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Implementation of Efficient Algorithms
for Globally Optimal Trajectories

L. C. Polymenakos, D. P. Bertsekas, and J. N. Tsitsiklis

Abstract—We consider a continuous-space shortest path problem in a
two-dimensional plane. This is the problem of finding a trajectory that
starts at a given point, ends at the boundary of a compact set of<2,
and minimizes a cost function of the form sT

0
r(x(t)) dt + q(x(T )).

For a discretized version of this problem, a Dijkstra-like method that
requires one iteration per discretization point has been developed by
Tsitsiklis [10]. Here we develop some new label correcting-like methods
based on the Small Label First methods of Bertsekas [2] and Bertsekas
et al. [6]. We prove the finite termination of these methods, and we
present computational results showing that they are competitive and often
superior to the Dijkstra-like method and are also much faster than the
traditional Jacobi and Gauss–Seidel methods.

Index Terms—Label correcting, label setting, optimal control, shortest
paths.

I. INTRODUCTION: PROBLEM FORMULATION

We consider a continuous-space shortest path problem and its
discretization. This problem has been addressed by Tsitsiklis [10],
and our presentation follows that reference closely. We are given a
bounded open subsetG of <2 and a pointx(0) 2 G: A trajectory
starting atx(0) is a continuous functionx: [0; T ] 7! <2; where
T is some positive scalar such thatx(t) 2 G for all t 2 [0; T )
and x(T ) 2 @G; where@G is the boundary ofG: A trajectory is
calledadmissibleif there exists a positive scalarT and a measurable
function u: [0; T ] 7! <2 such that

x(t) = x(0) +
t

0

u(s) ds

and

ku(t)k � 1; 8 t 2 [0; T ]

wherek � k stands for the Euclidean norm. The cost of an admissible
trajectory is defined as

T

0

r(x(t)) dt+ q(x(T ))

where r: G 7! (0;1) and q: @G 7! (0;1) are given cost
functions. We want to find an admissible trajectory of least cost.
Note that we have considered a two-dimensional space for simplicity.
The algorithms and the analysis of this paper admit straightforward
generalizations to higher-dimensional spaces.

We consider a method for discretization of this problem described
and analyzed by Kushner and Dupuis [7], who give several earlier
references. The advantage of this method is that it does not require the
explicit discretization of the control space. Our methodology focuses
exclusively on the discretized version of the problem and does not
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Fig. 1. A square centered at the origin and the definition of the vectors
w1; � � � ; w4 of length h:

address or depend on the relation between the discretized and the
continuous versions. We form a discretization grid using a square
centered at the origin whose corners are vectorsw1; w2; w3; w4 of
lengthh; as shown in Fig. 1. This grid consists of two disjoint finite
setsS andB such that for eachx 2 S; the set ofneighborsof x;
defined by

N(x) = fx+ wiji = 1; 2; 3; 4g

is a subset ofS[B: The setS should be viewed as a discretization of
the interior setG, and the setB should be viewed as a discretization
of the boundary set@G: We also have two functions,f : B 7! (0;1)

andg: S 7! (0;1), that represent discretizations of the cost functions
q andr of the original problem, respectively. The functiong usually
can be defined byg(x) = r(x) for everyx 2 S:

We now consider a finite-state optimal control problem, the states
of which are the pointsx 2 S [ B; also referred to asnodes.
This problem fits within the framework of the stochastic shortest
path problems discussed in [4] and [5], which cite several earlier
references. The problem is defined as follows: at a statex 2 S; we
must choose a quadrant spanned by the vectorsw� andw�+1; where
� 2 f1; 2; 3; 4g; and then choose a parameter� 2 [0; 1] that specifies
an element�w� + (1� �)w�+1 of the line segment connectingw�

andw�+1 (the indexing ofw is modulo four, so thatw5 = w1). The
next state isx+w� with probability� andx+w�+1 with probability
1 � �: The cost of the choice(�; �) is hg(x)�(�); where

�(�) = �2 + (1� �)2

so that

h�(�) = k�w� + (1� �)w�+1k

is the distance traveled fromx to the point x + �w� + (1 �
�)w�+1: Also, if the statex 2 B is reached, then a terminal cost
f(x) is incurred and the process terminates. The optimal cost-to-go
functionV �

(x) of the original continuous-time problem, which is the
infimum of the costs of all admissible trajectories that start atx; is
approximated by the optimal cost-to-go functionfV (x)jx 2 S [Bg
of the discretized problem.

It can be shown under our assumptions that the optimal cost-to-go
V (x) of the discretized problem is finite for allx and that the function

V is the unique solution of the following Bellman equations:

V (x) = min
�=1;2;3;4

min
�2[0;1]

hg(x)�(�)

traveling cost

+ �V (x+ w�) + (1� �)V (x+ w�+1)

expectedcost-to-go
x 2S (1)

V (x) = f(x); x 2 B: (2)

To see this, note that from every nonboundary statex 2 S we can
go to the four neighborsw�; where � 2 f1; 2; 3; 4g: Therefore,
since S is assumed to be a finite set, it is possible to go from
each nonboundary statex 2 S to at least one boundary state, and
this implies that the optimal cost-to-go of the discretized problem
(which cannot be negative sinceg(x)> 0 for all x) must be finite
from every initial state. Furthermore, sinceg(x)> 0 for all x 2 S;

all policies that do not reach the boundary with positive probability
result in infinite cost. This implies that the assumptions of the theory
of stochastic shortest path problems (see [3]–[5]) are satisfied. This
theory implies that the Bellman equations have the optimal cost-to-go
functionV as their unique solution. The theory also guarantees that
the value iteration method will converge to the solution of the above
equations, but does not guarantee finite termination. However, here
we have a special structure that is implied by the positivity of the cost
g(x) and the shortest path character of the problem. A key property in
this regard is given in the following proposition, first proved in [10].

Proposition 1: Let V be the solution of the Bellman equations (1)
and (2). Letx 2 S; and let� 2 [0; 1] and� 2 f1; 2; 3; 4g be such that
V (x) = hg(x)�(�)+ �V (x+w�)+ (1� �)V (x+w�+1): If � > 0;

thenV (x)>V (x+ w�): If 1� � > 0; thenV (x)>V (x+ w�+1):

Using the above proposition, it was shown in [10] that a
Gauss–Seidel algorithm that cycles through the nodes terminates
finitely. Furthermore, a Dijkstra-like algorithm that requires only one
iteration per node was proposed in [10] and was shown to be much
faster in theory than the Jacobi and Gauss–Seidel methods that are
typically used to solve stochastic shortest path problems. It has been
confirmed by our experiments that the Dijkstra-like algorithm is also
much faster in practice than the Jacobi and Gauss–Seidel methods.

The key property implied by Proposition 1 is that there exists an
optimal policy under which, from any state, we can only go to a
state of lower cost. Such policies are calledconsistently improving
and are discussed in more detail in [3, p. 90]. When a consistently
improving policy exists, a Dijkstra-like algorithm as well as other
finitely terminating value iteration algorithms of the type considered
in this paper can be used (see [3, p. 127]).

The objective of this paper is twofold. First, we introduce a broad
class of value iteration methods, which resemble the label-correcting
methods used to solve deterministic shortest path problems. These
methods can be viewed as Gauss–Seidel methods with the node
order used for iteration being arbitrary (not necessarily cyclical).
We show that these methods terminate (see Proposition 2 in the
next section), although they may require more iterations than the
Dijkstra-like algorithm of [10]. Second, we develop several new label
correcting-like methods, which use special rules to define the node
order used for iteration and which try to approximate the operation of
the Dijkstra-like algorithm with smaller overhead per iteration. These
methods are patterned after the Smallest Label First (SLF) method of
[2] and the Smallest Label First–Last Label Last (SLF–LLL) method
of [6], which have been shown experimentally to be very effective
for deterministic shortest path problems. We provide computational
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results showing that these new methods are competitive and often
superior to the Dijkstra-like algorithm and are also much faster than
the traditional Jacobi and Gauss–Seidel methods. The new methods
also lend themselves better for parallelization than the Dijkstra-like
algorithm.

II. GENERIC LABEL-CORRECTING ALGORITHM

In this section we describe a general algorithm for solving the
stochastic shortest path problem corresponding to the discretization
discussed in Section I. The algorithm, referred to asgeneric, is
patterned after a generic label-correcting method for deterministic
shortest path problems; see for example [8] and [1]. It maintains a
list of nodesL called the candidate listand alabel V (x) for each
nodex 2 S [B: Each label is either a real number or1: Initially

L =B

V (x) = f(x); 8x 2 B

V (x) =1; 8x 2 S:

For convenience, we also keep track of the direction(�(x); �(x))

along which the current label ofx was calculated. The algorithm
proceeds in iterations and terminates whenL is empty. The typical
iteration of the algorithm (assuming thatL is not empty) is as follows.

Typical Iteration of the Generic Label-Correcting Algorithm

Remove a nodex from the candidate listL: For each neighbory
of x that also belongs toS; if V (y)>V (x); calculate

~V (y) = min
f�=1;2;3;4jx2fy+w ;y+w gg

min
�2[0;1]

[hg(y)�(�)

+ �V (y + w�) + (1� �)V (y + w�+1)]:

Let (~a; ~�) be the direction for which the minimum value~V (y) is
obtained. IfV (y)> ~V (y); then setV (y) = ~V (y); a(y) = ~a; �(y) =
~� and addy to L if it is not already inL:

It can be seen that in the course of the algorithm the labels are
monotonically nonincreasing and thatV (x)<1 if and only if x has
entered the candidate list at least once. The following lemma gives
the main properties of the algorithm.

Proposition 2:

1) At the end of each iteration the following conditions hold.

a) V (x) = f(x) for all x 2 B: Furthermore, nodes inB
do not re-enter the candidate list once removed.

b) For all x 2 S; if V (x)<1; then

V (x) �hg(x)�(�) + �(x)V (x+ w�(x))

+ (1� �(x))V (x+ w�(x)+1): (3)

c) If for a nodex 2 S there is a quadrant� such that
x + w� =2 L andx + w�+1 =2 L; then we have

V (x) � min
�2[0;1]

[hg(x)�(�) + �V (x+ w�)

+ (1� �)V (x+ w�+1)]: (4)

2) The algorithm terminates. The set of labelsfV (x)jx 2 S[Bg

obtained upon termination solves the Bellman equations (1)
and (2).

Proof:

1) Condition a) holds since by the rules of the algorithm the labels
of the border nodes cannot change, and only nodes inS can
re-enter the candidate listL: We prove b) as follows: just after

the label ofx is reduced, we have

V (x) =hg(x)�(�) + �(x)V (x+ w�(x))

+ (1� �(x))V (x+ w�(x)+1):

Since the labels of the neighboring nodes ofx are nonincreas-
ing, we see that (3) holds in subsequent iterations until the
value of x is recalculated.

To prove c), note that initially the nodes not inL have
infinite labels. Therefore, c) holds trivially at the beginning of
the algorithm. Let us now fix a nodex and its two neighbors
x+w�; x+w�+1 of some quadrant�: If neither of the nodes
x + w�; x + w�+1 enters the candidate listL throughout the
algorithm, then c) holds since the label ofx is nonincreasing.
Otherwise, at least one of the nodesx+w�; x+w�+1 enters
L at some time. Consider now an iterationk of the algorithm
where nodex + w� or nodex + w�+1, exits L, and as a
result both nodes are not inL: At this iteration, the label
of x is recalculated and (4) is satisfied. Furthermore, (4) is
satisfied in all subsequent iterations of the algorithm until either
termination is reached or one of the nodesx+ w�; x+ w�+1

re-entersL at some iterationk0>k: This is because for all
iterations performed afterk until either termination or iteration
k
0 is reached, the labels ofx+w�; x+w�+1 remain unchanged

while the label ofx is nonincreasing. We conclude that (4)
holds throughout the algorithm.

2) We assume that the algorithm does not terminate in order to
reach a contradiction. LetI be the set of nodes that entersL
a positive but finite number of times, and letI be the set of
nodes that entersL an infinite number of times. Also letJ be
the set of nodes that never entersL and whose labels are infinite
throughout the algorithm. The setsI; I; andJ; and the labels of
the nodes inI remain unchanged after some iteration denoted
m: Furthermore, the setsI and I are nonempty since from
Proposition 2.1-a),B � I; implying that I is nonempty and
the algorithm does not terminate, implying thatI is nonempty.

Each time a node entersL; its label is smaller than the
preceding time it enteredL: Since the label of a node is
bounded below by zero, we conclude that the labels of the
nodes inI [ I converge. For a nodex 2 I [ I; let V1

(x)

denote the limiting value of the label ofx; and let�1(x) and
�
1
(x) be such that

V
1
(x) =hg(x)�(�

1
(x)) + �

1
(x)V

1
(x+ w� (x))

+ (1� �
1
(x))V

1
(x+ w� (x)+1): (5)

Note that�1(x) and �1(x) exist by the compactness of the
sets where� and � take values. We also define the setP(x)

of desired nodes ofx as follows:

P(x) =

fx+ w� (x)g; if �1(x) = 1

fx+ w� (x)+1g; if �1(x) = 0

fx+ w� (x); x+ w� (x)+1g; otherwise.

We observe that in view of (5), we have

P(x) \ I 6= ;; 8x 2 I

since, after iterationm; for eachx 2 I; the labels of the nodes
in P(x) \ I remain constant, while the label ofx decreases
infinitely many times; if all nodes ofP(x) were inI; (5) would
be violated. Thus, each nodex 2 I has at least one desired
node inI: Consequently, there exists a cycle of nodes ofI;

say (x1; x2; � � � ; xk; xk+1); such thatxk+1 = x1 andxi+1 is
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a desired node ofxi; for i = 1; � � � ; k: From Proposition 1 we
have thatV1(xi)>V1(xi+1) for all i = 1; � � � ; k; which is
a contradiction. Thus the algorithm terminates.

Next we show that all nodesx 2 S will exit L at least
once so that they must be finite upon termination. In particular,
let us consider a nodex1 2 S and a sequence of nodes
(x1; � � � ; xk; xk+1) such thatxk+1 2 B and xi+1 2 N(xi);

for all i = 1; � � � ; k: As discussed in Section I, such a
node sequence exists for everyx1 2 S: Since the algorithm
terminates, the boundary nodexk+1 must exit L; since it
belongs toL initially. When nodexk+1 exits L; the label of
nodexk is calculated and, ifxk has never before enteredL; its
label becomes finite and it entersL: Repeating this argument
usingxk in place ofxk+1; and proceeding similarly, we can
prove that each of the nodesxk�1; � � � ; x1 will exit L at least
once.

We finally note that upon termination, the listL is empty so
that both (3) and (4) hold for allx 2 S; implying that the labels
of the nodes satisfy the Bellman equations (1) and (2).Q:E:D:

Different algorithms can be derived from our generic label-
correcting algorithm by using different ways to choose the node
that exits the candidate list at each iteration. In particular, if a node
with the smallest label is chosen to exit the list, then we obtain an
analog of Dijkstra’s algorithm. The key property of this algorithm is
that once a node exits the list, it never re-enters it, as shown in [10].
Other possibilities are to organize the list according to the schemes
described in [2] and [6]. In Section III we discuss implementations
of such schemes and give some computational results.

III. I MPLEMENTING DIJKSTRA-LIKE AND

LABEL-CORRECTING-LIKE ALGORITHMS

In this section we compare the Dijkstra-like algorithm discussed
above and two recently developed label-correcting algorithms (the
SLF–LLL and the SLF–LLL–Threshold methods to be presented
below). The Dijkstra algorithm performs at most one iteration per
node but requires some extra overhead per iteration, in order to
determine a smallest-label node within the candidate list. In the label-
correcting methods, the number of iterations is larger than for the
Dijkstra algorithm, but the overhead is smaller per iteration. The
computational results show that there are cases where the label-
correcting algorithms outperform the Dijkstra-like algorithm. This is
encouraging for one more reason: label-correcting algorithms are par-
allelizable, whereas the Dijkstra algorithm is not. The recent paper of
Bertsekaset al. [6] explores the parallelization of the label-correcting
algorithms we consider for the case of deterministic shortest path
problems. Their computational results show that parallelization leads
to excellent speedup. In any case, the algorithms that we present here
are much faster than the traditional algorithms described by Kushner
and Dupuis in [7], where the nodes are picked for iteration according
to some fixed order.

A. The Algorithms

We describe the algorithms that we tested, and we discuss several
issues related to their efficient implementation.

The Dijkstra Algorithm: In our implementation, we maintain the
candidate list as a binary heap where the top node is the node with the
smallest label. At each iteration, this node is removed from the list,
and as discussed above, this node becomes permanently labeled and
never enters the heap again. If the label of a neighbor is reduced, this
neighbor is included in the binary heap at the appropriate position.
Observe that if a nodei becomes permanently labeled, then at most
three of its neighbors may enter the binary heap, since at least one of

its neighbors, the one having smaller label than nodei, is permanently
labeled. The iterations proceed until the list is empty. Our binary heap
code is based on the SHEAP code for deterministic shortest paths of
Gallo and Pallotino [8]. In the presentation of our results we will
refer to the implementations of the Dijkstra-like algorithm with the
prefix “DIJ-”.

The Label Correcting-Like Algorithms:

1) The SLF–LLL Method: In this algorithm, the candidate list is
maintained as a queue. Nodes enter the list according to the
following (SLF)criterion first proposed in [2]:whenever a node
i not already in the list enters the list, its labelV (i) is compared
to the labelV (j) of the top nodej of the list. IfV (i) � V (j);

node i is inserted at the top of the list; otherwise nodei is
inserted at the bottom of the list.

This criterion for insertion in the list is combined with
another simple criterion for the removal of a node from the
list. The removal criterion is called(LLL) and was proposed in
[6]. According to this criterion, the node at the top of the list is
considered. If its label is larger than the average of the labels
of all the nodes in the list (defined as the sum of the labels
divided by the number of nodes), then the node is reinserted
at the bottom of the list and its successor node in the list is
extracted. This procedure continues until a node with label less
than or equal to the average of the labels of all the nodes in the
list is found. The labels of the neighboring nodes of the node
removed from the list are recomputed, and the corresponding
nodes are inserted in the list according to the SLF criterion.

2) The SLF–LLL-Threshold Method:This is a combination of the
SLF–LLL method with the threshold method of Gloveret
al. [9] (see [6]). Here, the candidate list maintained by the
SLF–LLL method is divided in two lists; the nodes on the first
list are the ones that have labels less than or equal to some
threshold value. Nodes are inserted in both lists according to
the SLF criterion. Nodes are removed only from the first list
according to the LLL criterion. When the first list becomes
empty, the threshold is appropriately increased and nodes with
label less than or equal to the new threshold are removed
from the second list and inserted to the first list according
to the SLF criterion. The method we chose for increasing
the threshold is the following: initially, the threshold is set
to the minimum node costminx2S g(x) plus a user-chosen
percentage of the maximum node costmaxx2S g(x): Each
time the first list empties, the threshold is increased by the user-
chosen percentage of the maximum node cost. If this increase
was not sufficient to transfer any nodes of the second list to the
first list, the threshold is set equal to the minimum node label
in the second list plus the user-set percentage of the maximum
node cost. In the presentation of the computational results we
will refer to the SLF–LLL-Threshold algorithm with the prefix
“SLF–LLL–TH-”.

In all the above implementations we have used certain tests that
help avoid unnecessary recomputations of the labels of the nodes.
The reduction in computation obtained by these tests is significant.
Specifically, recall that the label of a nodex is computed by
performing minimizations along four quadrants (parameter�), and
the minimization in a particular quadrant is based on the labels of two
neighboring nodes. In particular, we make the following observations.

• When a node exits the list, only its neighbors with larger labels
need to have their label recomputed (see Proposition 1).

• The recomputation of the label of a node needs to be made only
in the quadrants that involve the neighboring node that exited
the list at the beginning of the current iteration.
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TABLE I
COMPUTATIONAL RESULTS ON THEMACINTOSH POWERBOOK 170 AND Alpha-Dec. ON EACH PROBLEM LINE, THE NUMBERS ON TOP ARE THE TIMES IN SECONDS ON

THE DIFFERENT MACHINES, AND THE NUMBERS AT THE BOTTOM ARE THE ITERATIONS/LABEL CALCULATIONS/SIMPLIFIED LABEL CALCULATIONS. ALL PROBLEMS

WERE GENERATED BY THE GRIDQUAD PROGRAM. THE COST ASSIGNED TO A GRID POSITION (x; y) WHICH IS NOT A BOUNDARY POINT OR AN OBSTACLE IS

GIVEN BY 1001� 1000(10(x� x0)2 + 40(y � y0)2=10(x0 + 1)2 + 40(y0 + 1)2; WHERE (x0; y0) IS THE CENTRAL POINT OF THE GRID

• If the labels of the two neighboring nodes of nodex in a
particular quadrant have remained the same since the last time
that the label ofx was calculated, no minimization using
that quadrant is needed. We consider implementations of the
algorithms both with and without keeping track of the labels
of neighboring nodes. In the presentation of the computational
results we will distinguish the two implementations of an algo-
rithm by appending the suffixes “-NEIGH” and “-NO-NEIGH,”
respectively, to the name of the algorithm.

• Let two neighboring nodes of nodex in a particular quadrant bei
andj: If i has a greater label than the current label ofx; then the
simpler label updateV (x) := minfV (x); hg(x) + V (j)g can
be used. Such a label evaluation will be referred to assimplified.

The implementations of all algorithms solve the problem of finding
the optimal costs from all nodesx 2 S to some border pointx: In
particular, we have setf(x) = 0; and for all border nodesx 6= x we
have set the costf(x) to be a very large number.

B. The Test Problems

We implemented a test problem generator called GRIDQUAD.
The test problems generated are grids resulting from a square dis-
cretization of parallelograms with sides whose length is an integer
multiple of the discretization steph: Thus G is the interior of
the parallelogram and@G is the border of the parallelogram. The
corresponding discretizationsS andB are easy to obtain. Each node
x 2 S has an associated cost which is the discretized version of the
positive cost functionr(x) defined onG: The program GRIDQUAD
uses a quadratic function forr(x): The cost of all boundary nodes
x 2 B is (effectively) infinity except for the two neighbors of the
top right-hand corner of the parallelogram border. To make the test
problems more interesting, we have introducedobstacles, i.e., interior
points of the parallelogram with infinite cost. These are considered to
be part of@G: In our test problems, obstacles occur in rows; all the
points on a row have infinite cost except for a segment of lengthkh

wherek is some positive integer. Obstacle rows are equally spaced
at a distance which is an integer multiple of the discretization steph:

C. Test Results

We present in Table I the results of some of the computational
experiments. The test problems are described by giving the
dimensions of the grid and the number of obstacles. Costs of
interior points are in the range [1–1000] and are generated by

a quadratic function which has its maximum at the center of
the grid. For each algorithm we tested two implementations,
one that keeps track of the values of neighboring nodes in
order to avoid unnecessary computations (suffix -NEIGH)
and one that does not maintain such information (suffix
-NO-NEIGH). We report running times on a Macintosh
Powerbook 170 and on an Alpha-Dec computer running a version
of UNIX. We also report the number of iterations, label calculations,
and simplified label calculations performed by each algorithm to
facilitate the comparison between the algorithms.

Our computational experiments indicate that the label-correcting
algorithms are competitive with the Dijkstra algorithm. The
SLF–LLL–TH algorithm outperforms consistently the Dijkstra
algorithm, while the SLF–LLL algorithm outperforms the Dijkstra
algorithm on the Alpha-Dec computer and is a bit slower than the
Dijkstra algorithm on the Macintosh Powerbook 170. On problems
with obstacles, all algorithms have similar running times. This is
because the addition of obstacles has an effect similar to breaking
the problem to several smaller-sized problems. Therefore, the data
structures maintained by the algorithms for the choice of the node to
exit the list contain few nodes and thus need less overhead, leading
to similar running times. The differences in running times are more
evident on problems without obstacles.

We do not present any computational comparisons with traditional
Gauss–Seidel methods that cycle through the nodes in a fixed order.
Our experiments have confirmed that these methods require much
greater computation time than the methods discussed in this paper,
often by an order of magnitude or more.

One final observation is that times on the Alpha-Dec seem to favor
the SLF–LLL methods more than on the Mac. The extra iterations
that the label-correcting algorithms require are outweighed on the
Alpha-Dec by the amount of time spent on maintaining the heap in
the Dijkstra method. A similar effect is observed when we keep extra
data to reduce calculations (-NEIGH versus -NO-NEIGH). Although
the number of time-consuming minimizations as in (1) is reduced by
keeping labels of neighbors, the running time is not improved. This
may be due to a higher penalty for memory access operations than
for computations in the Alpha-Dec.

D. Conclusions

Our computational results indicate that the methods presented in
this paper are very efficient. They are apparently much faster than
traditional Gauss–Seidel methods that cycle through the nodes in
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a fixed order. Furthermore, the label-correcting methods developed
are parallelizable as in [6] and will likely lead to efficient parallel
algorithms. Finally, the label-correcting methods we presented may
also be used in the case where the cost function is of the formr(x; u):
In this case the theory of [10] cannot be applied and a Dijkstra-like
algorithm is not possible. However, the label-correcting algorithms
we proposed can be used as heuristics that specify the order in which
the label updates are performed. Their efficient implementation is an
interesting subject for further research.
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Stable Inversion for Nonlinear Nonminimum-Phase
Time-Varying Systems

S. Devasia and B. Paden

Abstract— In this paper, we extend stable inversion to nonlinear
time-varying systems and study computational issues—the technique is
applicable to minimum-phase as well as nonminimum-phase systems. The
inversion technique is new, even in the linear time-varying case, and relies
on partitioning (the dichotomic split of) the linearized system dynamics
into time-varying, stable, and unstable, submanifolds. This dichotomic
split is used to build time-varying filters which are, in turn, the basis of a
contraction used to find a bounded inverse input-state trajectory. Finding
the inverse input-state trajectory allows the development of exact-output
tracking controllers. The method is local to the time-varying trajectory
and requires that the internal dynamics vary slowly; however, the method
represents a significant advance relative to presently available tracking
controllers. Present techniques are restricted to time-invariant nonlinear
systems and, in the general case, track only asymptotically.

Index Terms—Dynamics, feedforward systems, inverse problems, track-
ing.

I. INTRODUCTION

In this paper, the stable inversion problem for nonlinear time-
varying systems is solved. The approach is quite novel in that it
applies to nonminimum phase systems—even the linear version of
our approach is new in the time-varying context. The basic idea
is to compute the inverse dynamics, through a contraction, to find
an input-state trajectory that achieves a desired output trajectory.
To develop output tracking controllers, the input trajectory (found
through inversion) can be used as a feedforward input signal in
conjunction with any conventional feedback control law that stabilizes
the inverse state trajectory [1]. The present work completes a line
of research which was motivated by the inversion of time-invariant
articulated flexible structure dynamics [2] and extends our work
on inversion of general affine-in-control time-invariant nonlinear
systems [3].

System inversion is key to recent results in exact-output tracking
for autonomous systems [1], [3]–[5]. This paper extends these results
to exact-output tracking of time-varying systems. The output tracking
problem has a long history marked by the solution of the linear time-
invariant regulator problem by Francis [6] and the nonlinear time-
invariant generalization made by Isidori and Byrnes [7]. The linear
regulator is designed by solving a manageable set of linear matrix
equations, whereas the nonlinear regulator requires the nontrivial
solution of a first-order partial differential algebraic equation. These
approaches asymptotically track any member in a given family
of output signals. More recently, there have been refinements of
these approaches. Huang and Rugh [8] used a formal Taylor series
expansion of the Isidori–Byrnes partial differential equation and gave
a sufficient condition for solvability. Krener [9] extended this work
by providing necessary and sufficient conditions for the term-by-term
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