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An Analysis of Temporal-Difference Learning
with Function Approximation

John N. Tsitsiklis,Member, IEEE, and Benjamin Van Roy

Abstract—We discuss the temporal-difference learning algo-
rithm, as applied to approximating the cost-to-go function of
an infinite-horizon discounted Markov chain. The algorithm we
analyze updates parameters of a linear function approximator on-
line during a single endless trajectory of an irreducible aperiodic
Markov chain with a finite or infinite state space. We present a
proof of convergence (with probability one), a characterization of
the limit of convergence, and a bound on the resulting approxi-
mation error. Furthermore, our analysis is based on a new line
of reasoning that provides new intuition about the dynamics of
temporal-difference learning.

In addition to proving new and stronger positive results than
those previously available, we identify the significance of on-
line updating and potential hazards associated with the use of
nonlinear function approximators. First, we prove that diver-
gence may occur when updates are not based on trajectories
of the Markov chain. This fact reconciles positive and negative
results that have been discussed in the literature, regarding the
soundness of temporal-difference learning. Second, we present an
example illustrating the possibility of divergence when temporal-
difference learning is used in the presence of a nonlinear function
approximator.

Index Terms—Dynamic programming, function approxima-
tion, Markov chains, neuro-dynamic programming, reinforce-
ment learning, temporal-difference learning.

I. INTRODUCTION

T HE PROBLEM of predicting the expected long-term
future cost (or reward) of a stochastic dynamic system

manifests itself in both time-series prediction and control. An
example in time-series prediction is that of estimating the net
present value of a corporation as a discounted sum of its future
cash flows, based on the current state of its operations. In
control, the ability to predict long-term future cost as a function
of state enables the ranking of alternative states in order to
guide decision-making. Indeed, such predictions constitute the
cost-to-go functionthat is central to dynamic programming
and optimal control [1].

Temporal-difference learning, originally proposed by Sutton
[2], is a method for approximating long-term future cost
as a function of current state. The algorithm is recursive,
efficient, and simple to implement. A function approximator
is used to approximate the mapping from state to future cost.
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Parameters of the function approximator are updated upon
each observation of a state transition and the associated cost.
The objective is to improve approximations of long-term future
cost as more and more state transitions are observed. The
trajectory of states and costs can be generated either by a
physical system or a simulated model. In either case, we view
the system as a Markov chain. Adopting terminology from
dynamic programming, we will refer to the function mapping
states of the Markov chain to expected long-term cost as the
cost-to-go function.

Though temporal-difference learning is simple and elegant,
a rigorous analysis of its behavior requires significant sophisti-
cation. Several previous papers have presented positive results
about the algorithm. These include [2]–[7], all of which only
deal with cases where the number of tunable parameters is the
same as the cardinality of the state space. Such cases are not
practical when state spaces are large or infinite. The more
general case, involving the use of function approximation,
is addressed by results in [8]–[12]. The latter three estab-
lish convergence with probability one. However, their results
only apply to a very limited class of function approximators
and involve variants of a constrained version of temporal-
difference learning, known as TD(0). Dayan [8] establishes
convergence in the mean for the general class of linear function
approximators, i.e., function approximators involving linear
combinations of fixed basis functions, where the weights of
the basis functions are tunable parameters. However, this form
of convergence is rather weak, and the analysis used in the
paper does not directly lead to approximation error bounds
or interpretable characterizations of the limit of convergence.
Schapire and Warmuth [9] carry out a (nonprobabilistic) worst
case analysis of an algorithm similar to temporal-difference
learning. Fewer assumptions are required by their analysis, but
the end results do not imply convergence and establish error
bounds that are weak relative to those that can be deduced in
the standard probabilistic framework.

In addition to the positive results, counterexamples to vari-
ants of the algorithm have been provided in several papers;
these include [10], [11], [13], and [14]. As suggested by Sutton
[15], the key feature that distinguishes these negative results
from their positive counterparts is that the variants of temporal-
difference learning used do not employ on-line state sampling.
In particular, sampling is done by a mechanism that samples
states with frequencies independent from the dynamics of the
underlying system. Our results shed light on these counterex-
amples by showing that for linear function approximators,
convergence is guaranteed if states are sampled according

0018–9286/97$10.00 1997 IEEE



TSITSIKLIS AND VAN ROY: ANALYSIS OF TEMPORAL-DIFFERENCE LEARNING 675

to the steady-state probabilities, while divergence is possible
when states are sampled from distributions independent of
the dynamics of the Markov chain of interest. Given that the
steady-state probabilities are usually unknown, the only viable
approach to generating the required samples is to perform on-
line sampling. By this we mean that the samples should consist
of an actual sequence of visited states obtained either through
simulation of a Markov chain or observation of a physical
system.

In addition to the analysis of temporal-difference learning
in conjunction with linear function approximators, we provide
an example demonstrating that the algorithm may diverge
when a nonlinear function approximator is employed. This
example should be viewed as a warning rather than a ban on
all nonlinear function approximators. In particular, the function
approximator used in the example is somewhat contrived, and
it is not clear whether or not divergence can occur with specific
classes of nonlinear function approximators such as neural
networks.

In this paper, we focus on the application of temporal-
difference learning to infinite-horizon discounted Markov
chains with finite or infinite state spaces. Though absorbing
(and typically finite state) Markov chains have been the
dominant setting for past analyses, we find the infinite-horizon
framework to be the most natural and elegant setting for
temporal-difference learning. Furthermore, the ideas used in
our analysis can be applied to the simpler context of absorbing
Markov chains. Though this extension is omitted from this
paper, it can be found in [16], which also contains a more
accessible version of the results in this paper for the case of
finite state spaces.

The contributions in this paper are as follows.

1) Convergence (with probability one) is established for
the case where approximations are generated by linear
combinations of (possibly unbounded) basis functions
over a (possibly infinite) state space. This is the first such
result that handles the case of “compact representations”
of the cost-to-go function, in which there are fewer
parameters than states. (In fact, convergence of on-line
TD( ) in the absence of an absorbing state had not
been established even for the case of a lookup table
representation.)

2) The limit of convergence is characterized as the solution
to a set of interpretable linear equations, and a bound is
placed on the resulting approximation error.

3) Our methodology leads to an interpretation of the limit
of convergence and hence new intuition on temporal-
difference learning and the dynamics of weight updating.

4) We reconcile positive and negative results concerning
temporal-difference learning by proving a theorem that
identifies the importance of on-line sampling.

5) We provide an example demonstrating the possibility of
divergence when temporal-difference learning is used in
conjunction with a nonlinear function approximator.

At about the same time that this paper was initially submit-
ted, Gurvits [17] independently established convergence with
probability one in the context of absorbing Markov chains.

Also, Pineda [18] derived a stable differential equation for
the “mean field” of temporal-difference learning, in the case
of finite-state absorbing Markov chains. He also suggested
a convergence proof based on a weighted maximum norm
contraction property, which, however, is not satisfied in the
presence of function approximation. (The proof was corrected
after the paper became available.)

This paper is organized as follows. In Section II, we provide
a precise definition of the algorithm that we will be studying.
Sections III–IX deal only with the use of linear function
approximators. In Section III, we recast temporal-difference
learning in a way that sheds light into its mathematical
structure. Section IV contains our main convergence result
together with our assumptions. We develop some mathemati-
cal machinery in Section V, which captures the fundamental
ideas involved in the analysis. Section VI presents a proof
of the convergence result, which consists primarily of the
technicalities required to integrate the machinery supplied
by Section V. Our analysis is valid for general state spaces,
subject to certain technical assumptions. In Section VII, we
show that these technical assumptions are automatically valid
for the case of irreducible aperiodic finite-state Markov chains.
In Section VIII, we argue that the class of infinite-state Markov
chains that satisfy our assumptions is broad enough to be
of practical interest. Section IX contains our converse con-
vergence result, which establishes the importance of on-line
sampling. Section X departs from the setting of linear function
approximators, presenting a divergent example involving a
nonlinear function approximator. Finally, Section XI contains
some concluding remarks.

II. DEFINITION OF TEMPORAL-DIFFERENCELEARNING

In this section, we define precisely the nature of temporal-
difference learning, as applied to approximation of the cost-to-
go function for an infinite-horizon discounted Markov chain.
While the method as well as our subsequent results are
applicable to Markov chains with a fairly general state space,
we restrict our attention to the case where the state space
is countable. This allows us to work with relatively simple
notation; for example, the Markov chain can be defined in
terms of an (infinite) transition probability matrix as opposed
to a transition probability kernel. The extension to the case of
general state spaces requires the translation of the matrix no-
tation into operator notation, but is otherwise straightforward.

We consider an irreducible aperiodic Markov chain whose
states lie in a finite or countably infinite space. By indexing
the states with positive integers, we can view the state space as
the set , where is possibly infinite. Note that
the positive integers only serve as indexes here. In particular,
each state might actually correspond to some other entity such
as a vector of real numbers describing the state of a physical
system. In such a case, the actual state space would comprise
of a countable subset of a Euclidean space.

The sequence of states visited by the Markov chain is
denoted by . The dynamics of the
Markov chain are described by a (finite or infinite) transition
probability matrix whose th entry, denoted by , is
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the probability that given that . For any pair
, we are given a scalar that represents the cost

of a transition from to . (Extensions to the case where the
one-stage costs are random is discussed in our conclusions
section.) Finally, we let be a discount factor.

The cost-to-go function associated with this
Markov chain is defined by

assuming that this expectation is well-defined. It is often
convenient to view as a vector instead of a function (its
dimension is infinite if is infinite).

We consider approximations of using a function
, which we refer to as a function approximator.

To approximate the cost-to-go function one usually tries to
choose a parameter vector so as to minimize some
error metric between the functions and .

Suppose that we observe a sequence of statesgenerated
according to the transition probability matrix and that at
time the parameter vector has been set to some value

. We define the temporal difference corresponding to the
transition from to by

Then, for the temporal-difference learning
method updates according to the formula

where is initialized to some arbitrary vector, is a sequence
of scalar step sizes, is a parameter in , and the gradient

is the vector of partial derivatives with respect to
the components of . Since temporal-difference learning is
actually a continuum of algorithms, parameterized by, it is
often referred to as TD().

In the special case of linear function approximators, the
function takes the form

Here, is the parameter vector and each
is a fixed scalar function defined on the state space.

The functions can be viewed as basis functions (or as
vectors of dimension ), while each can be viewed
as the associated weight.

It is convenient to define a vector-valued function
by letting . With this notation,

the approximation can also be written in the form

or

where is viewed as an matrix whose th column
is equal to ; that is

...

Note that the gradient vector here is given by

and we have

where is the Jacobian matrix whoseth column is equal
to .

In the case of linear function approximators, a more con-
venient representation of TD() is obtained by defining a
sequence ofeligibility vectors (of dimension ) by

With this new notation, the TD() updates are given by

and the eligibility vectors can be updated according to

initialized with .
In the next few sections, we focus on temporal-difference

learning as used with linear function approximators. Only
in Section X do we return to the more general context of
nonlinear function approximators.

III. U NDERSTANDING TEMPORAL-DIFFERENCELEARNING

Temporal-difference learning originated in the field of rein-
forcement learning. A view commonly adopted in the original
setting is that the algorithm involves “looking back in time
and correcting previous predictions.” In this context, the
eligibility vector keeps track of how the parameter vector
should be adjusted in order to appropriately modify prior
predictions when a temporal-difference is observed. In this
paper, we take a different view which involves examining the
“steady-state” behavior of the algorithm and arguing that this
characterizes the long-term evolution of the parameter vector.
In the remainder of this section, we introduce this view of
TD( ) and provide an overview of the analysis that it leads
to, in the context of linear function approximators. Our goal is
to convey some intuition about how the algorithm works, and
in this spirit we maintain the discussion at an informal level,
omitting technical assumptions and other details required to



TSITSIKLIS AND VAN ROY: ANALYSIS OF TEMPORAL-DIFFERENCE LEARNING 677

formally prove the statements we make. These technicalities
will be addressed in subsequent sections, where formal proofs
are presented.

A. Inner Product Space Concepts and Notation

We begin by introducing some notation that will make our
discussion here, as well as the analysis later in the paper,
more concise. Let denote the steady-state
probabilities for the process. We assume that for
all . We define an diagonal matrix with diagonal

entries . It is easy to see that
satisfies the requirements for an inner product. We denote
the norm on the associated inner product space by

and the set of vectors
by . As we will later prove, lies in ,
and it is in this inner product space that the approximations

evolve. Regarding notation, we will also keep
using , without a subscript, to denote the Euclidean
norm on finite-dimensional vectors or the Euclidean-induced
norm on finite matrices. (That is, for any matrix, we have

.)
We will assume that each basis function is an element

of so that . For any pair
of functions , we say that is -orthogonal
to (denoted by ) if and only if . For any

, there exists a unique element
minimizing over . This is

referred to as theprojectionof on with respect
to . We define a “projection matrix” (more precisely,
projection operator) that generates such awhen applied to

. Assuming that the basis functions are linearly
independent, the projection matrix is given by

(1)

(Note that is a matrix.) For any ,
we then have

Furthermore, is the unique element of
such that for all . In other
words, the difference betweenand is -orthogonal to the
space spanned by the basis functions.

The projection is a natural approximation to ,
given the fixed set of basis functions. In particular, is
the solution to the weighted linear least-squares problem of
minimizing

with respect to . Note that the error associated with each state
is weighed by the frequency with which the state is visited.
(If the state space were continuous instead of countable, this
sum would be replaced by an integral.)

B. The TD( ) Operator

To streamline our analysis of TD() we introduce an oper-
ator that is useful in characterizing the algorithm’s dynamics.
This operator, which we will refer to as the TD() operator,
is indexed by a parameter and is denoted by

. It is defined by

for , and

for , so that (under
some technical conditions). The fact that maps
into will be established in a later section. To
interpret the TD( ) operator in a meaningful manner, note
that for each , the term

is the expected cost to be incurred overtransitions plus an
approximation to the remaining cost to be incurred, based on

. This sum is sometimes called the “-stage truncated cost-
to-go.” Intuitively, if is an approximation to the cost-to-go
function, the -stage truncated cost-to-go can be viewed as an
improved approximation. Since is a weighted average
over the -stage truncated cost-to-go values, can also
be viewed as an improved approximation to. In fact, we
will prove later that is a contraction on , whose
fixed point is . Hence, is always closer to than
is, in the sense of the norm .

C. Dynamics of the Algorithm

To clarify the fundamental structure of TD(), we construct
a process . It is easy to see that is a
Markov process. In particular, and are deterministic
functions of and the distribution of only depends on

. Note that at each time, the random vector , together
with the current parameter vector, provides all necessary
information for computing . By defining a function with

where , we can rewrite the TD() algorithm as

As we will show later, for any , has a well-defined
“steady-state” expectation, which we denote by .
Intuitively, once reaches steady state, the TD() algorithm,
in an “average” sense, behaves like the following deterministic
algorithm:
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Under some technical assumptions, the convergence of this
deterministic algorithm implies convergence of TD(), and
both algorithms share the same limit of convergence. Our study
centers on an analysis of this deterministic algorithm.

It turns out that

and thus the deterministic algorithm takes the form

As a side note, observe that the execution of this deterministic
algorithm would require knowledge of transition probabilities
and the transition costs between all pairs of states, and when
the state space is large or infinite, this is not feasible. Indeed,
stochastic approximation algorithms like TD() are moti-
vated by the need to alleviate such stringent information and
computational requirements. We introduce the deterministic
algorithm solely for conceptual purposes and not as a feasible
alternative for practical use.

To gain some additional insight about the evolution of,
we rewrite the deterministic algorithm in the form

(2)

Note that in the case of , this becomes

which is a steepest descent iteration for the problem of
minimizing

with respect to . It is easy to show that if the step sizes are
appropriately chosen, will converge to .

In the case of , we can think of each iteration of the
deterministic algorithm as that of a steepest descent method
for minimizing

with respect to , given a fixed . Note, however, that the error
function changes from one time step to the next, and therefore
it is not a true steepest descent method. Nevertheless, if we
think of as an approximation to , the algorithm
makes some intuitive sense. However, some subtleties are
involved here.

To illustrate this, consider a probability distribution
over the state-space that is different from the steady-state
distribution . Define a diagonal matrix with diagonal
entries . If we replace the matrix in the
deterministic variant of TD(1) with the matrix , we obtain

which is a steepest descent method that minimizes

with respect to . If step sizes are appropriately chosen,
will converge to , where is the projection matrix
with respect to the inner product . On the other hand, if
we replace with in the TD( ) algorithm for , the
algorithm might not converge at all! We will formally illustrate
this phenomenon in Section IX.

To get a better grasp on the issues involved here, let us
consider the following variant of the algorithm:

(3)

Note that by letting , we recover the deterministic
variant of TD( ). Each iteration given by (3) can be thought
of as a steepest descent iteration on an error function given by

(The variable being optimized is, while remains fixed.)
Note that the minimum of this (time-varying) error function
at time is given by . Hence, letting ,
we might think of as a “target vector,” given a
current vector . We can define an algorithm of the form

(4)

which moves directly to the target, given a current vector.
Intuitively, the iteration of (3) can be thought of as an

incremental form of (4). Hence, one might expect the two
algorithms to have similar convergence properties. In fact,
they do. Concerning convergence of the algorithm given by
(4), note that if is a contraction of the norm , then
the composition is also a contraction of the norm

, since the projection is a nonexpansion of that norm.
However, there is no reason to believe that the projection

will be a nonexpansion of the norm if .
In this case, may not be a contraction and might
even be an expansion. Hence, convergence guarantees for the
algorithms of (3) and (4) rely on a relationship between
and . This idea captures the issue that arises with variants
of TD( ) that sample states with frequencies independent of
the dynamics of the Markov process. In particular, the state
sampling frequencies are reflected in the matrix, while the
dynamics of the Markov process make a contraction
with respect to . When states are sampled on-line, we
have , while there is no such promise when states are
sampled by an independent mechanism.

For another perspective on TD(), note that the determinis-
tic variant, as given by (2), can be rewritten in the form

for some matrix and vector . As we will show later, the
contraction property of and the fact that is a projection
with respect to the same norm imply that the matrixis
negative definite. From this fact, it is easy to see that the
iteration converges, given appropriate step-size constraints.
However, it is difficult to draw an intuitive understanding
from the matrix , as we did for the operators and .
Nevertheless, for simplicity of proof, we use the representation
in terms of and when we establish that TD() has the



TSITSIKLIS AND VAN ROY: ANALYSIS OF TEMPORAL-DIFFERENCE LEARNING 679

properties required for application of the available machinery
from stochastic approximation. This machinery is what allows
us to deduce convergence of the actual (stochastic) algorithm
from that of the deterministic counterpart.

IV. CONVERGENCE RESULT

In this section we present the main result of this paper,
which establishes convergence and characterizes the limit
of convergence of temporal-difference learning, when linear
function approximators are employed. We begin by stating the
required assumptions.

The first assumption places constraints on the underlying
infinite-horizon discounted Markov chain. Essentially, we as-
sume that the Markov chain is irreducible and aperiodic and
that the steady-state variance of transition costs is finite. The
formal statement follows.

Assumption 1:

1) The Markov chain is irreducible and aperiodic. Fur-
thermore, there is a unique distributionthat satisfies

with for all ; here, is a finite or infinite
vector, depending on the cardinality of. Let
stand for expectation with respect to this distribution.

2) Transition costs satisfy

Our second assumption ensures that the basis functions used
for approximation are linearly independent and do not grow
too fast.

Assumption 2:

1) The matrix has full column rank; that is, the basis
functions are linearly indepen-
dent.

2) For every , the basis function satisfies

The next assumption essentially requires that the Markov
chain has a certain “degree of stability.” As will be shown
in Section VI, this assumption is always satisfied when the
state-space is finite. It is also satisfied in many situations of
practical interest when the setis infinite. Further discussion
can be found in Section VII.

Assumption 3:There exists a function (the
range is the set of nonnegative reals) satisfying the following
requirements.

1) For all and

and

2) Any , there exists a constant such that for all

Implicit in the statement of this assumption is that certain
expectations are finite. It will be seen later that their finiteness
is a consequence of earlier assumptions.

Our final assumption places fairly standard constraints on
the sequence of step sizes.

Assumption 4:The step sizes are positive, nonincreas-
ing, and predetermined (chosen prior to execution of the
algorithm). Furthermore, they satisfy

and

The main result of this paper follows.
Theorem 1: Under Assumptions 1–4, the following hold.

1) The cost-to-go function is in .
2) For any , the TD( ) algorithm with linear func-

tion approximators, as defined in Section II, converges
with probability one.

3) The limit of convergence is the unique solution of
the equation

4) Furthermore, satisfies1

In order to place Theorem 1 in perspective, let us discuss
its relation to available results. If one lets be the th unit
vector for each , and if we assume that is finite, we are
dealing with a lookup table representation of the cost-to-go
function. In that case, we recover a result similar to those in
[5] (actually, that paper dealt with the on-line TD() algorithm
only for Markov chains involving a termination state). With
a lookup table representation, the operator is easily
shown to be a maximum norm contraction, the projection
operator is simply the identity matrix, and general results
on stochastic approximation methods based on maximum
norm contractions [4], [5] become applicable. However, once
function approximation is introduced, the composition
need not be a maximum norm contraction, and this approach
does not extend.

Closer to our results is the work of Dayan [8] who con-
sidered TD( ) for the case of linear function approximators
and established a weak form of convergence (convergence

1It has been brought to our attention by V. Papavassiliou that this bound
can be improved to

k�r� � J
�kD �

1� ��

(1� �)(1 + �� 2��)
k�J� � J

�kD:
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in the mean). Finally, the work of Dayan and Sejnowski [6]
contains a sketch of a proof of convergence with probability
one. However, it is restricted to the case where the vectors

are linearly independent, which is essentially equivalent
to having a lookup table representation. (A more formal proof,
for this restricted case, has been developed in [7].) Some of the
ideas in our method of proof originate in the work of Sutton
[2] and Dayan [8]. Our analysis also leads to an interpretation
of the limit of convergence. In particular, Theorem 1 offers an
illuminating fixed-point equation, as well as a graceful bound
on the approximation error. Previous works lack interpretable
results of this kind.

V. PRELIMINARIES

In this section we present a series of lemmas that provide
the essential ideas behind Theorem 1. Lemma 1 states a
general property of Markov chains that is central to the
analysis of TD( ). Lemma 2 ensures that our assumptions
are sufficient to have a well-defined cost-to-go function
in . Lemmas 3–6 deal with properties of the TD()
operator and the composition , as well as their fixed
points. Lemma 7 characterizes the steady-state expectations
of various variables involved in the dynamics of TD(), and
these results are used in the proof of Lemma 8, which deals
with the steady-state dynamics. Lemma 9 establishes that these
dynamics lead to convergence of the deterministic version
of the algorithm. Finally, we state a theorem concerning
stochastic approximation that will be used in Section VI, along
with the lemmas, to establish convergence of the stochastic
algorithm.

We begin with the fundamental lemma on Markov chains.
Lemma 1: Under Assumption 1-1), for any ,

we have .
Proof: The proof involves Jensen’s inequality, the

Tonelli–Fubini theorem, and the property

Our first use of Lemma 1 will be in showing that is in
. In particular, we have the following result, where

we use the notation to denote the vector of dimension
whose th component is equal to .

Lemma 2: Under Assumptions 1-1) and 2), is well
defined and finite for every . Furthermore, is in

, and

Proof: If the Markov chain starts in steady state, it
remains in steady state, and therefore

where we are using the Tonelli–Fubini theorem to interchange
the expectation and the summation, as well as Assumption
1-2). Since , it follows that

Since for all , the expectation defining is well
defined and finite.

Using the Tonelli–Fubini theorem to switch the order of
expectation and summation in the definition of, we obtain

and it follows that

To show that is in , we have

where the second inequality follows from Lemma 1. Note that
we have

by Assumption 1-2). It follows that is in .
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The next lemma states that the operator maps
into itself and provides a formula for evaluating

.
Lemma 3: Under Assumption 1, for any and

, is in , and for , we
have

Proof: We have

and the formula in the statement of the lemma follows.
We have shown in Lemma 2 that . Thus, for

, we can use Lemma 1 to obtain

Similarly

for any , by Lemma 1. This completes the proof.

Lemma 1 can also be used to show that is a contraction
on . This fact, which is captured by the next lemma,
will be useful for establishing error bounds.

Lemma 4: Under Assumption 1-1), for any
and , we have

Proof: The case of is trivial. For , the result
follows from Lemmas 1 and 3. In particular, we have

The next lemma states that is the unique fixed point of
.

Lemma 5: Under Assumption 1, for any , the
cost-to-go function uniquely solves the system of equations
given by

Proof: For the case of , the result follows directly
from the definition of . For , the fact that is a
fixed point follows from Lemmas 2 and 3, the Tonelli–Fubini
theorem, and some simple algebra:

The contraction property (Lemma 4) implies that the fixed
point is unique.

The next lemma characterizes the fixed point of the com-
position . This fixed point must lie in the range of

, which is the space [note that this is a
subspace of , because of Assumption 2-2)]. The
lemma establishes existence and uniqueness of this fixed point,
which we will denote by . Note that in the special case
of the lemma implies that , in agreement
with the definition of .

Lemma 6: Under Assumptions 1 and 2, is a
contraction and has a unique fixed point which is of the form

for a unique choice of . Furthermore, satisfies the
following bound:

Proof: Lemma 4 ensures that is a contraction from
into itself, and from is its fixed point by

Lemma 5. Note that for , by the Babylo-
nian–Pythagorean theorem we have

since . It follows that is nonexpansive,
and thus the composition is a contraction. Hence,

has a unique fixed point of the form , for some
. Because the functions are assumed to be linearly

independent, it follows that the choice of is unique.
Using the fact that is in (Lemma 2) and is

the fixed point of (Lemma 5), we establish the desired
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bound. In particular, we have

and it follows that

We next set out to characterize the expected behavior of
the steps taken by the TD() algorithm in “steady state.”
In particular, we will get a handle on for any
given . While this expression can be viewed as a limit of

as goes to infinity, it is simpler to view it as
an expectation referring to a process that is already in steady
state. We therefore make a short digression to construct a
stationary process .

We proceed as follows. Let be a Markov chain that
evolves according to the transition probability matrixand
is in steady state, in the sense that for
all and all . Given any sample path of this Markov chain,
we define

(5)

Note that is constructed by taking the stationary process
, whose variance is finite (Assumption 2), and passing it

through an exponentially stable linear time invariant system.
It is then well known that the output of this filter is finite
with probability one and has also finite variance. Withso
constructed, we let and note that this is
a Markov process with the same transition probabilities as
the Markov process that was constructed in the middle
of Section III (the evolution equation is the same). The only
difference is that the process of Section III was initialized
with , whereas here we have a stationary process.
We can now identify with the expectation with respect
to this invariant distribution.

Prior to studying , let us establish a few pre-
liminary relations in the next lemma.

Lemma 7: Under Assumptions 1 and 2, the following re-
lations hold.

1) , for .
2) There exists a finite constant such that

, for all .
3)
4)
5)

Furthermore, each of the above expressions is well defined
and finite.

Proof: We first observe that for any ,
we have

(Note that , by Lemma 1, and using the
Cauchy–Schwartz inequality, is finite.) By special-
izing to the case where we are dealing with vectors of the
form and (these vectors are in as
a consequence of Assumption 2), we obtain

Since the vectors and are arbitrary, it follows that

We place a bound on the Euclidean-induced matrix norm
as follows. We have

which is a finite constant , by Assumption 2-2). We have
used here the notation to indicate the th column of
the matrix , with entries . Note that the
second inequality above follows from the Cauchy–Schwartz
inequality.

We have so far verified parts 1) and 2) of the lemma. We
now begin with the analysis for part 3). Note that
is the same for all, and it suffices to prove the result for the
case . We have

where the interchange of summation and expectation is justi-
fied by the dominated convergence theorem. The desired result
follows by using the result of part 1).

The results of parts 4) and 5) are proved by entirely similar
arguments, which we omit.

With the previous lemma at hand, we are ready to charac-
terize . This is done in the following lemma.

Lemma 8: Under Assumptions 1 and 2, we have

which is well defined and finite for any finite.



TSITSIKLIS AND VAN ROY: ANALYSIS OF TEMPORAL-DIFFERENCE LEARNING 683

Proof: By applying Lemma 7, we have

For , it follows that

Note that for and any , we have

Hence, for , we have

by Lemma 3. Each expression is finite and well defined by
Lemma 7.

The next lemma shows that the steps taken by TD() tend
to move toward .

Lemma 9: Under Assumptions 1 and 2, we have

Proof: We have

where the last equality follows because [see
(1)]. As shown in the beginning of the proof of Lemma
5, is a contraction with fixed point , and the
contraction factor is no larger than. Hence

and using the Cauchy–Schwartz inequality, we obtain

Since , the result follows.
We now state without proof a result concerning stochastic

approximation which will be used in the proof of Theorem 1.
This is a special case of a very general result on stochastic
approximation algorithms [19, Th. 17, p. 239]. It is straight-
forward to check that all of the assumptions in the result of

[19] follow from the assumptions imposed in the result below.
We do not show here the assumptions of [19] because the list
is long and would require a lot in terms of new notation.
However, we note that in our setting here, the potential
function that would be required to satisfy the assumptions
of the theorem from [19] is given by .

Theorem 2: Consider an iterative algorithm of the form

where

1) the (predetermined) step-size sequenceis positive,
nonincreasing, and satisfies and

;
2) is a Markov process with a unique invariant distri-

bution, and there exists a mappingfrom the states of
the Markov process to the positive reals, satisfying the
remaining conditions. Let stand for expectation
with respect to this invariant distribution;

3) and are matrix and vector valued functions,
respectively, for which and

are well defined and finite;
4) the matrix is negative definite;
5) there exist constants and such that for all

and

6) for any there exists a constant such that for
all

Then, converges to , with probability one, where is
the unique vector that satisfies .

VI. PROOF OF THEOREM 1

The step involved in the update of is

Hence, takes the form

where

and

By Lemma 7, and are both
well defined and finite.

By Lemma 6, we have . From (1), we
also have . Hence, .
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We now compare with the formula for , as given
by Lemma 8, and conclude that . Hence

It follows from Lemma 9 that

for any , and thus is negative definite.
We will use Theorem 2 to show that converges. Our

analysis thus far ensures validity of all conditions except for
5) and 6). We now show that Assumption 3 is sufficient to
ensure validity of these two conditions.

We begin by bounding the summations involved in 5).
Letting , recall that

Let us concentrate on the term . Using the formula for
, we have

Using the triangle inequality, we obtain

We will individually bound the magnitude of each summation
in the right-hand side.

First we have

where the second inequality follows from the fact that
. Assumption 3-1) implies that

for some constants and and any . It follows that

for some constants and .
Next, we deal with the second summation. Letting

be defined by

we have

for some constant , where the inequality follows from
Assumption 3-1).

Finally, recalling that , for some
absolute constant (Lemma 7), we have

Given these bounds, it follows that there exist positive
constants and such that

In other words, the summation above is bounded by a polyno-
mial function of , , and . An identical argument
can be carried out for the terms and ,
which we omit to avoid repetition. Using these arguments, we
can place bounds that are polynomial in , , and ,
on the summations in Condition 5) of Theorem 2. We can thus
satisfy the condition with a function ( )
that is polynomial in , , and . The fact that such
a function would satisfy Condition 6) then follows from
Assumption 3-2).

We now have all the conditions needed to apply Theorem 2.
It follows that converges to , which solves .
Since , Lemma 8 implies that

By Lemma 6 along with the fact that has full row
rank [by virtue of Assumption 2-1)], uniquely satisfies this
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equation and is the unique fixed point of . Lemma 6 also
provides the desired error bound. This completes the proof to
Theorem 1.

VII. T HE CASE OF A FINITE STATE SPACE

In this section, we show that Assumptions 1-2), 2-2), and
3 are automatically true whenever we are dealing with an
irreducible aperiodic Markov chain with a finite state space.
This tremendously simplifies the conditions required to apply
Theorem 1, reducing them to a requirement that the basis
functions be linearly independent [Assumption 2a)]. Actually,
even this assumption can be relaxed if Theorem 1 is stated
in a more general way. This assumption was adopted for the
sake of simplicity in the proof.

Let us now assume that is an irreducible aperiodic finite-
state Markov chain [Assumption 1-1)]. Assumptions 1-2) and
2-2) are trivially satisfied when the state space is finite. We
therefore only need to prove that Assumption 3 is satisfied.

It is well known that for any irreducible aperiodic finite-state
Markov chain, there exist scalars and such that

Let us fix . We define a sequence of diagonal matrices
with the th diagonal element equal to . Note

that

It is then easy to show that

the proof being essentially the same as in Lemma 7-1). We
then have

Note that all entries of are bounded by one, and therefore
there exists a constant such that for all . We
then have

The first part of Assumption 3-1) is thus satisfied by a function
that is equal to a constant for all. An analogous

argument, which we omit, can be used to establish that
the same is true for the second part of Assumption 3-1).
Assumption 3-2) follows from the fact that is constant.

VIII. I NFINITE STATE SPACES

The purpose of this section is to shed some light on the
nature of our assumptions and to suggest that our results
apply to infinite-state Markov chains of practical interest. For
concreteness, let us assume that the state space is a countable
subset of . Each state is associated with an integer
index and denoted by .

Let us first assume that the state space is a bounded subset of
and that the mappings defined by

and are continuous functions on and
. Then, Assumptions 1-2) and 2-2) are automatically valid

because continuous functions are bounded on bounded sets.
Assumption 3-1) basically refers to the speed with which the

Markov chain reaches steady state. Let be a diagonal
matrix whose th entry is . Then Assumption 3-
3) is satisfied by a function if we impose a condition
of the form

for some finite constant . In other words, we want the-step
transition probabilities to converge fast enough to the steady-
state probabilities (for example, could drop at the
rate of ). In addition, we need this convergence to be
uniform in the initial state.

As a special case, suppose that the Markov chain has a
distinguished state, say state zero, and that for some

Then, converges to exponentially fast, and uniformly
in , and Assumption 3-1) is satisfied with . Validity
of Assumption 3-2) easily follows.

Let us now consider the case where the state space is an
unbounded subset of . For many stochastic processes of
practical interest (e.g., those that satisfy a large deviations
principle), the tails of the probability distribution
exhibit exponential decay; let us assume that this is the case.

For the purposes of Assumption 3, it is natural in this context
to employ a function , for some and
. Assumption 3-2) is essentially a stability condition; given

our definition of , it states that is not expected to
grow too rapidly, and this is satisfied by most stable Markov
chains of practical interest. Note that by taking the steady-state
limit we obtain for all , which in essence
says that the tails of the steady-state distribution decay
faster than any polynomial (e.g., exponentially).

Assumption 3-1) is the most complex one. Recall that it
deals with the speed of convergence of certain functions of
the Markov chain to steady state. Whether it is satisfied has
to do with the interplay between the speed of convergence of

to and the growth rate of the functions and
. Note that the assumption allows the rate of convergence

to get worse as increases; this is captured by the term
in the right-hand side.

We close with a concrete illustration, related to queueing
theory. Let be a Markov chain that takes values in the
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nonnegative integers, and let its dynamics be

where the are independent, identically distributed nonneg-
ative integer random variables with a “nice” distribution; e.g.,
assume that the tail of the distribution of asymptotically
decays at an exponential rate. (This Markov chain corresponds
to an M/G/1 queue which is observed at service completion
times, with being the number of new arrivals while serving
a customer.) Assuming that , this chain has a
“downward drift,” is “stable,” and has a unique invariant
distribution [20]. Furthermore, there exists some such
that , for sufficiently large. Let so
that the cost function basically counts the number of customers
in queue. Let us introduce the basis functions ,

. Then, Assumptions 1 and 2 are satisfied.
Assumption 3-2) can be shown to be true for functions of the
form by exploiting the downward drift
property (in this example, it is natural to simply let ).

Let us now discuss Assumption 3-1). The key is again
the speed of convergence of to . Starting from
state , with large, the Markov chain has a negative drift
and requires steps to enter (with high probability) the
vicinity of state zero [21], [22]. Once the vicinity of state zero
is reached, it quickly reaches steady state. Thus, if we con-
centrate on , the difference

is of the order of for time
steps and afterwards decays at a fast rate. This suggests
that Assumption 3-1) is satisfied by a functionthat grows
polynomially with .

Our discussion in the preceding example was far from
rigorous. Our objective was not so much to prove that our
assumptions are satisfied by specific examples, but rather
to demonstrate that their content is plausible. Furthermore,
while the M/G/1 queue is too simple an example, we ex-
pect that stable queueing networks that have a downward
drifting Lyapunov function should also generically satisfy our
assumptions.

IX. THE IMPORTANCE OFON-LINE SAMPLING

In the introduction, we claimed that on-line sampling plays
an instrumental role in ensuring convergence of TD(). In par-
ticular, when working with a simulation model, it is possible
to define variants of TD() that do not sample states with the
frequencies natural to the Markov chain and, as a result, do not
generally converge. Many papers, including [10], [11], [13],
and [14], present such examples as counterexamples to TD().
In this section, we provide some insight into this issue by
exploring the behavior of a variant of TD(0). More generally,
variants of TD( ) can be defined in a similar manner, and the
same issues arise in that context. We limit our discussion to
TD(0) for ease of exposition.

We consider a variant of TD(0) where statesare sampled
independently from a distribution over , and successor
states are generated by sampling according to

. Each iteration of the algorithm takes the form

Let us refer to this algorithm as-sampled TD(0). Note that
this algorithm is closely related to the original TD(0) algorithm
as defined in Section II. In particular, if is generated by the
Markov chain and , we are back to the original
algorithm. It is easy to show, using a subset of the arguments
required to prove Theorem 1, that this algorithm converges
when for all , and Assumptions 1, 2, and 4 are
satisfied. However, results can be very different when is
arbitrary. This is captured by the following Theorem.

Theorem 3: Let be a probability distribution over a
countable set with at least two elements. Let the discount
factor be constrained to the open interval . Let
the sequence satisfy Assumption 4. Then, there exists a
stochastic matrix , a transition cost function , and a
matrix , such that Assumptions 1 and 2 are satisfied, and
execution of the -sampled algorithm leads to

for some unique vector .
Proof: Without loss of generality, we will assume

throughout this proof that and .
We define a probability distribution satisfying

and for all . The fact that
ensures that such a probability distribution exists. We define
the transition probability matrix with each row equal to

. In other words, we have

...
...

...

Finally, we define the transition cost function to be
for all and . Assumption 1 is trivially satisfied by our choice
of and , and the invariant distribution of the Markov
chain is . Note that , since no transition incurs any
cost.

Let be an matrix, defined by a single scalar function
with

if
if
otherwise.

Note that, implicit from our definition of , is scalar, and
Assumption 2 is trivially satisfied. We let so that

.
In general, we can express in terms of a recurrence

of the form

where is the diagonal matrix with diagonal elements
.
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Specializing to our choice of parameters, the recurrence
becomes

For shorthand notation, let be defined by

Since and , we have

and since , there exists some such that

It follows that

and since , we have

if .

X. DIVERGENCE WITH A NONLINEAR APPROXIMATOR

Our analysis of temporal-difference learning up until now
has focused on linear function approximators. In many situa-
tions, it may be natural to employ classes of nonlinear function
approximators. Neural networks present one popular example.
One might hope that the analysis we have provided for the
linear case generalizes to nonlinear parameterizations, perhaps
under some simple regularity conditions. Unfortunately, this
does not seem to be the case. To illustrate potential difficulties,
we present an example for which TD(0) diverges due to the
structure of a nonlinear function approximator. (By divergence
here, we mean divergence of both the approximate cost-to-
go function and the parameters.) For the sake of brevity, we
limit our study to a characterization of steady-state dynamics,
rather than presenting a rigorous proof, which would require
arguments formally relating the steady-state dynamics to the
actual stochastic algorithm.

We consider a Markov chain with three states (
), all transition costs equal to zero, and a discount

factor . The cost-to-go function is therefore
given by . Let the function approximator

be parameterized by a single scalar. Let the form of be
defined by letting be some nonzero vector satisfying

Fig. 1. Example of divergence with a nonlinear function approximator. The
plot is of points in the planefJ 2 <3je0J = 0g.

, where , requiring that be the
unique solution to the linear differential equation

(6)

where is the identity matrix, is a small positive
constant, and is given by

Given our definition of , it is easy to show that all functions
representable by lie on the plane .
Furthermore, the set of functions forms a spiral
that diverges as grows to infinity (see Fig. 1).

We let the transition probability matrix of the Markov chain
be

Since all transition costs are zero, the TD(0) operator is given
by , for all . It turns out that there is
an acute angle and a scalar such that for any ,

is equal to the vector scaled by and rotated by
degrees in the plane . The points labeled

and in Fig. 1 illustrate the nature of this transformation.
Before discussing divergence of TD(0), let us motivate the

underlying intuition by observing the qualitative behavior of
a simpler algorithm. In particular, suppose we generated a
sequence of approximations , where each satisfies
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(Note that the steady-state distribution is uniform so that the
Euclidean norm is the appropriate one for this context.) In
Fig. 1, the point on the spiral closest to is further from
the origin than , even though is closer to the origin
than (the origin is located at the center of the circle in the
diagram). Therefore, if , then .
Furthermore, since each application of induces the same
degree of rotation and scaling, we might expect that each
subsequent iteration takes the approximation further from the
origin in a completely analogous way. Hence, the underlying
dynamics suggest that divergence is conceivable.

Let us now more concretely identify divergent behavior
in the steady-state dynamics of TD(0). The TD(0) algorithm
applies the update equation

where is the state visited by the trajectory at time. Since
the steady-state distribution resulting fromis uniform, the
steady-state expectation of the update direction, within a factor
of three, is given by

This is the inner product of the vector , which
is , with the vector with components

, which is the vector .
As the step size becomes extremely small, we can think of

the deterministic version of the algorithm as an approximation
to a differential equation. Given the average direction of
motion of the parameter, the appropriate differential equation
for our example is

For , we have

where the first equality follows from the fact that
, for any . Note that

which is easily verified to be positive definite. Hence, there
exists a positive constant such that

(7)

By a continuity argument, this inequality remains true (pos-
sibly with a smaller positive constant) if is positive but

sufficiently small. The combination of this inequality and the
fact that

implies that both and diverge to infinity.

XI. CONCLUSIONS

We have established the convergence of on-line temporal-
difference learning with linear function approximators when
applied to irreducible aperiodic Markov chains. We note
that this result is new even for the case of lookup table
representations (i.e., when there is no function approximation),
but its scope is much greater. Furthermore, in addition to
covering the case where the underlying Markov chain is
finite, the result also applies to Markov chains over a general
(infinite) state space, as long as certain technical conditions
are satisfied.

The key to our development was the introduction of the
norm and the property . Furthermore, our
development indicates that the progress of the algorithm can
be monitored in two different ways: 1) we can keep track of
the magnitude of the approximation error ; the natural
norm for doing so is , or 2) we can keep track of the
parameter error ; the natural norm here is the Euclidean
norm, as made clear by our convergence proof.

To reinforce the central ideas in the proof, let us revisit
the TD(0) method, for the case where the costs per stage
are identically zero. In this case, is simply . The
deterministic counterpart of the algorithm, as introduced in
Section III, takes the form

For any vector , we have

This shows that the matrix is negative definite,
hence is also negative definite and convergence
of this deterministic iteration follows.

Besides convergence, we have also provided bounds on the
distance of the limiting function from the true cost-to-
go function . These bounds involve the expression

, which is natural because no approximation could have
error smaller than this expression (when the error is measured
in terms of ). What is interesting is the factor of

This expression is one when . For every , it
is larger than one, and the bound actually deteriorates as
decreases. The worst bound, namely
is obtained when . Although this is only a bound, it
strongly suggests that higher values ofare likely to produce
more accurate approximations of . This is consistent with
the examples that have been constructed by Bertsekas [23].
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The sensitivity of the error bound to raises the question
of whether or not it ever makes sense to setto values less
than one. Experimental results [2], [24], and [25] suggest that
setting to values less than one can often lead to significant
gains in the rate of convergence. Such acceleration may be
critical when computation time and/or data (in the event
that the trajectories are generated by a physical system) are
limited. A full understanding of how influences the rate
of convergence is yet to be found. Furthermore, it might
be desirable to tune as the algorithm progresses, possibly
initially starting with and approaching (although
the opposite has also been advocated). These are interesting
directions for future research.

In many applications of temporal-difference learning, one
deals with a controlled Markov chain and at each stage
a decision is “greedily” chosen, by minimizing the right-
hand side of Bellman’s equation and using the available
approximation in place of . Our analysis does not apply
to such cases involving changing policies. Of course, if the
policy eventually settles into a limiting policy, we are back to
the case studied in this paper and convergence is obtained.
However, there exist examples for which the policy does
not converge [16]. It remains an open problem to analyze
the limiting behavior of the parametersand the resulting
approximations for the case where the policy does not
converge.

On the technical side, we mention a few straightforward
extensions of our results. First, the linear independence of the
basis functions is not essential. In the linearly dependent
case, some components of and become linear combina-
tions of the other components and can be simply eliminated,
which takes us back to the linearly independent case. A second
extension is to allow the cost per stage to be
noisy, as opposed to being a deterministic function of
and . In particular, we can replace the Markov process

that was constructed for the purposes of
our analysis with a process , where
is the cost associated with the transition fromto . Then,
as long as the distribution of the noise only depends on the
current state and its moments are such that the assumptions of
Theorem 2 are still satisfied, our proof can easily be modified
to accommodate this situation. Finally, the assumption that
the Markov chain was aperiodic can be alleviated. No part of
our convergence proof truly required this assumption—it was
introduced merely to simplify the exposition.

Our results in Section IX have elucidated the importance
of sampling states according to the steady-state distribution of
the Markov chain under consideration. In particular, variants
of TD( ) that sample states otherwise can lead to divergence
when function approximators are employed. As a parting
note, we point out that a related issue arises when one
“plays” with the evolution equation for the eligibility vector

. (For example Singh and Sutton [24] have suggested an
alternative evolution equation for known as the “replace
trace.”) A very general class of such mechanisms can be
shown to lead to convergent algorithms for the case of lookup
table representations [16]. However, different mechanisms for
adjusting the coefficients lead to a change in the steady-

state average value of , affect the matrix , and the
negative definiteness property can be easily lost.

Finally, the example of Section X identifies the possibil-
ity of divergence when TD() is used in conjunction with
nonlinear function approximators. However, the example is
somewhat contrived, and it is unclear whether divergence can
occur with special classes of function approximators, such
as neural networks. This presents an interesting question for
future research.
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