(l = M)
< KTk *® ok
< Dt + 0~

and it follows that

or* — <
12" =Tl S = T =y —
1 -«
_ ]:[ *_ * i
L~

We next set out to characterize the expected behavior of

the steps taken by the TD) algorithm in “steady state.”
In particular, we will get a handle oty[s(r, X;)] for any

given r. While this expression can be viewed as a limit of
E[s(r, X;)|Xo] ast goes to infinity, it is simpler to view it as
an expectation referring to a process that is already in ste

state. We therefore make a short digression to constru
stationary process(;.

We proceed as follows. Lefi;} be a Markov chain that
evolves according to the transition probability matfxand
is in steady state, in the sense thai (i, = ¢) = =(¢) for

all ¢ and allt. Given any sample path of this Markov chain,

we define

t

= Y (@) T,

T=—00

()

Note thatz; is constructed by taking the stationary proce
¢(ix), whose variance is finite (Assumption 2), and passing
through an exponentially stable linear time invariant syste

It is then well known that the output; of this filter is finite
with probability one and has also finite variance. Withso
constructed, we lef; = (i, i;4+1, 2:) and note that this is
a Markov process with the same transition probabilities

the Markov processX; that was constructed in the middle
of Section Il (the evolution equation is the same). The only

difference is that the proces$; of Section Il was initialized
with z_; = 0, whereas here we have a stationary process

We can now identifyEy| - | with the expectation with respect

to this invariant distribution.

Prior to studyingEo[s(r, X,)], let us establish a few pre-

liminary relations in the next lemma.

lations hold.
1) Eo[¢(is) (iv4m)] = ' DP™®, for m > 0.
2) There exists a finite constant@
| Eo[¢p(ie )¢ (irrm)]l| < G, for all m > 0.
3) Eolz:¢/(it)] = 2o _o(@N)™ @' DP™®.
4) Eo[¢ (it41)] = 2 _olaX)" ' DP™ 1.
5) Eolzg(ir, it+1)] = 2, —o(aA)" @' DP™g.

m=0

such that

Furthermore, each of the above expressions is well defined

and finite.

Cc
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Proof: We first observe that for any, J € L.(S, D),
we have

EolJ (i) (it4m)]
=" 7(0) > Pr(ivgm =3 | i = I ()T (5)
jcs
w(0)J (D[P T)(4)
= J'DP™].

(Note thatP™J € Lo(S, D), by Lemma 1, and using the
Cauchy-Schwartz inequality}’ D P™.J is finite.) By special-

izing to the case where we are dealing with vectors of the

form J = ®r andJ = 7 (these vectors are (S, D) as
a consequence of Assumption 2), we obtain

E0[7’/(f)(it)(f)/(it+nl)F] = 7‘/(1)/DPTn(I)F.
Since the vectorgs and7 are arbitrary, it follows that
Eol¢(ie)d (ir4m)] = @' DP™O.

We place a bound on the Euclidean-induced matrix norm

"‘Iﬂg’DPm@H as follows. We have

|9’ DP™®|| < K* max | DP™ 5
=K’ max |41, D% D% P™ |
<K? max lpxllpll P b5l p
<K? max 1wl D
=K? max Ep ZHAG)

which is a finite constantz, by Assumption 2-2). We have
sed here the notatiop; to indicate thekth column of
the matrix ¢, with entries¢y (1), - -, ¢x(n). Note that the
I§](_econd inequality above follows from the Cauchy—-Schwartz
inequality.
We have so far verified parts 1) and 2) of the lemma. We
now begin with the analysis for part 3). Note tha§[z:¢'(i1)]
(jfsthe same for alt, and it suffices to prove the result for the
caset = 0. We have
0

Eolzo¢'(i0)] =Eo | D (N (ir)¢ (io)

= > (a7 Eo[¢(ir)¢ (io)]

where the interchange of summation and expectation is justi-
Lemma 7: Under Assumptions 1 and 2, the following refied by the dominated convergence theorem. The desired result

follows by using the result of part 1).
The results of parts 4) and 5) are proved by entirely similar
arguments, which we omit. [ |

With the previous lemma at hand, we are ready to charac-

terize Ey[s(r, X¢)]. This is done in the following lemma.
Lemma 8: Under Assumptions 1 and 2, we have

Eo[s(r, X,)] = @lD(T()‘)(q)T) - <I>7’)

which is well defined and finite for any finite
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Proof: By applying Lemma 7, we have [19] follow from the assumptions imposed in the result below.
i _ L ‘e . ..y We do not show here the assumptions of [19] because the list
Eols(r, Xl = EO[Ztggt’ 1) ez (lp)r — 2 ¢ (W] long and would require a lot in terms of new notation.
"= However, we note that in our setting here, the potential
=9%'D AP Por — dr). - . . .
Z (QAP)™ (G + aPer ) functionU(-) that would be required to satisfy the assumptions

. = of the theorem from [19] is given by (r) = ||r — r*||2.
For A = 1, it follows that Theorem 2: Consider an iterative algorithm of the form
Eo[s(r, Xi)] = ¢'D(J" - &r). Te1 = Tt 4+ Ye(A(X)re + b( X))
Note that forA € [0, 1) and anyJ € L»(S, D), we have where
g g i 1) the (predetermined) step-size sequengds positive,
m _ m t
Z(O‘)‘P) J=(01-X Z A Z(O‘P) J. nonincreasing, and satisfied ;v = oo and
m=0 m=0 t=0 22073 < o0
Hence, forA € [0, 1), we have 2) X, is a Markov process with a unique invariant distri-
0o m bution, and there exists a mappihgrom the states of
Eo[s(r, X)] =®'D| (1 - A) Z A™ Z(ap)tg the I\/_Ia_rkov process to the positive reals, satisfyin_g the
o =0 remaining conditions. Lef[-] stand for expectation

A(-) and b(-) are matrix and vector valued functions,
respectively, for whichA = Fy[A(X;)] and b =

= &' D(T™V(®r) — &r) Eo[b(X:)] are well defined and finite;

the matrix A is negative definite;

there exist constants and ¢ such that for allX

00 with respect to this invariant distribution;
+ <(1 =X ) APyt I) <1>7>> 3)

m=0

by Lemma 3. Each expression is finite and well defined by g;
Lemma 7.

The next lemma shows that the steps taken by \)Ié¢nd
to mover, toward r*.

Lemma 9: Under Assumptions 1 and 2, we have

(r —r*Y Eo[s(r, X;)] <0, Vo £k,

S IE[A(X) | Xo = X] - Al < C(1 +h%(X))
and

Proof: We have Z [E[b(X:) | Xo = X] = b|| < C(1 + h¥(X));

t=0
e N (P .
(r =)' DT (@r) — @r) 6) for anyg¢ > 1 there exists a constampi, such that for
= (r =Y ®'D((I = I)TN(®r) all X, ¢
+ TN (0r) — &) E[h(X1)|Xo = X] < pg(1 4 h4(X)).

_ e BV (A) N o
(&r = r) DT (2r) — Or) Then,r, converges ta*, with probability one, where* is

where the last equality follows becaugéDll = &’D [see the unique vector that satisfiet* + b = 0.
(1)]. As shown in the beginning of the proof of Lemma

5, II7™ is a contraction with fixed pointr*, and the VI. PROOE OF THEOREM 1
contraction factor is no larger tham Hence

| (Br) — @r¥||p < af|®@r — &7¥||p

The steps(r:, X;) involved in the update of, is
3(7}7 Xt) =diz

and using the Cauchy—Schwartz inequality, we obtain = 2e9(it, te41) + 2e(d (Gr41) — ¢ (4¢))7e.
(r —r*Y' @' D(T™N(®r) — &r) Hence,s(r;, X;) takes the form
_ . PV (N (Pr) — Py
= (&r — &r*) DTNV (Pr) — &7 s(re, X)) = A(X)re + b(X,)
+ (Or* = 1)) H
< ||&r = ©r*||p - LTV (@r) — &7 5 where
— ||®r — @73, A(Xy) = 2o (ieg1) — ¢ (ir))
< (a—=1)||®r — &r*||3. and
Sincea < 1, the result follows. [ ] b(X1) = zg(ie, te1)-

We now state without proof a result concerning stochastic
approximation which will be used in the proof of Theorem 1By Lemma 7,4 2 Eo[A(X,)] andb 2 E,[b(X,)] are both
This is a special case of a very general result on stochastiell defined and finite.
approximation algorithms [19, Th. 17, p. 239]. It is straight- By Lemma 6, we hav&lZ7® (&r*) = &r*. From (1), we
forward to check that all of the assumptions in the result also haved’ DII = &' D. Hence,® DT™ (&r*) = &' Dor*.
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We now compare with the formula fdfo[s(r*, X;)], as given for some constant§’ andq and anyt > 0. It follows that

by Lemma 8, and conclude th&i[s(r*, X;)] = 0. Hence

Alr —r*) = Fo[s(r, X1)] — Fol[s(r*, X4)]
= Eo[s(r, X¢)].

It follows from Lemma 9 that
(r—=7r*YA(r—r*)<0

for any r # r*, and thusA is negative definite.

We will use Theorem 2 to show that converges. Our

D (@) I BLz—1¢ (i) Xoll
< O+ lzoll + £ o) + f ()"

for some constant§’ and q.
Next, we deal with the second summation. Lettivg ,,, ¢
be defined by

Atm,t = | E[¢(ét—m)¢' (ie)| Xo] = Eo[d(ie—m)¢ (i)l

analysis thus far ensures validity of all conditions except f§¥¢ have

5) and 6). We now show that Assumption 3 is sufficient to

ensure validity of these two conditions.

We begin by bounding the summations involved in 5).

Letting X; = (4, 141, 2¢), recall that

A(Xt) = ze(ad (ivg1) — ¢/ (ir)).

Let us concentrate on the ters’(i;). Using the formula for

zt, we have

Elzd/ (i0)| Xo] — Eolz:¢' (i1)]
= (aN) ™ Elz-1¢/(ir)]

+ > (@)™ E[$lir—m) ¢ (it)| Xo]

m=0

- Z (aA)™ Eo[¢(ir—m) ¢’ (i1)]-

m=0

Using the triangle inequality, we obtain

> Bz (i)| Xo] = Eolzd (i)l

<Y (@Y By (i) Xolll + > >

t=0 m=0

(N[ E[$ (i) )] Xo] — Eolblis—n ) (i)
+> (QX)™[| Eo[$(it—rm )¢’ (it)]]]-

t=0 m=t+1

t=0 m=0
= (a)\)m <A0,m + Z At—m, t)
m=0 t=m-+1
< CO(f(io) + f(ir))

for some constant”, where the inequality follows from
Assumption 3-1).

Finally, recalling thatEo[¢(ii—m )¢ ()] < G, for some
absolute constant? (Lemma 7), we have

D> (@N™Eo[¢(ie—m)d (i)l

t=0 m=t+1

<Gy, D (e

t=0 m=t+1
o (a)\)t+l
1—al

t=0
< <.

Given these bounds, it follows that there exist positive
constantsC and ¢ such that

> I Bz (i)l Xol = Eolzd/ (il

t=0
< O+ lzoll + £ (o) + f(i))*

In other words, the summation above is bounded by a polyno-

We will individually bound the magnitude of each summatioRi&! function of|zol, (i), andf(i1). An identical argument

in the right-hand side.
First we have

(@) | Ele—1 ¢ (i) Xo |

t=0

= [lzoall D (@) Elgin) | Kol
= %Hzo — ¢(i0)|| Z(a)\)t+l||E[</)(it)|X0]||

t=0

where the second inequality follows from the fact that=
(wA)z_1 + ¢(i0). Assumption 3-1) implies that

[E[¢(i)] Xolll < O+ f(io) + f(i1))?

can be carried out for the ternas: ¢’ (i:41) andz g (i, 441),
which we omit to avoid repetition. Using these arguments, we
can place bounds that are polynomial|i||, f(é0), andf(i1),
on the summations in Condition 5) of Theorem 2. We can thus
satisfy the condition with a functioh(X) (X = (¢, j, 2))
that is polynomial in||z||, f(¢), and f(j). The fact that such
a function 4 would satisfy Condition 6) then follows from
Assumption 3-2).

We now have all the conditions needed to apply Theorem 2.
It follows thatr, converges to*, which solvesAr* + b = 0.
Since Ar* + b = Ey[s(r*, X;)], Lemma 8 implies that

' DTN (®r*) — &r*) = 0.

By Lemma 6 along with the fact tha®’D has full row
rank [by virtue of Assumption 2-1)};* uniquely satisfies this
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equation and is the unique fixed pointldf* M. Lemma 6 also VIII. | NFINITE STATE SPACES
provides the desired error bound. This completes the proof tor,o purpose of this section is to shed some light on the

Theorem 1. nature of our assumptions and to suggest that our results
apply to infinite-state Markov chains of practical interest. For
VII. THE CASE OF A FINITE STATE SPACE concreteness, let us assume that the state space is a countable
. . . subset ofR” . Each stater € R" is associated with an integer
In this section, we show that Assumptions 1-2), 2-2), ar]ﬂudexi € {1,2,3, -} and denoted by (i)

.3 are gutomatlgally true Whene\{er we are Qeallng with an Let us first assume that the state space is a bounded subset of

irreducible aperiodic Markov chain with a finite state space,x and that the mappings defined ty(s), () — g(i, )

This tremendously simplifies the conditions required to app d(i) — ¢ (i) are continuous function’s N x RN ’and

Theo_rem L r_educmg them to a requwem_ent that the baﬂ,&". Then, Assumptions 1-2) and 2-2) are automatically valid
funcuon; be Imearl_y independent [Assu.mptlon 2a)]. A.Ctual%ecause continuous functions are bounded on bounded sets.
even this assumption can .be relaxed. if Theorem 1 is State(}Assumption 3-1) basically refers to the speed with which the
n & more gen.e.ral way. This assumption was adopted for fg . chain reaches steady state. UI&{:y) be a diagonal
sake of simplicity in the proof. matrix whoseith entry is Pr (i, = i|ig). Then Assumption 3-

Let us now assume that is an irreducible aperiodic finite- 3 e P . . .
) ) . is satisfied by a functioffi(<) = C if we impose a condition
state Markov chain [Assumption 1-1)]. Assumptions 1-2) a the form y (i) e imp .

2-2) are trivially satisfied when the state space is finite. We
therefore only need to prove that Assumption 3 is satisfied. g

It is well known that for any irreducible aperiodic finite-state Z 1D:(i0) = D < C, Vio
Markov chain, there exist scalags< 1 and C such that =0

for some finite constant'. In other words, we want thestep
transition probabilities to converge fast enough to the steady-
state probabilities (for exampl¢,D, — D|| could drop at the
rate of 1/t2). In addition, we need this convergence to be
uniform in the initial state.

As a special case, suppose that the Markov chain has a
distinguished state, say state zero, and that for sbme)

| Pr (iy = ilig) — w(i)| < Cp', Vig € S.

Let us fixig. We define a sequence &fx K diagonal matrices
D, with theith diagonal element equal ®Br (i, = i|i). Note
that

|1D: = D|| < Cp.

It is then easy to show that Priive =0fic=d) 26, Vi
Then,D,(iy) converges td exponentially fast, and uniformly

in 79, and Assumption 3-1) is satisfied wit{<) = C. Validity

\f\)/Ia Assumption 3-2) easily follows.

Let us now consider the case where the state space is an
unbounded subset &". For many stochastic processes of
practical interest (e.g., those that satisfy a large deviations
principle), the tails of the probability distributiar(¢) — (%)

Note that all entries o™ are bounded by one, and thereforéaxhibit exponential decay; let us assume that th_is iS. the case.
there exists a constasit such thai| P < G for all m. we " the purposes of Assumption 3, itis natural in this context
then have to employ a funcuonf(z) = C(} + ||a:(z)||q).,. for someC anq
g. Assumption 3-2) is essentially a stability condition; given
e our definition of f, it states that|x(s:)||? is not expected to
> |®'(D, - D)Po| grow too rapidly, and this is satisfied by most stable Markov
t=0 chains of practical interest. Note that by taking the steady-state
limit we obtain Ey[||z(é:)]|9] < oo for all g, which in essence
says that the tails of the steady-state distributign) decay

E[¢(Lt)¢/(Lt+nl)|L0] = (I)/Dth(I)

the proof being essentially the same as in Lemma 7-1).
then have

E[¢(it)d' (itm)lio] = Eo[p(it) ¢ (it4m)] = ®'(Dy— D) P .

M

K e [¢4(D, = D)P" 9|

=0 0o faster than any polynomial (e.g., exponentially).
< K? max ||¢x |G max || 6| Z D, — D Assumption 3-1) is the most complex one. _Recall _that it
k J =0 deals with the speed of convergence of certain functions of
) , C the Markov chain to steady state. Whether it is satisfied has
< GK max [l 1—p to do with the interplay between the speed of convergence of

D,(ip) to D and the growth rate of the functions,(-) and
The first part of Assumption 3-1) is thus satisfied by a functiog(-, -). Note that the assumption allows the rate of convergence
f(¢) that is equal to a constant for all An analogous to getworse afjz(iy)|| increases; this is captured by the term
argument, which we omit, can be used to establish thafiy) in the right-hand side.
the same is true for the second part of Assumption 3-1).We close with a concrete illustration, related to queueing
Assumption 3-2) follows from the fact thdt(¢) is constant. theory. Leti, be a Markov chain that takes values in the
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nonnegative integers, and let its dynamics be Let us refer to this algorithm ag-sampled TD(0). Note that
this algorithm is closely related to the original TD(0) algorithm
as defined in Section Il. In particular, #f is generated by the
where thew, are independent, identically distributed nonnegMarkov chain andj; = .41, we are back to the original
ative integer random variables with a “nice” distribution; e.galgorithm. It is easy to show, using a subset of the arguments
assume that the tail of the distribution of asymptotically required to prove Theorem 1, that this algorithm converges
decays at an exponential rate. (This Markov chain corresponden ¢(i) = (i) for all 7, and Assumptions 1, 2, and 4 are
to an M/G/1 queue which is observed at service completiG@tisfied. However, results can be very different whén is
times, withw, being the number of new arrivals while servingirbitrary. This is captured by the following Theorem.
a customer.) Assuming thaE[w;] < 1, this chain has a Theorem 3:Let ¢(-) be a probability distribution over a
“downward drift,” is “stable,” and has a unique invarianpountame sefS with at least two elements. Let 'the discount
distribution [20]. Furthermore, there exists sose- 0 such factor o be constrained to the open intervgg, 1). Let
that 7(i) < e~%, for ; sufficiently large. Letg(i, j) = i so the sequencey, satisfy Assumption 4. Then, there exists a
that the cost function basically counts the number of customé&t@chastic matrixP, a transition cost function(-, -), and a
in queue. Let us introduce the basis functiohgi) = i*, Matrix ®, such that Assumptions 1 and 2 are satisfied, and
k = 0,1,2, 3. Then, Assumptions 1 and 2 are satisfie€xecution of the;-sampled7’D(0) algorithm leads to
Assumption 3-2) can be shown to be true for functions of the
form f(i) = C(1+ ||=z(2)||?) by exploiting the downward drift lim ||E[r¢|ro]|| = oo, Virg#r"
property (in this example, it is natural to simply lefi) = 7). oo
Let us now discuss Assumption 3-1). The key is agal
the speed of convergence db,(ip) to D. Starting from
stateig, with io( Ia)rge, the Markov chain has a negative drif{hro
a_n(_j _requiresO io) Steps to enter (with high_ probability) the We define a probability distributiop(-) satisfying1 >
vicinity of state zero [21], [22]. Once the vicinity of state zeror@) > 5/6c and p(i) > 0 for all . The fact thatn >

is reached, it quickly reaches steady state. Thus, if we cdt e . )
centrate onps(i) = i, the differenceE[p(i )¢’ (irm )lio] — ensures that such a probability distribution exists. We define

Eo[¢(i.)¢ (i-sm)] is Of the order ofiS for O(ig) time the transition probability matrix”? with each row equal to

steps and afterwards decays at a fast rate. This suggg f%’ In other words, we have
that Assumption 3-1) is satisfied by a functignthat grows

'l:t+1 = Imax {0, it + wy — 1}

%r some unique vector*.
Proof: Without loss of generality, we will assume
ughout this proof thag(1) > 0 andg¢(1) > ¢(2).

et

polynomially with ||(3)]. p(1) - p(n)
Our discussion in the preceding example was far from pP=1": - :
rigorous. Our objective was not so much to prove that our p(1) - p(n)

assumptions are satisfied by specific examples, but rather
to demonstrate that their content is plausible. Furthermoggnaly, we define the transition cost function to fé, j) = 0
while the M/G/1 queue is too simple an example, we eXor all ; and;. Assumption 1 is trivially satisfied by our choice

pect that stable queueing networks that have a downwgfp andg(-, -), and the invariant distribution of the Markov
drifting Lyapunov function should also generically satisfy oughain isp(-). Note that/* = 0, since no transition incurs any

assumptions. cost.
Let & be amn x 1 matrix, defined by a single scalar function
IX. THE IMPORTANCE OF ON-LINE SAMPLING #(+) with
In the introduction, we claimed that on-line sampling plays o
an instrumental role in ensuring convergence of XD(n par- . 1, !f [ 1
ticular, when working with a simulation model, it is possible (i) =12, ifi=2
0, otherwise.

to define variants of TDY) that do not sample states with the
frequencies natural to the Markov chain and, as a result, do not
generally converge. Many papers, including [10], [11], [13]}lote that, implicit from our definition ofb, ; is scalar, and
and [14], present such examples as counterexamples ty) TD@ssumption 2 is trivially satisfied. We let* = 0 so that
In this section, we provide some insight into this issue by* = ®r*.

exploring the behavior of a variant of TD(0). More generally, In general, we can expre#&r,|r] in terms of a recurrence
variants of TDQ) can be defined in a similar manner, and thef the form

same issues arise in that context. We limit our discussion to

TD(0) for ease of exposition. Elreylro] = Elrelro] + v E[¢(i)(g(i, jie)
We consider a variant of TD(0) where statgsire sampled + o' (G )re — ¢ (ie)7e) |70]
independently from a distributiog(-) over S, and successor = E[ri|ro] + 1@’ QG + aP® — @) E[re|ro]

statesj, are generated by sampling according Ro[j; =

ili¢] = ps, ;. Each iteration of the algorithm takes the form . . . . .
gl = pig 9 where @ is the diagonal matrix with diagonal elements

Ter1 = 7 + (6 )(g(is, J) + CY(/)/(jt)Tt - ¢/(it)7’t)- q(1), ---q(n).
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Specializing to our choice of parameters, the recurrence
becomes

Elriqalro] = Efrelro] +vi[q(1)  2¢(2)]
P +202) ] _ 1]\ pr,
(oo | - ] e
= Elre|ro] +7:((ep(1) + 2p(2)) — 1)g(1)
+2(a(p(1) +2p(2)) — 2)q(2)) Elre|ro].
For shorthand notation, leh be defined by
A = (ap(1) +2ap(2) — 1)q(1) + 2(ap(1) + 20p(2) — 2)q(2).
Sinceap(1l) + 2ap(2) < 2 andg(1) > ¢(2), we have
A = (ap(1) + 2ap(2) — 1)g(1)
+ 2(ap(1) + 20p(2) — 2)q(1)
(Bap(1) + 6ap(2) — 5)q(1)
= (6ap(2) — 5)q(1)
and sincep(2) > 5/6q, there exists some > 0 such that

A>(54+e—5)q(l)
—¢ (1) Fig. 1. Example of divergence with a nonlinear function approximator. The
EASYA plot is of points in the pland.J € ®3|e/J = 0}.

3ap
6ap

It follows that

[ E[ret1lrolll 2 (1 4+ veeq(I) I E[rero] |l ¢'J(0) = 0, wheree = (1, 1, 1), requiring thatJ(r) be the
unique solution to the linear differential equation
and since}_,~ v = oo, we have 4
Jim |E[re41]ro]l| = o0 5(7) = (@+)J(r) (6)
. . where [ is the 3 x 3 identity matrix, ¢ is a small positive
if ro # r*. [ | L
constant, and? is given by
X. DIVERGENCE WITH A NONLINEAR APPROXIMATOR 1 1/2 3/2
Our analysis of temporal-difference learning up until now @= ??; 3}2 1{2

has focused on linear function approximators. In many situa-

tions, it may be natural to employ classes of nonlinear function gjyen our definition of/, it is easy to show that all functions
approximators. Neural networks present one popular examigpresentable by/ lie on the plane{J € R2|¢’J = 0}.
One might hope that the analysis we have provided for thgrthermore, the set of functiods/(r)|r € R} forms a spiral
linear case generalizes to nonlinear parameterizations, perh@ps diverges as grows to infinity (see Fig. 1).

under some simple regularity conditions. Unfortunately, this \we |et the transition probability matrix of the Markov chain
does not seem to be the case. To illustrate potential difficultigg

we present an example for which TD(0) diverges due to the

structure of a nonlinear function approximator. (By divergence p_ 1/3 102 1(/)2
here, we mean divergence of both the approximate cost-to- - (/) 1?2 1/2

go function and the parameters.) For the sake of brevity, we

limit our study to a characterization of steady-state dynamicsince all transition costs are zero, the TD(0) operator is given

rather than presenting a rigorous proof, which would requitg) 7% j = P.J, for all J € R3. It turns out that there is

arguments formally relating the steady-state dynamics to the acute anglé and a scalaps € (0, 1) such that for any,

actual stochastic algorithm. 7O j(r) is equal to the vectoy () scaled by3 and rotated by

We consider a Markov chain with three stateS & ¢ degrees in the plang/ € R3|¢’J = 0}. The points labeled

{1, 2, 3}), all transition costs equal to zero, and a discoumhd7(® J in Fig. 1 illustrate the nature of this transformation.

factora € (0, 1). The cost-to-go function’* € R? is therefore  Before discussing divergence of TD(0), let us motivate the

given by J* = (0, 0, 0)'. Let the function approximator underlying intuition by observing the qualitative behavior of
T 7P PN a simpler algorithm. In particular, suppose we generated a
Jr) = (A, ), J@2,7), I3, 7)) sequence of approximatiom%(rt), where eachr,; satisfies

be parameterized by a single scalarLet the form of.J be

. =D ot vy1 = argmin || J(r) — T J(r,)]].
defined by letting.J(0) be some nonzero vector satisfying Mkl T ATS I 17¢r) ol
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(Note that the steady-state distribution is uniform so that tlsaifficiently small. The combination of this inequality and the
Euclidean norm is the appropriate one for this context.) fact that

Fig. 1, the point on the spiral closest18% J is further from d. 2 s = B S

the origin than.J, even thoughr® J is closer to the origin pmlAColl =J(r)(Q+Q")J(r) + 2| J ()|

than J (the origin is located at the center of the circle in the > 2e||j(r)||2

diagram). Therefore, i/ (ro) = J, then||J(r1)|| > ||J(r0)]- -
Furthermore, since each application® induces the same implies that both» and ||j(7;)|| diverge to infinity.
degree of rotation and scaling, we might expect that each
subsequent iteration takes the approximation further from the

origin in a completely analogous way. Hence, the underlying . .
dynamics suggest that divergence is conceivable. We have established the convergence of on-line temporal-

Let us now more concretely identify divergent behavigifference learning with linear function approximators when

in the steady-state dynamics of TD(0). The TD(0) algorithrﬂpp"ed_ to irredgcible aperiodic Markov chains. We note
applies the update equation that this result is new even for the case of lookup table

representations (i.e., when there is no function approximation),
but its scope is much greater. Furthermore, in addition to
covering the case where the underlying Markov chain is

wherei, is the state visited by the traiectory at timeSince finite, the result also applies to Markov chains over a general
“ Y J y (infinite) state space, as long as certain technical conditions

the steady-state distribution resulting frakhis uniform, the re satisfied.

steady-sta_\te e_xpectatlon of the update direction, within afact%r.rhe key to our development was the introduction of the
of three, is given by

XIl. CONCLUSIONS

dj s ”
T4l =T+ ’Yt%(T)(OéJ('LH—l, re) = J(it, 7))

norm|| - ||p and the property|P||p < 1. Furthermore, our
3 4j 3 B B development indicates that the progress of the algorithm can
Z %(i, ) <Oézpijj(j, r)—J(4, r)) be monitored in two different ways: 1) we can keep track of
i=1 i=1 the magnitude of the approximation err* — J*; the natural

. ) - ) norm for doing so ig| - ||p, or 2) we can keep track of the
This is the inner product of the vectod//dr, which o 0meter error — +*; the natural norm here is the Euclidean

is (@ + el)J(r), with the vector with components ., as made clear by our convergence proof.
> pijJ(j, r)=J(r), which is the vectoreP.J (1) — J(r). o : - -
a i pij () 7.) J(r), whi : To reinforce the central ideas in the proof, let us revisit
As the step size becomes extremely small, we can think g TD(0) method, for the case where the costs per stage
the deterministic version of the algorithm as an approximatiof}, identically zero. In this cas&©.J is simply aP.J. The

to a differential equation. Given the average direction Qfgterministic counterpart of the algorithm, as introduced in
motion of the parameter, the appropriate differential equationgaction 111 takes the form

for our example is
Ft-l—l :Ft + ’}/t(I)/D(C)éP(I)7 et (1)7)

% =(Q+eDJ(r)) («P — DJ(r) =7 + 79" D(aP — I)Pr.
=J(r)N(Q + eD)(aP — D) J(r). For any vector., we have
For ¢ = 0, we have J'DPJ < | J|p-|PJ|p < I} = J'DJ.
dr s\ oy 7 This shows that the matriD(aP — I) is negative definite,
dt S Qe = 1J(r) henced’ D(«P—1)® is also negative definite and convergence
=aJ (rQ PJ(r) of this deterministic iteration follows.
a Besides convergence, we have also provided bounds on the

_ T o ! / F(o
=5 S (MQP+PQ)J(r) distance of the limiting functiorbr* from the true cost-to-
go functionJ*. These bounds involve the express|dhJ/* —
that>,, S S
J*||p, which is natural because no approximation could have
error smaller than this expression (when the error is measured
25 1.75 1.75 in terms of|| - ||p). What is interesting is the factor of
(QP+PQ)=|175 25 L75 1— a)
1.75 175 2.5

where the first equality follows from the fact
J'(r @ J(r) = 0, for any r. Note that

l—a’

which is easily verified to be positive definite. Hence, ther€his expression is one whekh = 1. For every A < 1, it

exists a positive constamt such that is larger than one, and the bound actually deteriorates as
dr : decreases. The worst bound, namplyJ* — J*||p/(1 — «)
i cllJ ()2 (7) is obtained whem = 0. Although this is only a bound, it

strongly suggests that higher values)oére likely to produce
By a continuity argument, this inequality remains true (posnore accurate approximations dgf. This is consistent with
sibly with a smaller positive constam) if ¢ is positive but the examples that have been constructed by Bertsekas [23].
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The sensitivity of the error bound tb raises the question state average value at¢'(i,), affect the matrix4, and the
of whether or not it ever makes sense to b values less negative definiteness property can be easily lost.
than one. Experimental results [2], [24], and [25] suggest thatFinally, the example of Section X identifies the possibil-
setting A to values less than one can often lead to significaity of divergence when TDX) is used in conjunction with
gains in the rate of convergence. Such acceleration may rmnlinear function approximators. However, the example is
critical when computation time and/or data (in the eversomewhat contrived, and it is unclear whether divergence can
that the trajectories are generated by a physical system) aceur with special classes of function approximators, such
limited. A full understanding of how\ influences the rate as neural networks. This presents an interesting question for
of convergence is yet to be found. Furthermore, it miglititure research.
be desirable to tune as the algorithm progresses, possibly
initially starting with A = 0 and approaching = 1 (although
the opposite has also been advocated). These are interesting
directions for future research. The authors would like to thank R. S. Sutton for starting

In many applications of temporal-difference learning, on&@em on the path that led to this work by pointing out that the
deals with a controlled Markov chain and at each stag@unterexample in [10] would no longer be a counterexample
a decision is “greedily” chosen, by minimizing the rightif on-line state sampling was used. They also thank him for
hand side of Bellman’s equation and using the availabf!ggesting an algebraic simplification to the original expres-
approximationj in p|ace OfJ* Our ana'ysis does not app'ysion for the error bound in Theorem 1, which resulted in its
to such cases invo'ving Changing po”cies_ Of course, if ﬂfé]rrent form. The authors would like to thank the reviewers
policy eventually settles into a limiting policy, we are back tdor their feedback, especially the one who provided them with
the case studied in this paper and convergence is obtain®r pages of detailed corrections and useful comments.
However, there exist examples for which the policy does
not converge [16]. It remains an open problem to analyze REFERENCES
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