Journal of Heuristics, 3: 245—-262 (1997)
(© 1997 Kluwer Academic Publishers

Rollout Algorithms for Combinatorial Optimization *

DIMITRI P. BERTSEKAS, JOHN N. TSITSIKLIS AND CYNARA WU
Department of Electrical Engineering and Computer Science, M.1.T., Cambridge, MA 02139

Abstract

We consider the approximate solution of discrete optimization problems using procedures that are capable of me
nifying the effectiveness of any given heuristic algorithm through sequential application. In particular, we embe
the problem within a dynamic programming framework, and we introduce several types of rollout algorithms.
which are related to notions of policy iteration. We provide conditions guaranteeing that the rollout algorithm
improves the performance of the original heuristic algorithm. The method is illustrated in the context of a machin
maintenance and repair problem.

Key Words:

1. Introduction

We discuss the approximate solution of broad classes of combinatorial optimization prok
lems by embedding them within a Dynamic Programming framework (DP for short).
The key idea is to employ a given heuristic in the construction of an optimal cost-to-gc
function approximation, which is then used in the spirit of the Neuro-Dynamic Program-
ming/Reinforcement Learning methodology (NDP for short; see (Barto, Bradtke and Sing|
(1995), Bertsekas and Tsitsiklis (1996)) for broad discussions of this methodology).

In the next section, we will introduce a general graph search problem that will serve a
the context of our methodology. To illustrate the ideas involved, however, let us conside
the following type of problem, which includes as special cases problems such as shorte
path, assignment, scheduling, matching, etc. The problem is characterized by a fidite set
of feasible solutions, and by a cost functigu). Each solutioru hasN components; that
is, it has the formu = (ug, Uy, ..., uy), whereN is a positive integer. We want to find a
solutionu € U that minimizegy(u).

We can view the preceding problem as a sequential decision problem, whereby tt
componentsly, ..., Uy are selected one-at-a-time. Artuple (uy, ..., u,) consisting of
the firstn components of a solution is called afsolution We associate-solutions with
thenth stage of a DP problem. In particular, for= 1, ..., N, the states of thath stage
are of the form(uy, . .., up). The initial state is a dummy (artificial) state. From this state
we may move to any state), with u; belonging to the set

U, = {01 | there exists a solution of the for@ay, Uy, ..., Oy) € U}.

*Research supported by NSF under Grant DMI-9625489.

246 BERTSEKAS, TSITSIKLIS AND WU

More generally, from a state of the form
(Ug, ..., Up-1),

we may move to any state of the form
(Ug, ..., Up_1, Up),

with u,, belonging to the set

Un(ul, e Un—l)
= {U, | there exists a solution of the form,, ..., Uy_1, Un, ..., Un) € U}.

The controls available at state, ..., u,_1) areu, € Up(Uy, ..., Un_1). The terminal
states of the problem correspond to tResolutions(ug, ..., uy), and the only nonzero
cost is the terminal cogf(uy, . .., Un).

Let J*(uq, ..., uy) denote the optimal cost starting from tfrsolution(uy, . . ., up), that
is, the optimal cost of the problem over solutions whose figimponents are constrained
to be equal tay,i = 1,...,n, respectively. If we knew the optimal cost-to-go function
J*(ug, ..., up), we could construct an optimal solution by a sequenchl giingle com-
ponent minimizations. In particular, an optimal soluti@r, ..., uy) could be obtained
through the algorithm

u = arg min AU, .. U, u), =1, N, Q)
uieU; (u3,....uf_y)

Unfortunately, the preceding DP formulation is seldom viable, because of the prohibitive

computation required to obtain the optimal cost-to-go functiétuy, ..., u,). In NDP,
this difficulty is dealt with by replacing*(ug, .. ., u,) with approximations
J(ug, ..., up),
and by obtaining a suboptimal solutioiy, . . ., Gy) sequentially, through the algorithm
i = arg min J(0y, ..., 01, u), i=1...,N. (2)

ujeV; (Og,...,Gi—1)

The functiond will be called ascoring functioror approximate cost-to-go functipand
may contain some adjustable parameter vector that can be tuned using special “trainin
methods. In this paper, however, we restrict attention to scoring functions that are based «
heuristic algorithms. In particular, we will assume that we have a heuristic algorithm, whict
starting from am-solution(ug, ..., u,), can produce a completé-solution(us, ..., uy)
whose cost is denoted it (ug, ..., u,). One possibility, studied in this paper, is to ap-
proximate the optimal cost-to-go function with the scoring function

J(Uy,...,up) = H(Uq, ..., Up). (3)

ROLLOUT ALGORITHMS 247

A more general possibility is to use multiple heuristic algorithms, which are weighted with
some scalar weights to provide the approximati@n,, . . ., uy). In this paper, we assume
that the weights are fixed (although they could be adjusted through a separate trial-and-ert
process). In a more general NDP approach, the weights could be tunable parameters &
could depend on some features of the given problem. This more general approach will k
the subject of a separate report.

In the next section, we consider a graph search problem that is more general than tl
combinatorial problem described above, and we introduce a corresponding DP framewor
We then formulate several sequential methods for constructing solutions, and we illustral
these methods through some examples.

2. Graph search problems and rollout algorithms

Let us introduce a graph search problem that can serve as a general model for discre
optimization. We are given a directed graph with nodeNéeand arc setd, and a special
nodes, which we call theorigin. We are also given a subsgtof nodes, calledestinations

and a cost functiog(i) on the sef\/. The destination nodes are terminal in the sense that
they have no outgoing arcs. We allow the node and arcAsegs1d.A, to contain an infinite
number of elements. We require, however, that the number of destination nodes be finit
We want to find a directed path that starts at the origiends at one of the destination
nodes e A/, and is such that the cogti) is minimized.

For convenience, and without loss of generality, we will assume that given an or-
dered pair of nodegi, j), there is at most one arc with start nodand end nodg,
which (if it exists) will be denoted byi, j). In this way, a directed path consisting of
arcs (i, i2), (iz,i3), ..., (in_1, in) is unambiguously specified as the sequence of nodes
(1,02, ...,0n).

As an example of the preceding formulation, consider the optimization problem discusse
inthe preceding section. The originis an artificial starting state-$@utiongus, . . ., Up),
n=1,..., N, can be identified with the remaining nodes, and the (compktsplutions
can be identified with the set of destinations.

Similar to the construction used in the preceding section, we can transform the grap
search problem into a DP problem. In particular, the nodes correspond to the states of t
DP problem, the controls available at a given state/node and the corresponding succes:
states/nodes are the outgoing arcs from the node and the associated end nodes of the ¢
respectively. The destination nodesre terminal states of the DP problem, where the
terminal cosg(i) is incurred.

Let us now assume that we have a path construction algofithmvhich given a non-
destination node ¢ AV, constructs a directed path iy, ..., im, i) Starting ai and ending
at one of the destination nodedmplicit in this assumption is that for every non-destination
node, there exists at least one path starting at that node and ending at some destination nc
We denote byH (i) the corresponding cost; that is,

Hi) =g, VignN. (4)

248 BERTSEKAS, TSITSIKLIS AND WU

If i is a destination node, by convention we write
H@i)=g(), VieN. (5)

Note that while the algorithrii{ will generally yield a suboptimal solution, the path that
it constructs may involve a fairly sophisticated suboptimization. For exaniplenay
construct several paths ending at destination nodes according to some heuristics, and t
select the path that yields minimal cost.

One possibility for suboptimal solution of the problem is to start at the olsgamd
use the algorithni{ to obtain a solution of codt (). We instead propose to ugé to
construct a path to a destination node sequentially. At the typical step of the sequence, \
consider all downstream neighborsof a nodei, we run’ starting from each of these
neighbors, and we then move to the neighbor from whitlgives the best result. The
idea of starting with some algorithm, and using it to construct another, hopefully improved
algorithm is implicit in the policy iteration method of DP and in the use of a rollout policy,
which is a form of policy iteration; see (Bertsekas and Tsitsiklis (1996)) (the name “rollout
policy” was used by Tesauro (Tesauro and Galperin (1996)) in connection with one of hi:
simulation-based computer backgammon algorithms). This connection will be shown t
be particularly relevant to our context, and for this reason we call the sequential versio
of H therollout algorithm based ort{, and we denote it bjRH. We note that the idea
of sequential selection of candidates for participation in a solution is implicit in several
combinatorial optimization contexts. For example this idea is embodied in the sequenti
fan candidate list strategy as applied in tabu search (see Glover, Taillard and de Wer
(1993)). This idea is also used in a manner similar to the present paper in the sequent
automatic test procedures of Pattipati (see e.g., Pattipati and Alexandridis (1990)).

To formally describe the rollout algorithm, |8t(i) denote the set of downstream neigh-
bors of node, that is,

N@)={j |, j)isanarg. (6)

Note thatN (i) is nonempty for every non-destination nodesince there exists at least
one path starting dt and ending at a destination. The rollout algorithm starts with the
origin nodes. At the typical step, given a node sequeligés, ..., im), whereip, is not a
destination/R’H adds to the sequence a ndge; such that

ims1 = argjermir;) H(j). (7)

If im,1isadestination node, the pati, . . ., im, im+1) iStakento be the solution generated
by R'H, with corresponding cosy(im1). Otherwise, the process is repeated with the
sequences(iy, ..., im,ims1) replacing 6,i1,...,im). OnceRH has terminated with a
path €, i1, ...,im, 1), we will have obtained the paths constructedbgtarting from each
of the nodes,, ..., im. The best of these paths yields a cost

k:qnnm H ().

ROLLOUT ALGORITHMS 249

We first note that whil&<, by definition, has the property that it yields a path terminating
at a destination starting from any node, the rollout algorifdhi need not have this property
in the absence of additional conditions. We will later introduce a variaRt/gfthat always
terminates. The following example illustrates h&# may fail to terminate.

Example 1 (Nonterminatin@). Assume that there is a single destinatiband that all
other nodes are arranged in a directed cycle. Each non-destination iImagliavo outgoing
arcs: one arc that belongs to the cycle, and another arc whiclt)s Suppose that starting
from anodea # d, the path generated I3y consists of two arcs: the first arc is () where

j is the node subsequentiton the cycle, and the second arcjsq). Then it can be seen
thatRH continually repeats the cycle and never terminates.

We say thatR'H is terminatingif it is guaranteed to terminate finitely starting from
any node. One important case wh&#{ is terminating isvhen the graph is acyclic and
the set of noded/ is finite, since then the nodes of the path generate®y cannot be
repeated and their number is bounded by the number of nodés #&s a first step towards
developing another case whéRé- is terminating, we introduce the following definition.

Definition 1 The algorithm’ is said to besequentially consisterit for every nodei,
wheneverH generates the path, (1, ..., im, 1) starting ati, it also generates the path
(i1,...,im, 1) starting at the nodg.

Example 1 above illustrates a situation whefés not sequentially consistent. On the
other hand, there are many examples of sequentially consistent algorithms that are us
as heuristics in combinatorial optimization. For instanpeedy algorithmsf various
types and other algorithms that inherently have a sequential character often tend to |
sequentially consistent. The following example provides an important context where
sequentially consistent algorithm arises.

Example 2 f{ defined by a heuristic evaluation function)Suppose that we have a real-
valued functionF defined onV, whereF (i) represents an estimate of the optimal cost
starting fromi, that is, the minimal cogy(i) that can be obtained with a path that starts at
i and ends at one of the destination nodes\/. ThenF can be used to define the path
generating algorithrit{ as follows:

The algorithnf+ starts at a nodewith the degenerate path. At the typical step, given
apath{,iy,...,im), whereip, is not a destinatioriR H adds to the path a nodg,; such
that

Imy1 = arg, min F()- (8)

If imy1 is a destination{ terminates with the patts(iy, ..., im, im1). Otherwise, the
process is repeated with the pashig, .. ., im, im+1) replacing 6, i1, . .., im).

Let us assume th&f terminates starting from every node (this has to be verified inde-
pendently). Let us also assume that whenever there is a tie in the minimization of Eq. (8
the algorithmH resolves the tie in a manner that is fixed and independent of the startinc

250 BERTSEKAS, TSITSIKLIS AND WU

nodei of the path, e.g., by resolving the tie in favor of the numerically smallest padat
attains the minimum in Eq. (8). Then it can be seen Hid sequentially consistent.

For a sequentially consistent algoritii) we will assume a restriction in the way the
algorithmR'H resolves ties in selecting the next node on its path via Eq. (7); this restriction
will guarantee thaR H is terminating, and is also needed to ensure®tis sequentially
consistent. We will assume that whenever there is a tie in the minimizatioriR(),
resolves the tie in a manner that is independent of the starting node of the path (similar 1
the preceding example). To elaborate, suppose that at the typical step, where we are giv
a node sequencs,(, ..., im), we have

H(im) = [min_ H(j). 9)
In this case, the pathi(, i, 4, ..., i") generated by the algorithf starting ai,, yields a

costH (im) = g(i’) that is equal to the best obtainable from the successor mael®$(im),

and the nodé,, , attains the minimum in the preceding equation. We require that if there
are some other nodes, in additionifg, ,, attaining this minimum, the next node added
to the current sequencs, (1, . .., im) iSip,, ;. Under this convention for tie-breaking, we
show in the following proposition th&® H terminates at a destination and yields a cost that
is no larger than the cost yielded By

Proposition 1. Let the algorithnH be sequentially consistent. Th&% is terminating.
Furthermore if (i1, ..., iy) is the path generated BRH starting from a non-destination
node i and ending at a destination nodg we have

H(i) = H(@i2) > -+ = H(im-1) = H(im). (10)

Equivalently in view of Eq.(7), we have

i = min [, min K)o min HG)) an
jeN(i1) j€N(im-1)
Proof: Let (i1,i2,...,im,...) be the path generated B/ starting from a non-desti-
nation node;. Foreactm =1,2,...,let(im, iy, 1. im0, - -, im) b€ the path generated

by H starting ai,, wherei, is a destination node. Then, sirkds sequentially consistent,
we have

H(im) = H(ip) = 9(m). (12)
Furthermore, sincg,,, € N(im), we have using the definition & [cf. Eq. (7)]

Hiin) = min H() = Hlimeo).

ROLLOUT ALGORITHMS 251

Combining the last two relations, we obtain

H@m) = Himy), m=12... (13)
and also, equivalently,

g(im) = glimsr), M=12... (14)

To show thatR’H is terminating, consider two successive nogeandin 1 generated
by R’H. Then, in view of Eq. (13), eitheld (i,) > H(imy1), or elseH (im) = H(imy1).
In the latter case, in view of the convention for breaking ties that occur in Eq. (9), the patt
generated by starting fromi,, 1 is the tail portion of the path generatedHystarting from
im, and has one arc less. Thus the number of nodes generafedthetween successive
times that the inequalitid (im) > H (im+1) holds is finite. On the other hand, the inequality
H(m) > H(imy1) can occur only a finite number of times, since the number of destination
nodes is finite, and the destination node of the path generatggdbgrting fromi ,, cannot
be repeated if the inequalitid (i,) > H(imy1) holds. ThereforeRH is terminating.
The relation (13) then implies the desired relations (10) and (11), thus completing th
proof. |

Proposition 1 shows that in the sequentially consistent case, algoRthhnas an im-
portant “automatic cost sorting” property, whereby it follows the best path generated b
‘H. In particular, wherRH generates a pathy(. .., i), it does so by using{ to generate
a collection of other paths starting from all the successor nodes of the intermediate nod
i1,...,im_1. However(iy, ..., im) is guaranteed to be the best among this collection [cf.
Eqg. (11)]. Of course this does not guarantee that the path generatdbwill be a
near-optimal path, because the collection of paths generatidhgy be “poor”. Still, the
property wherebyR M at all times follows the best path found so far is intuitively reassuring.

The following example illustrates the preceding concepts.

Example 3 (One-dimensional walk)Consider a person who walks on a straight line and
at each time period takes either a unit step to the left or a unit step to the right. There is
cost function assigning cogf(i) to each integer. Given an integer starting point on the
line, the person wants to minimize the cost of the point where he will end up after a giver
and fixed numbeN of steps.

We can formulate this problem as a graph search problem of the type discussed in tt
preceding section. In particular, without loss of generality, let us assume that the startin
point is the origin, so that the person’s position aftesteps will be some integer in the
interval [-n, n]. The nodes of the graph are identified with paiksm), wherek is the
number of stepstakensofér£ 1, ..., N)andmisthe person’s positiofm € [—k, k]). A
node(k, m) with k < N has two outgoing arcs with end nod&s{(1, m—1) (corresponding
to a left step) andi(+ 1, m + 1) (corresponding to a right step). The starting state is (0, 0)
and the terminating states are of the fo¢h, m), wherem is of the formN — 2| and
| € [0, N] is the number of left steps taken.

Let’H be defined as the algorithm, which, starting at a n&de), takesN — k successive
steps to the right and terminates at the nddert+ N — k). Note thatH is sequentially

252 BERTSEKAS, TSITSIKLIS AND WU

3. Interpretation in Terms of DI’ and Policy Iteration

(0,0)

EX
KRIRZH
SERBEELAN
(LKL

(N.-N) (N.0) N (N.N)

-N 0 i N-2 N i

Figure 1 lllustration of the path generated by the roII_out aIgori'ERr‘H in Exan]ple 3RH keeps moving to the
left up to the time wher@{ generates two destinqtio(ﬁ, 1)yand(N, i —2)withg(i) < g(i —2). Thenitcontinues
to move to the right ending at the destinatid¥, i), which corresponds to the local minimum closeshto

consistent. The algorithRH, at node(k, m) compares the cost of the destination node
(N, m+ N — k) (corresponding to taking a step to the right and then followif)gand the
cost of the destination nod&(m+ N — k — 2) (corresponding to taking a step to the left
and then followingH). Let us say that an integete [—N + 2, N — 2] is alocal minimum

if gi —2) > g(i)andg(i) < g(i +2). Letus also say that (or —N) is a local minimum

if g(N —2) > g(N) [or g(—N) < g(—N + 2), respectively]. Then it can be seen, using
Eq. (11), that starting from the origin (0, 0%+ obtains the local minimum that is closest
to N, (see figure 1). This is ho worse (and typically better) than the intidgantained by
‘H. Note that ifg has a unique local minimum in the set of integers in the rarge,[N],

the minimum must also be global, and it will be found Ry{. This example illustrates
howR'H may exhibit “intelligence” that is totally lacking frorf, and is in agreement with
the result of Proposition 1.

3. Interpretation in terms of DP and policy iteration

Let us now interpret the concepts and results presented so far in the context of DP. If w
view the graph search problem of this section as a DP problem in the manner describe
earlier, we can see that the algorittiicorresponds to a poligyy, that is, a choice at any
one node of a successor node, which may depend on the choice of initial node/state.
particular, if a pathis, ..., im, im+1) iS generated by starting from node,, then for any

ik, kK=1,...,m, the policyuy specifies the successor node choice

pn (i, 1K) = ikgr.

ROLLOUT ALGORITHMS 253

In the terminology of DP, such a policy is callsdmi-Markov On the other hand, it
is sequentially consistent, the choice of the successor node does not depend on the ini
node/state, and in the terminology of DR is called aMarkovor stationarypolicy.

Consider now the rollout algorithiRH, assuming that it is terminating. Then it can be
seen that similar t@7, algorithmRH defines a policytry that isstationaryregardless of
whetheruy is stationary. Thus, in particulaRH is sequentially consistent (compare also
with Example 2). Infactit can be verified thag is the policy that would be generated by a
single iteration of the classical policy iteration algorithm starting with paligy Itis well-
known from DP theory that a policy iteration starting from a terminating stationary policy
produces another terminating stationary policy of improved cost. This is in agreement witl
the result of Proposition 1, which essentially shows that,ifis stationary, themgry is
stationary and has improved cost.

Let us note that, assumir@H is terminating, we may consider the rollout algorithm
RH, in place of H. This will generate another algorithm, call?R?H, which in a DP
context will correspond to a poligyre . This is the stationary policy obtained fromk
via a policy iteration, or equivalently, fromy via two successive policy iterations.

Finally, let us consider a two-step lookahead rollout algorithm, which we will7e .

This algorithm is defined similar tRH with the only difference that at a given nodeve
consider the sdhl,(i) of all possibletwo-step successor nodes pthat is, the set of nodes
j for which there exists an intermediate nodesuch thatj” € N(i) andj € N(j’). The
next node generated 39,7 is a nodej such that

| =arg min H(j). 15
j=arg min H(j) (1%)

The algorithmR,H bears no clear relation to algorithif&+ andR?H. In particular, no
inference can be drawn regarding the cost functions of these three algorithms, other th:

the relation mentioned earlier th&>H yields no worse cost thaRH starting from any
initial node.

4. Alternative rollout algorithms

We now consider some generalizations of the results and algorithms discussed so far. \
first show that the result of Proposition 1 holds under weaker conditions on the algorithn
‘H. Let us introduce the following definition:

Definition 2 Suppose that algorithiit generates, starting at each nadg N, a path
(i,ig,...,im, 1) with the property

H(@) > H(iy). (16)
Then the algorithnt is said to besequentially improving

It can be seen that a sequentially consistenis also sequentially improving, with
equality holding in Eqg. (16). If we now use Eq. (16) in place of Eq. (12) in the proof of

254 BERTSEKAS, TSITSIKLIS AND WU

Proposition 1, we see that this proof carries through verbatim. We thus have the followin
generalization of Proposition 1:

Proposition 2. Let the algorithmH be sequentially improvingand suppose thakRH
is terminating. Thenif (i1,...,im) is the path generated bR+ starting from a non-
destination nodejiand ending at a destination nodg,iwe have

H(im) = mln{H(ll), jgl\ll(rﬂl) H{),..., jean(ml) H(])}. a7
Example 4 Consider the one-dimensional walk problem of Example 3, an@{l&te
defined as the algorithm that, starting at a nglan), compares the cogt(m + N — k)
(corresponding to taking all of the remainihg— k steps to the right) and the cagtm —

N + k) (corresponding to taking all of the remainiNg— k steps to the left), and accordingly
moves to node

(N,m+N—-k) ifgm+N—-k) <g(m— N +Kk),
or to node
(N,m—N+k) ifgm—N+k) <gm+ N —Kk).

It can be seen th&t is not sequentially consistent, but is instead sequentially improving.
Using Eg. (17), it follows that starting from the origin (0, 0% obtains the global
minimum of g in the interval N, N], while H obtains the better of the two pointsN
andN.

4.1. The extended rollout algorithm

We can always modify the problem and the algorithfiso that Proposition 2 applies. In
particular, let us consider thextended version of the problemhereby the graphV, A)

is enlarged by adding for each non-destination niode arc(i, d(i)), whered(i) is the
destination at which the path generatedHifyerminates, starting from (This arc is not
added if it already exists.) TheH is modified so that starting from each non-destination
nodei for which

min H(j) > H() = gd()), (18)
jeN()

it generates instead the pathd(i)). Itis seen that the modified version&fso obtained,
referred to as thextended< and denoted b, is sequentially improving. Thus, Propo-
sition 2 applies to the rollout algorithm based on the extertdedhich is referred to as the
extended rollout algorithnand is denoted bR H.. This algorithm proceeds exactly like
RH up to the first nodée for which Eq. (18) holds, and then terminates with the destination
noded(i).

ROLLOUT ALGORITHMS 255

4.2. The optimized rollout algorithm

If H is not sequentially improving, it is possible in general tRdt generates a worse
solution than the solutions generated Hyfrom the same starting node. However, it is
always possible to correct this deficiency by a minor modificatioR®f. In particular, in

the process of runnin@ 7, one generates several solutions, and upon terminati®@f

one can choose out of all these solutions, one that has minimal cost. This version of tt
rollout algorithm, is referred to as thogtimized rollout algorithmand is denoted bR *H.

Note that ifH is terminating, therR*H is guaranteed to generate a no worse solution than
all of the algorithmsH, RH, andRHe.

4.3. The fortified rollout algorithm

Let us introduce an alternative sequential versiof{ofThis version is referred to as the
fortified rollout algorithmand is denoted bRH. As the notation suggest&/H turns out
to be the rollout algorithm based on a path construction algorithmhich is derived from
H and will be defined shortly. The fortified rollout algorithRiH starts as, and maintains,

in addition to the current sequence of nodgsy ..., im), a path
P('m) :(Imvlr/TH»]_vvll/()ﬂ (19)
ending at a destinatiay. Initially, P(s) is the path generated By starting froms. Atthe
typical step ofR’H, we have a node sequencgig, ..., im), wherei, ¢ N, and the path
P(@im) = (im, igyqs - -+ 1) Then, if
min H(j) < g(ip), (20)
jeN(m)
R’H adds to the node sequenegig, ..., iy) the node

R
imv1 = 219, i, (D

and set< (im 1) to the path generated By, starting fromip, 1. On the other hand, if

;min H(j) = g, (21)
R'H adds to the node sequenegig, ..., im) the node

im+1 = imgas
and setsP (im,1) to the pathifny1, i, 0. - ..o i) fimprisa destinationR H terminates,

and otherwiséR H starts the next step withm + 1 replacingm.
The main idea behind the construction”t{ is to follow the pathP (i) unless a path
of lower cost is discovered through Eq. (20). It can be seerRfiaimay be viewed as the

256 BERTSEKAS, TSITSIKLIS AND WU

rollout algorithmRH corresponding to a modified version &f, called fortified H, and
denotedH. This algorithm is applied to a slightly modified version of the original problem,
which involves an additional downstream neighbor for each ngdeat is generated in the
course of the algorithrfR 7 and for which the condition (21) holds. For every such node
im, the additional neighbor is a copy gf_,, and the path generated By starting from
this copy is (.4, - - - » iy). From every other node, the path generatedg the same as
the path generated b. It can be seen thdt is sequentially improving, so th&®H is
terminating and has the automatic cost sorting property of Propositions 1 and 2; that is,

H(im) = min{ H@iy), min H(j),..., min H()!.
(im) mm{ (i), min H(j) min (J)}

The above property can also be easily verified directly, using the definitiGa7of It

can also be seen that the fortified rollout algorit@#i{ will always perform at least as
well as the extended rollout algorith®He. The potential improvement in performance

is obtained at the expense of the modest additional overhead involved in maintaining tk
pathP(i). Note that whert is sequentially consistent, all three rollout algorithRis(,

RHe, andRH coincide.

4.4. Using multiple path construction algorithms

We note that one may use multiple path construction algorithms in the preceding frameworl
In particular, let us assume that we hagealgorithmsHy, ..., Hx. Thekth of these
algorithms, given a node¢ N/, produces a path,(i, ..., im, i) that ends at a destination
nodei, and the corresponding cost is denotedHy(i) = g(i). Generalizing our earlier
approach, we can use tiealgorithms in an approximation architecture of the form

J@) = min H(), (22)

or of the form
B K
JGi,re, .m0 =) reHk(), (23)
k=1

wherery are some fixed scalar weights obtained by trial and error. The rollout algorithms
R'H, RHe, andRH easily generalize for the case of Eq. (22), by repla¢in@) with J (i),

and by defining the path generated starting from a naethe path generated by the path
construction algorithm which attains the minimum in Eq. (22). In the case of Eq. (23),
the rollout algorithmRH also generalizes easily by replacikigi) with J(i,ry1, ..., rg),

but in order to generalize the algorithi®H., and R'H, the path generated from a node

i must also be defined. There are several possibilities along this line. A different type o
possibility for the case of Eq. (23), is to use tunable weights, which are obtained by trainin
using NDP methodology. This is discussed in the recent textbook (Bertsekas and Tsitsikl
(1996)), and will be the subject of a future report.

ROLLOUT ALGORITHMS 257

4.5. Extension for intermediate transition costs

Finally, let us consider a problem where in addition to the terminal gG3t there is a
costc(i, j) for a path to traverse an arc, j). Within this context, the cost of a path
(i1,i2,...,1n) that starts ait; and ends at a destination nageas redefined to be

n-1

9(in) + Y _ ik, ikra)- (24)
k=1

One way to transform this problem into one involving a terminal cost only is to redefine
the graph of the problem so that nodes correspond to sequences of nodes in the origir
problem graph. Thus if we have arrived at nodasing pathi(, . . ., ix), the choice ofiy ;
as the next node is viewed as a transition from stiate (., i) to state (1, . . ., ik, ik+1)-

Both statesig, ..., ix) and (u,...,ik, ixy1) are viewed as nodes of a redefined graph.
Furthermore, in this redefined graph, a destination node has theifgim (. ., i), where
in is a destination node of the original graph, and has a cost given by Eq. (24).

After the details are worked out, we see that to recover our earlier algorithms and analysi
we need to modify the cost of the heuristic algoritiras follows: If the pathig, ..., ip)
is generated b¥{ starting afi;, then

n-1

H(i1) = g(in) +) Clik, iksa)-
k=1

Furthermore, the rollout algorithfRH at nodei, selects as next nodg,; the node
im+1=arg min [c(im,) + H())];
JEN(im)

[cf. Eqg. (7)]. The definition of a sequentially consistent algorithm remains unchanged
Furthermore, Proposition 1 remains unchanged except that Egs. (10) and (11) are modifi
to read

H(ix) > ik, ikyr) + H(iker) = jemNi(l?k)[C(ik’ PD+HGM], k=1,....m-1

A sequentially improving algorithm should now be characterized by the property
H (k) > c(ix, ik+1) + Hiks1)

if iy, 1 isthe next node on the path generate@dstarting from. Furthermore, Proposition
2 remains unchanged except that Eq. (17) is modified to read

H(x) > min [c(ik,) + H(j)], k=1,....m-1
JeN(ix)

258 BERTSEKAS, TSITSIKLIS AND WU

Finally, the criterion mifeng,) H(j) < 9(y) [cf. Eq. (20)] used in the fortified roll-

out algorithm, given the sequencg i, . .., im), whereiy, ¢ N, and the patP(im) =
(ims imy1s - - -» 1), Should be replaced by
k—1
jErp,i(in)[txim, D+ HG] <90+ Clim. i) + > Clififyp).
m I=m+1

5. Some computational experience

We have tested rollout algorithms in a variety of contexts. We have consistently founc
that they can be very effective and that they can substantially improve the performance ¢
the original heuristic. In this section, we provide an example involving a combinatorial
two-stage maintenance and repair problem (in fact a stochastic programming problem).

Consider a repair shop that has a number of spare parts that can be used to maintai
given collection of machines df different types over two stages. A machine that is broken
down at the beginning of a stage can be immediately repaired with the use of one spa
part or it can be discarded, in which case a &sts incurred. A machine of typethat
is operational (possibly thanks to repair) at the beginning of a stage breaks down durir
that stage with probabilityy, independently of other breakdowns, and may be repaired at
the end of the stage, so that it is operational at the beginning of the next stage. Knowin
the number of available spare parts, number of machines of each type, and the number
initially broken down machines, the problem is to find the repair policy that minimizes the
expected total cost of the machines that break down and do not get repaired. The essenct
the problem is to trade off repairing the first stage breakdowns with leaving enough spat
parts to repair the most expensive of the second stage breakdowns.

Let s be the number of initially available spare parts, andretndy be the vectors

m=m,....,mr), y=(i...,¥1),

wheremy,t = 1,..., T, is the number of machines of typdgall assumed to be initially
working), andy;,t =1, ..., T, is the number of breakdowns of machines of typleiring
the first stage. The decision to be made is

U=(U1,...,UT),

whereu, is the number of spare parts used to repair breakdowns of machines dfaype
the end of the first stage. We note that at the second stage, it is optimal to use the remaini
spare parts to repair the machines that break in the order of their cost (that is, repair tt
most expensive broken machines, then if spare parts are left over, consider the next me
expensive broken machines, etc). Thus, if we start the second stagé spdre parts,
andm, working machines of type= 1, ..., T, and during the second stage machines

of typet break,t = 1,..., T, the optimal cost of the second stage, which is denoted by

ROLLOUT ALGORITHMS 259

G(m, y,S), where

M=(Mg,....,M7y), ¥=W,...,¥),

can be calculated analytically. We will not give the formula for the func@rbecause it
is quite complicated, although it can be easily programmed for computation.

Let us denote bR the expected value, over the second stage breakdowns, of the secor
stage cost

R(M, §) = Ey[G(M, ¥, 9)].

Then in the first stage, and once the first stage breakdowns are known, the problem is
findu = (uq, ..., ut) that solves the problem
T T
minimize Cilyr —up) + R(m -y+u, ut)

t=1 t=1

T
subjecttoZut <s, O<u=<wy, t=1...T.

t=1

This is the problem we wish to solve approximately by using a rollout algorithm.

We reformulate this first stage problem as a path construction problem. In the reformu
lated problem, the nodes of the graph are tripletsy, s). Destination nodes are the ones
for which y = 0 and the repair/no repair decision has been made for all the first stage breal
downs. At a non-destination node, the control choices are to select a particular breakdov
type, sayt, with y; > 0, and then select between two options:

(1) Leave the breakdown unrepaired, in which case the triplet/, s) evolves to

(m17-~'smtflsmt_17mt+17~~-»mT7y17~~-»y'[717y'[_17y1+1a~'-7yTsS)

and the cos€; of permanently losing the corresponding machine is incurred.
(2) Repair the breakdown, in which case the trighat y, s) evolves to

(ml’-"amT’yl’~"9y'[—lvyt_17yt+17""yTaS_1)’

and no cost is incurred.

Once we have, = --- = yr = 0, there is no decision to make, and we simply pay the
optimal cost-to-go of the second stag¥m;, ..., mr, 5), and terminate.

We consider rollout policies based on heuristic algorithms. We used the following two
heuristics, which given the tripléin, y, s), produce a first stage solutian

(1) Proportional heuristic In this heuristic, we compute an estimatef the total number
of second stage breakdowns based on the probabipties breakdown of individual

260 BERTSEKAS, TSITSIKLIS AND WU

machines of type. In particular, we havéN = ZLl p: N, whereN; is a heuristic
estimate of the number of working machines of typ the start of the second stage,
based on the already known vectarandy. We form the estimated ratio of first stage
to second stage breakdowns,

f = Z;I—:l Vi

We then fix the number of spare parts to be used in the first stage to
s =afs

wherea is a positive parameter. The first stage problem is then solved by allocating the
s, spare parts to machines of typan the order of the cosiS; (1 — p;). (The factor of
1 — p is used to account for the undesirability of repairing machines that are likely to
break again.) The constaaprovides a parametrization of this heuristic. In particular,
whena < 1, the heuristic is conservative, allocating more spare parts to the secon
stage than the projected ratio of breakdowns suggests, wtlale i, the heuristic is
more myopic, giving higher priority to the breakdowns that have already occurred in
the first stage.

(2) Value-based heuristicln this heuristic, given the state, we assign value€ofnd
Ci(1 — p) to each spare part used to repair a machine of tyipethe second stage
and the first stage, respectively. Note that a repair of a machine in the first stage |
valued less than a repair of the same machine in the second stage, since a machine 1
is repaired in the first stage may break down in the second stage and require the u
of an extra spare part. We rank-order the valGeandCi(1 — p), t = 1,..., T,
and we repair broken down machines in decreasing order of value, using the estima
p:(m¢ — ;) for the number of machines to break down in the second stage.

We have tested the four rollout algorithH, R*H, RHe, andR'H based on single
and multiple heuristics, and we have compared their performance with the one of th
corresponding heuristics, as well as with the optimal performance. Table 1 summarizes o
results on a set consisting of 5000 randomly generated test problems. In these problen
there were 5 machine types, with costs 2, 4, 6, 8, and 10, respectively. The number ¢
machines of each type was randomly chosen from the range [0, 10], the number of spa
parts was randomly chosen from O to the total number of machines, and the breakdow
probability for each machine type was randomly chosen from the range [0, 1]. A uniform
distribution was used in each random choice. The optimal cost, averaged over the te
sample of 5000 problems was calculated (by brute force) to be 33.69.

The proportional heuristic was used with three different values of the parames,

1.0, and 1.5), and the corresponding values are indicated in the 1st column of Table 1. Als
when multiple heuristics were used, they were combined into a single heuristic using th
minimum cost formula (22). Thus for example, the heuristic Value/Pacep 0.5), consists

of starting at a given node, running the value heuristic and the proportional heuristic witt
a = 0.5, and then out of the two paths generated, choosing the one with minimal cost.

ROLLOUT ALGORITHMS 261

Table 1 Test results on a set consisting of 5000 randomly generated test problems. Each row correspond:s
to a single heuristic algorithm or a combination of heuristic algorithms (this is the algotthas indicated

in the leftmost entry. The second entry of the row gives the average cost over the test set corresponding tc
‘H starting from the initial node of the problem. Entries 3—6 in each row give the average cost over the test
set for the corresponding rollout algorithms. The optimal cost, averaged over the test sample, is 33.69. The
last entry gives the percentage gain in the error from optimality achieved by the best of the rollout algorithms,
relative to the original heuristic [for example the heuristic Paop{ 0.5) of the 1st row is suboptimal by
49,00 — 3369 = 15.31, and the best rollout algorithm reduces this tad083- 33.69 = 9.37, resulting in a

gain of (1531 — 9.37)/15.31 or 388%].

Heuristic H RH R*H RHe RH % Gain
Prop@ = 0.5) 49.00 43.09 43.06 44.13 44.10 38.80
Prop@ = 1.0) 37.23 37.76 35.83 36.14 36.04 39.54
Prop@ = 1.5) 41.28 36.11 34.93 35.04 34.98 83.66
Value 38.75 35.97 35.94 35.98 35.90 56.32
Value/Propé = 0.5) 38.74 35.95 35.93 35.95 35.90 56.23
Value/Propé = 1.0) 36.55 35.93 35.29 35.42 35.23 46.15
Value/Propé = 1.5) 37.39 35.62 34.93 35.01 34.90 67.30
Prop@ = 0.5)/Propé = 1.0) 37.03 37.76 35.73 36.14 36.05 38.92
Prop@ = 0.5)/Propé = 1.5) 38.98 36.18 35.04 35.14 35.12 74.29
Prop@ = 1.0)/Propé = 1.5) 36.61 36.13 34.93 35.13 34.97 57.53
Prop@ = 0.5)/Propé = 1.0)/

Prop@ = 1.5) 36.40 36.14 34.94 35.14 34.99 53.87
Value/Propé = 1.0)/Prop@ = 1.5) 36.20 35.57 34.85 35.01 34.81 55.38
Value/Propé = 0.5)/Prop@ = 1.0) 36.55 35.93 35.29 35.42 35.24 45.80
Value/Propé = 0.5)/Prop@ = 1.5) 37.38 35.62 34.93 35.00 34.90 67.21

It can be seen that the rollout algorithms can improve significantly the performance
of the original heuristic algorithn{. In particular, the relative improvement (the per-
centage reduction of the deviation from optimality, given in the last entry in each row of
Table 1) is significant. Furthermore, in agreement with the earlier analysis, it can be see
that:

(a) Allofthe algorithmsR*H, RH., andRH consistently outperform the original heuristic
algorithm H. On the other hand, becaug¢ is not guaranteed to be sequentially
improving, the standard rollout algorith®H may perform worse than the original
heuristicH (see the 2nd and 8th rows of the table).

(b) The optimized rollout algorithriR*H consistently outperforms the standard and the
extended rollout algorithmRH and R He.

(c) The fortified rollout algorithniRH consistently outperforms the standard and the ex-
tended rollout algorithm® H andRH.. On the other hand there is no clear superiority
relation between the optimized and the fortified algorithms.

262 BERTSEKAS, TSITSIKLIS AND WU

References

Barto, A.G., S.J. Bradtke, and S.P. Singh. (1995). “Learning to Act Using Real-Time Dynamic Programming.”
Artificial Intelligence72, 81-138.

Barto, A.S. and R. Sutton. (199Reinforcement LearningVIT Press (forthcoming).

Bertsekas, D.P. and J.N. Tsitsiklis. (1998¢uro-Dynamic Programmindelmont, MA: Athena Scientific.

Glover, F., E. Taillard, and D. de Werra. (1993). “A User’s Guide to Tabu Seakciméls of Operations Research
41, 3-28.

Pattipati, K.R. and M.G. Alexandridis. (1990). “Application of Heuristic Search and Information Theory to Se-
quential Fault DiagnosislEEE Transactions on Systems, Man, and Cybern@tic872—-887.

Tesauro, G. and G.R. Galperin. (1996). “On-Line Policy Improvement Using Monte Carlo Search.” Unpublishec
report.

