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V' is the unique solution of the following Bellman equations:

/(x) = i i hg(x)T(6
Vi = i | )

traveling cost

4+ V(e +we)+ (1 =)V (e + watr)

"
expectedcost-to-go

r €S 1
Vi(x) = f(z), r € B. (2

To see this, note that from every nonboundary state S we can
go to the four neighborsv,, wherea € {1,2,3,4}. Therefore,
since S is assumed to be a finite set, it is possible to go from
each nonboundary state € S to at least one boundary state, and
this implies that the optimal cost-to-go of the discretized problem
(which cannot be negative singgz) >0 for all x) must be finite
from every initial state. Furthermore, singéx) >0 for all z € S,
Fig. 1. A square centered at the origin and the definition of the vectofdl Policies that do not reach the boundary with positive probability
wy,---,wq of length h. result in infinite cost. This implies that the assumptions of the theory
of stochastic shortest path problems (see [3]-[5]) are satisfied. This

) ) ) theory implies that the Bellman equations have the optimal cost-to-go
address or depend on the relation between the discretized and ff}:tion 7 as their unique solution. The theory also guarantees that

continuous versions. We form a discretization grid using a squafg value iteration method will converge to the solution of the above
centered at the origin whose corners are vectorsws, ws, w4 Of  equations, but does not guarantee finite termination. However, here
length, as shown in Fig. 1. This grid consists of two disjoint finitgye have a special structure that is implied by the positivity of the cost
setsS and B such that for eackr € 5, the set ofneighborsof x. () and the shortest path character of the problem. A key property in
defined by this regard is given in the following proposition, first proved in [10].
N(z) = {o + wili = 1,2,3,4) Proposition 1: Let V7 be the solution of the Bellman equations (1)
and (2). Letz € S, and letd € [0,1] and« € {1,2, 3,4} be such that
is a subset o6 U B. The setS should be viewed as a discretization of () = hg(z)7(6) + 6V (x +wa) + (1 =)V (2 +wa1). If >0,
the interior set7, and the seB should be viewed as a discretizatiorthenV(z) > V(z + wa ). If 1 — ¢ >0, thenV(2) > V(2 + wa+1)-
of the boundary se?G. We also have two functiong;: B — (0, o) Using the above proposition, it was shown in [10] that a
andg: S — (0, cc), that represent discretizations of the cost functiongauss—Seidel algorithm that cycles through the nodes terminates
q andr of the original problem, respectively. The functigrusually finitely. Furthermore, a Dijkstra-like algorithm that requires only one
can be defined by(x) = r(z) for everyax € S. iteration per node was proposed in [10] and was shown to be much
We now consider a finite-state optimal control problem, the staté&ster in theory than the Jacobi and Gauss-Seidel methods that are
of which are the pointst € S U B, also referred to amodes typically used to solve stochastic shortest path problems. It has been
This problem fits within the framework of the stochastic shortegonfirmed by our experiments that the Dijkstra-like algorithm is also
path problems discussed in [4] and [5], which cite several earligtuch faster in practice than the Jacobi and Gauss—Seidel methods.
references. The problem is defined as follows: at a stageS, we The key property implied by Proposition 1 is that there exists an
must choose a quadrant spanned by the veatgrandw. 1, where optimal policy under which, from any state, we can only go to a
a € {1,2,3,4}, and then choose a parametieg [0, 1] that specifies State of lower cost. Such policies are calleghsistently improving
an elemenbw, + (1 — 8)w,+1 of the line segment connecting, and are discussed in more detail in [3, p. 90]. When a consistently
andw.1 (the indexing ofw is modulo four, so thais = w;). The improving policy exists, a Dijkstra-like algorithm as well as other
next state is: +w,, with probabilityd andz+ w41 with probability finitely terminating value iteration algorithms of the type considered

1 — 6. The cost of the choicéw, §) is hg(x)7(8), where in this paper can be used (see [3, p. 127]).
; _ ‘ The objective of this paper is twofold. First, we introduce a broad
T(0) = V82 +(1-6)* class of value iteration methods, which resemble the label-correcting

methods used to solve deterministic shortest path problems. These

50 that methods can be viewed as Gauss—Seidel methods with the node
hr(6) = [|wa + (1 — 8)wa 1] order used for iteration being arbitrary (not necessarily cyclical).

We show that these methods terminate (see Proposition 2 in the

is the distance traveled from to the pointx + fw. + (1 — next section), although they may require more iterations than the

f)wa+1. Also, if the statex € B is reached, then a terminal costDijkstra-like algorithm of [10]. Second, we develop several new label
f(z) is incurred and the process terminates. The optimal cost-to-gorrecting-like methods, which use special rules to define the node
functionV*(«) of the original continuous-time problem, which is theorder used for iteration and which try to approximate the operation of
infimum of the costs of all admissible trajectories that start,ais the Dijkstra-like algorithm with smaller overhead per iteration. These
approximated by the optimal cost-to-go functi¢¥(z)|z € SU B} methods are patterned after the Smallest Label First (SLF) method of
of the discretized problem. [2] and the Smallest Label First—Last Label Last (SLF-LLL) method
It can be shown under our assumptions that the optimal cost-to-gfo[6], which have been shown experimentally to be very effective
V (x) of the discretized problem is finite for alland that the function for deterministic shortest path problems. We provide computational
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results showing that these new methods are competitive and often
superior to the Dijkstra-like algorithm and are also much faster than
the traditional Jacobi and Gauss—Seidel methods. The new methods
also lend themselves better for parallelization than the Dijkstra-like
algorithm.

Il. GENERIC LABEL-CORRECTING ALGORITHM

In this section we describe a general algorithm for solving the
stochastic shortest path problem corresponding to the discretization
discussed in Section |. The algorithm, referred to generic, is
patterned after a generic label-correcting method for deterministic
shortest path problems; see for example [8] and [1]. It maintains a
list of nodesL calledthe candidate lisand alabel V' (z) for each
nodex € S U B. Each label is either a real number ®r. Initially

L=B
Vix) = f(x), Ve € B
Viz) =0, Ve € S.

For convenience, we also keep track of the directiofiz), 6(x))
along which the current label of was calculated. The algorithm
proceeds in iterations and terminates wheilis empty. The typical
iteration of the algorithm (assuming thatis not empty) is as follows.

Typical lteration of the Generic Label-Correcting Algorithm

Remove a node from the candidate lisL. For each neighbog
of « that also belongs t&, if V(y) >V (x), calculate

Viy) =

2)

min min [hg(y)7(8
{a=1,234|ce{y+wa,yFwaip1}} 96[0-11[ 9T (#)

+O0V(y +wa) + (1= 0)V(y + watr)].

Let (a,6) be the direction for which the minimum valué(y) is
obtained. IfV (y) >V (y), then setV (y) = V(y),a(y) = a.0(y) =
¢ and addy to L if it is not already inL.

It can be seen that in the course of the algorithm the labels are
monotonically nonincreasing and tHat x) < oo if and only if z has
entered the candidate list at least once. The following lemma gives
the main properties of the algorithm.

Proposition 2:

1) At the end of each iteration the following conditions hold.

a) V(x)= f(x) for all = € B. Furthermore, nodes i
do not re-enter the candidate list once removed.
b) Forallz € S, if V() <oo, then
Viz) > hg(x)m(8) + 6(x)V(z + wa(n))
+ (1 —0(x)V(e+ wai)+1)- 3)
c) |If for a nodex € S there is a quadrant such that

x4+ we ¢ L andx + way1 ¢ L, then we have
V(z) < min [hg(z)7(0) + 0V (z 4+ w.)
oefo,1]

+ (1 — 9)1'@ + w0+1)]. (4)

2) The algorithm terminates. The set of labgs(x)|x € SUB}
obtained upon termination solves the Bellman equations (1)
and (2).

Proof:

1) Condition a) holds since by the rules of the algorithm the labels
of the border nodes cannot change, and only node$ @an
re-enter the candidate ligt. We prove b) as follows: just after
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the label ofz is reduced, we have
Vi(z) =hg(x)r(0) +0(x)V (2 4+ wa(s))
+(1—0(x)V(e+ wagz)41)-

Since the labels of the neighboring nodesecdre nonincreas-
ing, we see that (3) holds in subsequent iterations until the
value of z is recalculated.

To prove c), note that initially the nodes not ih have
infinite labels. Therefore, c) holds trivially at the beginning of
the algorithm. Let us now fix a node and its two neighbors
x4+ wa,x + wat1 Of some quadrant. If neither of the nodes
r + wa,x + weyr enters the candidate lidt throughout the
algorithm, then c) holds since the label ofis nonincreasing.
Otherwise, at least one of the nodes- w., v + w41 €nters
L at some time. Consider now an iteratidrof the algorithm
where nodex + w, or nodex + wa.41, €xits L, and as a
result both nodes are not iA. At this iteration, the label
of = is recalculated and (4) is satisfied. Furthermore, (4) is
satisfied in all subsequent iterations of the algorithm until either
termination is reached or one of the node$ wq, x + wat1
re-entersL at some iteratiork’ > k. This is because for all
iterations performed aftér until either termination or iteration
k' is reached, the labels oft-w., , 2 +w.+1 remain unchanged
while the label ofz is nonincreasing. We conclude that (4)
holds throughout the algorithm.

We assume that the algorithm does not terminate in order to
reach a contradiction. Lelt be the set of nodes that entels

a positive but finite number of times, and [Btbe the set of
nodes that enterg an infinite number of times. Also let be

the set of nodes that never entérand whose labels are infinite
throughout the algorithm. The seltsT, and.J, and the labels of
the nodes in/ remain unchanged after some iteration denoted
m. Furthermore, the set§ and T are nonempty since from
Proposition 2.1-a)B C I, implying thatI is nonempty and
the algorithm does not terminate, implying tiais nonempty.

Each time a node enterk, its label is smaller than the
preceding time it entered.. Since the label of a node is
bounded below by zero, we conclude that the labels of the
nodes in/ U T converge. For a node € I U T, let V()
denote the limiting value of the label af and leta™(z) and
6°°(x) be such that

V= (x) =hg(x)T(8%(2)) + 87 (2) V(2 4+ wace(a))
+ (1 - eﬁo(l))tﬂn(l + u'tk"’°(~lf)+1>' (5)

Note thata™° () andf°°(x) exist by the compactness of the

sets wherev and ¢ take values. We also define the getx)

of desired nodes of as follows:

{2+ wyeo ()} if 6°°(z)=1
Plz) = {2+ wace(z)41}s if °°(x) =0
{& + Waoo 4y @ 4 Waoo ()1} otherwise.

We observe that in view of (5), we have

Plx)NT # 0, veel

since, after iteratiomz, for eachx € I, the labels of the nodes
in P(x) N I remain constant, while the label of decreases
infinitely many times; if all nodes dP(x) were inI, (5) would
be violated. Thus, each node € T has at least one desired
node inI. Consequently, there exists a cycle of nodesl of
say (x1, @2, -, &k, Tht1), SUCh thatviy1 = z1 and x4 is
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a desired node aof;, fori = 1,---, k. From Proposition 1 we its neighbors, the one having smaller label than ngéepermanently
have thatV**(z;) > V> (x;41) for all i = 1,---, k, which is  labeled. The iterations proceed until the list is empty. Our binary heap
a contradiction. Thus the algorithm terminates. code is based on the SHEAP code for deterministic shortest paths of

Next we show that all nodes € S will exit L at least Gallo and Pallotino [8]. In the presentation of our results we will
once so that they must be finite upon termination. In particulaefer to the implementations of the Dijkstra-like algorithm with the
let us consider a node; € S and a sequence of nodesprefix “DIJ-".

(1, -, zg. x41) Such thateg 1, € B andz;11 € N(x;), The Label Correcting-Like Algorithms:

for all i = 1,---,k. As discussed in Sectionl, such a 1y The SLF-LLL MethadIn this algorithm, the candidate list is
node sequence exists for every € 5. Since the algorithm maintained as a queue. Nodes enter the list according to the
terminates, the boundary node., must exit L, since it following (SLF)criterion first proposed in [2lvhenever a node

belongs toL initially. When node;., exits L, the label of i not already in the list enters the list, its label(¢) is compared
nodex,, is calculated and, if,. has never before enterdd its to the labelV’(j) of the top nodg of the list. IfV (i) < V().

label becomes finite and it entefs Repeating this argument
using z in place ofx;4;, and proceeding similarly, we can
prove that each of the nodeg_1,-- -,z will exit L at least
once.

We finally note that upon termination, the litis empty so

nodei is inserted at the top of the list; otherwise nodes
inserted at the bottom of the list.

This criterion for insertion in the list is combined with
another simple criterion for the removal of a node from the

. . list. The removal criterion is calle(LLL) and was proposed in
that both (3) and (4) hold for alt € S, implying that the labels [6]. According to this criterion, the node at the top of the list is

of the nodes satisfy the Bellman equations (1) andJ2..D. considered. If its label is larger than the average of the labels

Different algorithms can be derived from our generic label-  qf 4| the nodes in the list (defined as the sum of the labels

correcting algorithm by using different ways to choose the node  jiyviged by the number of nodes), then the node is reinserted
that exits the candidate list at each iteration. In particular, if a node at the bottom of the list and its successor node in the list is

with the smallest label is chosen to exit the list, then we obtain an
analog of Dijkstra’s algorithm. The key property of this algorithm is
that once a node exits the list, it never re-enters it, as shown in [10].
Other possibilities are to organize the list according to the schemes
described in [2] and [6]. In Section Il we discuss implementations

extracted. This procedure continues until a node with label less
than or equal to the average of the labels of all the nodes in the
list is found. The labels of the neighboring nodes of the node
removed from the list are recomputed, and the corresponding
nodes are inserted in the list according to the SLF criterion.

of such schemes and give some computational results. 2) The SLF-LLL-Threshold Methodrhis is a combination of the
SLF—LLL method with the threshold method of Glovet
[ll. 1 MPLEMENTING DIJKSTRA-LIKE AND al. [9] (see [6]). Here, the candidate list maintained by the
LABEL-CORRECTINGLIKE ALGORITHMS SLF-LLL method is divided in two lists; the nodes on the first

In this section we compare the Dijkstra-like algorithm discussed  list are the ones that have labels less than or equal to some
above and two recently developed label-correcting algorithms (the  threshold value. Nodes are inserted in both lists according to
SLF-LLL and the SLF-LLL-Threshold methods to be presented the SLF criterion. Nodes are removed only from the first list
below). The Dijkstra algorithm performs at most one iteration per ~ according to the LLL criterion. When the first list becomes
node but requires some extra overhead per iteration, in order to empty, the threshold is appropriately increased and nodes with
determine a smallest-label node within the candidate list. In the label-  1abel less than or equal to the new threshold are removed
correcting methods, the number of iterations is larger than for the from the second list and inserted to the first list according
Dijkstra algorithm, but the overhead is smaller per iteration. The to the SLF criterion. The method we chose for increasing
computational results show that there are cases where the label- the threshold is the following: initially, the threshold is set
correcting algorithms outperform the Dijkstra-like algorithm. This is to the minimum node coshin.cs g(x) plus a user-chosen
encouraging for one more reason: label-correcting algorithms are par- percentage of the maximum node cestx,cs g(»). Each
allelizable, whereas the Dijkstra algorithm is not. The recent paper of  time the first list empties, the threshold is increased by the user-
Bertsekast al. [6] explores the parallelization of the label-correcting chosen percentage of the maximum node cost. If this increase
algorithms we consider for the case of deterministic shortest path was not sufficient to transfer any nodes of the second list to the
problems. Their computational results show that parallelization leads first list, the threshold is set equal to the minimum node label
to excellent speedup. In any case, the algorithms that we present here in the second list plus the user-set percentage of the maximum
are much faster than the traditional algorithms described by Kushner node cost. In the presentation of the computational results we
and Dupuis in [7], where the nodes are picked for iteration according  will refer to the SLF—-LLL-Threshold algorithm with the prefix

to some fixed order. “SLF-LLL-TH-".
In all the above implementations we have used certain tests that
A. The Algorithms help avoid unnecessary recomputations of the labels of the nodes.

We describe the algorithms that we tested, and we discuss sevef3f reduction in computation obtained by these tests is significant.
issues related to their efficient implementation. Specifically, recall that the label of a node is computed by

The Dijkstra Algorithm: In our implementation, we maintain the Performing minimizations along four quadrants (parametgrand
candidate list as a binary heap where the top node is the node with i@ minimization in a particular quadrant is based on the labels of two
smallest label. At each iteration, this node is removed from the ligt€ighboring nodes. In particular, we make the following observations.
and as discussed above, this node becomes permanently labeled andWhen a node exits the list, only its neighbors with larger labels
never enters the heap again. If the label of a neighbor is reduced, this need to have their label recomputed (see Proposition 1).
neighbor is included in the binary heap at the appropriate position.» The recomputation of the label of a node needs to be made only
Observe that if a nodé becomes permanently labeled, then at most in the quadrants that involve the neighboring node that exited
three of its neighbors may enter the binary heap, since at least one of the list at the beginning of the current iteration.
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TABLE |
COMPUTATIONAL RESULTS ON THEMACINTOSH PowerBOOK 170 AND Alpha-Dec. Qi EAcH ProBLEM LINE, THE NUMBERS ON TOP ARE THE TIMES IN SECONDS ON
THE DIFFERENT MACHINES, AND THE NUMBERS AT THE BOTTOM ARE THE I TERATIONS/LABEL CALCULATIONS/SIMPLIFIED LABEL CALCULATIONS. ALL PROBLEMS
WERE GENERATED BY THE GRIDQUAD PROGRAM. THE COST ASSIGNED TO AGRID POSITION (2, %) WHICH IS NOT A BOUNDARY POINT OR AN OBSTACLE IS
GIVEN BY 1001 — 1000(10(x — 20)? + 40(y — v0)?/10(z0 + 1)% + 40(yo + 1), WHERE (g, yo) IS THE CENTRAL POINT OF THE GRID

Problem DII-NO-NEIGH DIJ-NEIGH SLF-LLL-NO-NEIGH | SLI-iLL-NEIGII | SLF-LLL-TH-NO-NEIGH | SLF-LLL-TILNEIGH
150X 150 22.02/0.38 20.8/0.52 25.45/0 42 93.65/04 19.42/0.316 17.37/0.285
No Obst. | 21904/43230/43796 | 21904/21721/43796 | 32076/61605/69195 32976/32976/69195 23426/45805/47155 23426/45806 /47 155
T50X150 20.73/0.32 19.60/0.45 20.20/0.33 18.37/0.31 18.58/0.3 16.69/0.078
3 Obst. | 21474/41469/42977 | 21474/20873/42077 | 26131/49214/53138 | 26131/29234/53138 227533/43356/45980 227:83/23425/ 45980
100X200 19.27/0.29 18:08/0.35 22.05/0.37 32.18/0.35 17.35/0.278 15.57/0.237
No Obst. | 19404/38280/38787 19404/19193/38787 | 30720/54588/67360 |  30720/37368/67360 20976/22510/42286 20976/29207/42286
50X250 11.47/0.169 1073/0.177 14.48/0.244 14.18/0.23 10.52/0.165 9.45/0.137
No Obst. | 11904/23232/23794 11904/11650/23794 19505/33574/4355( 19505/24553/43556 12787/24674/25706 12747/13639/25706
100X225 21.70/0.33 20.4770.388 26.67/0.427 26.15/0.4 19:83/0.31 17.82/0.27
No Obst | 21854/43057/43719 | 21854/21609/43719 | 35777/63405/78777 | 35777/44971/78777 23997/46674/48424 23907725879/48421
100X225 20.42/0.32 19.3570.406 10.60/0.371 1870870 346 19.58/0.31 17.8/0.28
3Obst. | 21387/41191/42783 | 21387/21387/42783 | 25500/47856/52116 | 25590/20373/52116 24015/45779/48609 24015/25916/48609
300X300 /206 ¥]263 *TLT3 ¥ *71.35 /13
No Obst. | 88804/176412/177614 | 88804/88450/177614 | 132476/248243/280171 | 132476/155172/280171 |  96313/189826/194300 | 96313/104423/194300
300X300 *7.86 *72.44 15 */1.476 7134 /13
3 Obst | B7924/172819/175927 | 87924/86716/175927 | 113448/216430/232960 | 113448/131261/232060 |  95326/185193/193039 | 95326/01489/193039
500X500 *76.99 */8.49 */5.25 */5.38 ¥7395 /39
No Obst. | 248004/493991/496035 | 248004/247471/496035 | 394289/742420/830920 | 304280/344023/830020 |  268465/531269/541007 | 268465/288064/541007

« If the labels of the two neighboring nodes of nodein a a quadratic function which has its maximum at the center of
particular quadrant have remained the same since the last tithe grid. For each algorithm we tested two implementations,
that the label ofx was calculated, no minimization usingone that keeps track of the values of neighboring nodes in
that quadrant is needed. We consider implementations of theler to avoid unnecessary computations (suffix -NEIGH)
algorithms both with and without keeping track of the labeland one that does not maintain such information (suffix
of neighboring nodes. In the presentation of the computation®O-NEIGH). We report running times on a Macintosh
results we will distinguish the two implementations of an algoPowerbook 170 and on an Alpha-Dec computer running a version
rithm by appending the suffixes ““NEIGH” and “-NO-NEIGH,” of UNIX. We also report the number of iterations, label calculations,
respectively, to the name of the algorithm. and simplified label calculations performed by each algorithm to

« Lettwo neighboring nodes of nodein a particular quadrant be facilitate the comparison between the algorithms.
andj. If i has a greater label than the current labetl ofthen the Our computational experiments indicate that the label-correcting
simpler label updatd”(z) := min{V(z), hg(xz) + V(j)} can algorithms are competitive with the Dijkstra algorithm. The
be used. Such a label evaluation will be referred teiagplified. SLF-LLL-TH algorithm outperforms consistently the Dijkstra

The implementations of all algorithms solve the problem of findinglgorithm, while the SLF-LLL algorithm outperforms the Dijkstra
the optimal costs from all nodes € S to some border poirit. In ~ algorithm on the Alpha-Dec computer and is a bit slower than the
particular, we have set(z) = 0, and for all border nodes # = we Dijkstra algorithm on the Macintosh Powerbook 170. On problems
have set the cosf(x) to be a very large number. with obstacles, all algorithms have similar running times. This is
because the addition of obstacles has an effect similar to breaking
B. The Test Problems the problem to several smaller-sized problems. Therefore, the data
. I§tructures maintained by the algorithms for the choice of the node to

We implemented a test problem 'generator. called GRIDQUA it the list contain few nodes and thus need less overhead, leading
The_ tes_t problems generated are g_rlds resulting from a square GSsimilar running times. The differences in running times are more
cretl_zatlon of pargllelograrr_]s with sides Whos_e Iength is an |ntegg\5ident on problems without obstacles.
multiple of the dlscretlzgtlon step. Thus G s the interior of We do not present any computational comparisons with traditional
the parallelpgram an@G_ls the border of the parall_elogram. TheGauss—SeideI methods that cycle through the nodes in a fixed order.
corresponding dlscrf_etlzatlorﬁand_B are easy.to ob_tam. Eac_h node ur experiments have confirmed that these methods require much
'r E.“.g has an assqmated COTQ't which is the discretized version of ater computation time than the methods discussed in this paper,
positive cost functlorr(a_t) defined onG. The program GRIDQUAD often by an order of magnitude or more.
uses a .quadratlt_: funct_lon fm(:;;). The cost of all bo_undary nodes One final observation is that times on the Alpha-Dec seem to favor
T € .B Is (effectively) infinity except for the two neighbors of thethe SLF-LLL methods more than on the Mac. The extra iterations
top right-hand corner O.f the parallel_ogram border. T.O m"?“‘e t_he t?ﬁ&t the label-correcting algorithms require are outweighed on the
pr(_)blems more interesting, we h_av_e _lntroduobdtaclesLe., |nte_r|or Alpha-Dec by the amount of time spent on maintaining the heap in
points of the’parallelogram with infinite cost. These are cons!deredt % Dijkstra method. A similar effect is observed when we keep extra
be_part ofd . In our t(.aSt. problems, obstacles occur in rows; all th‘aata to reduce calculations (-NEIGH versus -NO-NEIGH). Although
points on a row have_ |_nf|n_|te cost except for a segment of lehgth the number of time-consuming minimizations as in (1) is reduced by
where_k IS some po_smve _|nteger. Ob.Stade rows are e_quz_ally spacg eping labels of neighbors, the running time is not improved. This
at a distance which is an integer multiple of the discretization ktep may be due to a higher penalty for memory access operations than

for computations in the Alpha-Dec.

C. Test Results

We present in Table | the results of some of the computationgt Conclusions
experiments. The test problems are described by giving theOur computational results indicate that the methods presented in
dimensions of the grid and the number of obstacles. Costs tbfs paper are very efficient. They are apparently much faster than
interior points are in the range [1-1000] and are generated bwditional Gauss—Seidel methods that cycle through the nodes in
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a fixed order. Furthermore, the label-correcting methods developed Stable Inversion for Nonlinear Nonminimum-Phase

are parallelizable as in [6] and will likely lead to efficient parallel Time-Varying Systems
algorithms. Finally, the label-correcting methods we presented may
also be used in the case where the cost function is of the f@rm:). S. Devasia and B. Paden

In this case the theory of [10] cannot be applied and a Dijkstra-like
algorithm is not possible. However, the label-correcting algorithms ' ' _ '
we proposed can be used as heuristics that specify the order in Whicﬁbstract—ln this paper, we extend stable inversion to nonlinear

: L : P e-varying systems and study computational issues—the technique is
itrt:te;:ggt?:];psduatfjieesc?;grpfirrft?]rer?ergls—erzrecl; efficient implementation is rﬂplicable to minimum-phase as well as nonminimum-phase systems. The

inversion technique is new, even in the linear time-varying case, and relies
on partitioning (the dichotomic split of) the linearized system dynamics
into time-varying, stable, and unstable, submanifolds. This dichotomic
REFERENCES split is used to build time-varying filters which are, in turn, the basis of a
contraction used to find a bounded inverse input-state trajectory. Finding
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the inverse state trajectory [1]. The present work completes a line
of research which was motivated by the inversion of time-invariant
articulated flexible structure dynamics [2] and extends our work
on inversion of general affine-in-control time-invariant nonlinear

systems [3].

System inversion is key to recent results in exact-output tracking
for autonomous systems [1], [3]-[5]. This paper extends these results
to exact-output tracking of time-varying systems. The output tracking
problem has a long history marked by the solution of the linear time-
invariant regulator problem by Francis [6] and the nonlinear time-
invariant generalization made by Isidori and Byrnes [7]. The linear
regulator is designed by solving a manageable set of linear matrix
equations, whereas the nonlinear regulator requires the nontrivial
solution of a first-order partial differential algebraic equation. These
approaches asymptotically track any member in a given family
of output signals. More recently, there have been refinements of
these approaches. Huang and Rugh [8] used a formal Taylor series
expansion of the Isidori-Byrnes partial differential equation and gave
a sufficient condition for solvability. Krener [9] extended this work
by providing necessary and sufficient conditions for the term-by-term
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