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Abstract—We consider a multiclass multiplexer with support
for multiple service classes and dedicated buffers for each service
class. Under specific scheduling policies for sharing bandwidth
among these classes, we seek the asymptotic (as the buffer
size goes to infinity) tail of the buffer overflow probability for
each dedicated buffer. We assume dependent arrival and service
processes as is usually the case in models of bursty traffic. In the
standard large deviationsmethodology, we provide a lower and
a matching (up to first degree in the exponent) upper bound on
the buffer overflow probabilities. We introduce a novel optimal
control approach to address these problems. In particular, we
relate the lower bound derivation to adeterministic optimal control
problem, which we explicitly solve. Optimal state trajectories of
the control problem correspond to typical congestion scenarios.
We explicitly and in detail characterize the most likelymodes of
overflow. We specialize our results to thegeneralized processor
sharing policy (GPS)and the generalized longest queue first policy
(GLQF). The performance of strict priority policies is obtained
as a corollary. We compare the GPS and GLQF policies and
conclude that GLQF achieves smaller overflow probabilities than
GPS for all arrival and service processes for which our analysis
holds. Our results have important implications for traffic man-
agement of high-speed networks and can be used as a basis for an
admission control mechanism which guarantees a different loss
probability for each class.

Index Terms—ATM-based B-ISDN, communication networks,
large deviations.

I. INTRODUCTION

H IGH-SPEED packet-switched communication networks,
for example ATM-based B-ISDN networks, accommo-

date various types of traffic (digitized voice, encoded video,
and data) and offer a variety of services. One of the central and
most challenging current problems in computer networking is
the design and the operation of these networks.

Congestion causes packet losses, due to buffer overflows,
and excessive delays, phenomena that greatly contribute to
the degradation of thequality of service (QoS)that the network
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delivers to its users. Since voice and video are very sensitive
to such phenomena the network should have the ability to
guarantee certain QoS parameters to the user. We quantify
QoS by the probability of buffer overflow. It is desirable to
operate the network in a regime where packet loss probabilities
are very small, e.g., in the order of 10. An essential
step for preventing congestion through a variety of control
mechanisms (buffer dimensioning, admission control, resource
allocation) is to determine how it occurs and to estimate
the probabilities of congestion phenomena. The problem is
particularly difficult since it essentially requires finding the
distributions of queue lengths in a multiclass network of G/G/1
queues with correlated arrival processes (since it is needed to
model bursty traffic) and nonexponentially distributed service
times. In this light, it is natural to focus on thelarge deviations
regime and obtain asymptotic expressions for the tails of
congestion probabilities.

In this paper we focus on a simplified version of the problem
which retains the most salient features, that is, it is multiclass
and has correlated arrival and service processes. In particular,
we consider amulticlass multiplexer (switch)which accommo-
dates multiple service classes. Aservice classis characterized
by the statistical properties of the incoming traffic and by the
QoS requirements. Different types of traffic (i.e., voice, video,
data, etc.) have different statistical properties, and in addition
they may have distinct QoS requirements (e.g., video may
need more stringent QoS requirements than voice), thus they
belong to different service classes. Moreover, sessions of the
same type of traffic may belong to different service classes if
they have different QoS requirements (e.g., we can consider a
situation where we want to support both high- and low-quality
video).

Under specific scheduling policies for sharing bandwidth
among service classes, we seek the asymptotic (as the buffer
size goes to infinity) tail of the buffer overflow probability that
each class experiences. We focus on thegeneralized processor
sharing policy (GPS)(introduced in [9] and further explored
in [29] and [30]) and thegeneralized longest queue first policy
(GLQF). The GLQF policy is a generalization of thelongest
queue first policy (LQF), under which the server allocates all
of its capacity to the longest queue. Both of these policies are
parametric policies and for specific values of the parameters
reduce to strict priority policies. Thus, the performance of
strict priority policies is obtained as a corollary of our results
(approximate results for priority policies are reported in [16]).
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In the standardlarge deviationsmethodology, we provide
a lower and a matching (up to first degree in the exponent)
upper bound on the buffer overflow probabilities. We prove
that overflows occur in one out of twomost likelyways (modes
of overflow), and we explicitly and in detail characterize these
modes. We address the case of multiplexing two different
traffic streams. (The general case ofstreams is more com-
plicated since there is an exponential explosion of the number
of overflow modes.) Our results have important implications
in traffic management of high-speed networks. They can be
used as a basis for an admission control mechanism which
provides statistical QoS guarantees for each service class and
allows for different QoS requirements for each class (see [28]
where this direction is pursued).

We wish to note at this point that although our principal
motivation for studying this problem is computer networking,
our results have applications in other queueing situations, e.g.,
service industry and manufacturing systems.

Large deviations techniques have been applied recently to a
variety of problems in communications (see [33] for a survey).
The problem of estimating tail probabilities of rare events in
a single class queue has received extensive attention in the
literature [22], [20], [23], [24], [21], [15], [32]. The extension
of these ideas to single-class networks, although much harder,
has been treated in various versions and degrees of rigor in
[1], [18], [7], [25], and [10].

Closer to the subject of this paper, the asymptotic tails of the
overflow probabilities for the GPS policy with deterministic
service capacity are obtained in [11] and [34]. Both papers
use a large deviation result for the departure process from
a G/D/1 queue [10]. Tail overflow probabilities for the GPS
policy and deterministic service capacity were also reported in
[26] and [7]. The authors in [7] view the problem as a control
problem where control variables are the capacity that the server
allocates to each buffer, as a function of the current state.
This approach has some technical problems with boundaries
because it requires Lipschitz continuity of the controls.

In [19] the authors suggest the use of the LQF policy in
high-speed networks and use a deterministic model (only the
rate of each incoming stream is known) to calculate buffer
sizes that guarantee no loss with probability one. Our analysis
significantly extends the scope of this work by generalizing
the policy (GLQF) and by taking the statistical properties of
the incoming traffic into account. This leads to a more efficient
utilization of the network resources. Large deviations results
for the LQF policy in an M/M/1 setting are also reported in
[31].

We consider the following to be some of the main contri-
butions of the work in this paper.

• The derivation of tight asymptotic expressions for the
performance of multiclass multiplexers operated under so-
phisticated (and of interest in practice) scheduling policies
for sharing bandwidth among classes.

• The introduction of anoptimal control approach to ad-
dress the problem. Our formulation is different from the
one in [7]. In particular, the exponent of the overflow
probability is the optimal value of the control problem,
which we explicitly solve. Optimal state trajectories of

the control problem correspond to the most likely modes
of overflow; from the solution of the control problem we
obtain a detailed characterization of these modes. This
optimal control formulation is general enough to include
any scheduling policy; only the dynamics of the system
are policy-dependent. Optimal control formulations are
also used in [31] for large deviations results for jump
Markov processes.

• The extension of some GPS results existing in the liter-
ature to the case of a stochastic service capacity. This
extension makes it possible to treat more complicated
service disciplines. Consider for example the case where
we have a deterministic server and three classes with
dedicated buffers. We give priority to the first class
and use the GPS policy for the remaining two. These
two remaining classes face a GPS server with stochastic
capacity. Stochastic capacity significantly alters the way
overflows occur. To see this, note that in deriving their
results [11] and [34] use the departure process from a
G/D/1 queue. The large deviations behavior of the depar-
ture process is different with deterministic and stochastic
service capacity as it is pointed out in [1] and [8].

• The introduction of a new policy, the GLQF, which gen-
eralizes the LQF policy. We provide analytic performance
analysis results for the GLQF policy and compare it to
the GPS policy. We argue that GLQF is preferable, at
least in the absence of fairness considerations.

Regarding the structure of this paper, we begin in Section II
with a brief review of the large deviations results that we
will use. We also state a set of assumptions to which arrival
and service processes need to conform. In Section III we
formally define the multiclass model that we consider, and
in Subsections III-A and III-B we introduce the GPS and
the GLQF policy, respectively. Moreover, in Subsection III-C
we provide an outline of the methodology that we follow in
proving our results. In Section IV we establish lower bounds
on the overflow probability under the GLQF (Subsection IV-
A) and the GPS policy (Subsection IV-B). The optimal control
formulation is introduced in Section V and the results are
specialized to the GPS (Subsection V-A) and the GLQF (Sub-
section V-B) case. In Section VI we describe the most likely
modes of overflow, under both policies, obtained from the
solution of the corresponding control problems. In Section VII
we state the upper bound for the GPS policy (the proof is quite
technical and involved and we omit it in the interest of space;
we refer the interested reader to [3]). Section VIII contains the
proof for the upper bound in the GLQF case. We gather our
main performance analysis results in Section IX, where we
also treat the special case of strict priority policies. Finally,
we compare the two scheduling policies in Section X, and
conclusions are in Section XI.

II. PRELIMINARIES

In this section we review some basic results on the theory of
large deviations [13], [31], [4] that will be used in the sequel.

We first state the G̈artner–Ellis theorem [17], [14] (see also
Bucklew [4] and Dembo and Zeitouni [13]) which establishes
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a Large Deviations Principle (LDP)for dependent random
variables in . It is a generalization of Craḿer’s theorem
[6] which applies to independent and identically distributed
(i.i.d.) random variables.

Consider a sequence of random variables, with
values in and define

(1)

For the applications that we have in mind, is a partial
sum process. Namely, , where , are
identically distributed, possibly dependent random variables.

Assumption A:

1) The limit

(2)

exists for all , where are allowed both as elements
of the sequence and as limit points.

2) The origin is in the interior of the domain
of .

3) is differentiable in the interior of , and the
derivative tends to infinity as approaches the boundary
of .

4) is lower semicontinuous, i.e.,
, for all .

Theorem 2.1 (G¨artner–Ellis): Under Assumption A, the
following inequalities hold.

Upper Bound:For every closed set

(3)

Lower Bound:For every open set

(4)

where

(5)

We say that satisfies an LDP withgood rate function
. The term “good” refers to the fact that the level sets

are compact for all , which is a
consequence of Assumption A (see [13] for a proof).

It is important to note that and are convex duals
(Legendre transforms of each other). Namely, along with (5),
it holds that

(6)

The G̈artner–Ellis theorem intuitively asserts that for large
enough and for small

A stronger concept than the LDP for the partial sum random
variable is the LDP for the partial sumprocess
(sample path LDP)

Note that the random variable corresponds to
the terminal value (at ) of the process . In
a key paper [12], under certain mild mixing conditions on the
stationary sequence , Dembo and Zajic establish
an LDP for the process in (the space
of right continuous functions with left limits equipped with the
supremum norm topology). Their result is a starting point for
our analysis in this paper. In particular, we will be assuming
the following version of the sample path LDP.

Assumption B:For all , for every , and for
every scalar , there exists such that for all

and all with

(7)

A detailed discussion of this assumption, and the technical
conditions under which it is satisfied, is given in [12]. In
the simpler case where dependencies are not present (i.e.,

, where ’s are i.i.d.), Assumption B is a
consequence of Mogulskii’s theorem (see [13]). Intuitively,
Assumption B deals with the probability of sample paths that
are constrained to be within a tube around a “polygonal” path
made up with linear segments of slopes . In [12]
it is proved that this assumption is satisfied by processes
that are commonly used in modeling the input traffic to
communication networks, that is, renewal processes, Markov
modulated processes, and correlated stationary processes with
mild mixing conditions.

We will be also making the following related assumption.
Assumption C:For all there exists and a

function with , for all , such that
for all and all with

(8)

where and
.

Chang [5] provides a uniform bounding condition under
which Assumption B is true and verifies that the condition
is satisfied by renewal, Markov-modulated, and stationary
processes with mild mixing conditions. Using his uniform
bounding condition it can be verified (see [5] for a proof)
that Assumption C is also satisfied. This latter assumption can
be viewed as the “convex dual analog” of Assumption B.

On a notational remark, in the rest of the paper we will be
denoting by the partial sums of the
random sequence . We will be also denoting
by and the limiting -moment generating
function and the large deviations rate function [cf. (2) and
(5)], respectively, of the process .
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Fig. 1. A multiclass model.

III. A M ULTICLASS MODEL

In this section we introduce a multiclass multiplexer model
that we plan to analyze, in the large deviations regime, under
two specific scheduling policies for sharing bandwidth among
classes: the GPS and the GLQF. The former policy is described
in Subsection III-A, and the latter one in Subsection III-
B. Subsection III-C provides an outline of the approach we
follow.

Consider the system depicted in Fig. 1. We assume a slotted
time model (i.e., discrete time) and we let (respectively,

), , denote the number of class 1 (respectively, 2)
customers that enter queue (respectively, ) at time .
Both queues have infinite buffers and share the same server
which can process customers during the time interval

. We assume that the processes
and are stationary and mutually

independent. However, we allow dependencies between the
number of customers at different slots in each process. For
stability purposes we assume that for all

(9)

We denote by and the queue lengths at time
(without counting arrivals at time) in queues and ,
respectively. We assume that the server allocates its capacity
between queues and according to a work-conserving
policy (i.e., the server never stays idle when there is work in
the system). We also assume that the queue length processes

are stationary (under a work-conserving
policy, the system reaches steady state due to the stability
condition (9) by assuming ergodicity for the arrival and service
processes).

To simplify the analysis and avoid integrality issues we
assume a discrete-time “fluid” model, meaning that we will
be treating and as real numbers (the amount of
fluid entering or being served). This will not affect the results
in the large deviations regime.

Finally, we assume that the arrival and service processes
satisfy an LDP (Assumption A) as well as Assumptions B
and C. As we have noted in Section II, these assumptions are
satisfied by processes that are commonly used to model bursty
traffic in communication networks, e.g., renewal processes,
Markov-modulated processes, and more generally stationary
processes with mild mixing conditions.

A. The GPS Policy

The generalized processor sharing(GPS) policy was pro-
posed in [9] and further explored in [29] and [30]. According
to this policy the server allocates a fraction of its

capacity to queue and the remaining fraction
to queue . The policy is defined to be work-conserving,
which implies that one of the queues, say queue, may get
more than a fraction of the server’s capacity during times
that the other queue, , is empty. This policy is also known
asfair queueingbecause it guarantees a certain fraction of the
available bandwidth to each class and thus avoids situations
that occur under first come/first served (FCFS) where a bursty
class can take the lion’s share of the bandwidth.

More formally, we can define the GPS to be the policy that
satisfies (work-conservation)

and

where .

B. The GLQF Policy

Fig. 2 depicts the operation of the GLQF policy in the
space. Fix the parameter of the policy . There is

a threshold line, of slope, which divides the positive orthant
of the space in two regions. The GLQF policy serves
class 2 customers above the threshold line and class 1 below
it. The value corresponds to the longest queue first
(LQF) policy. Intuitively, the GLQF policy tries to maintain a
desirable ratio of the queue lengths per class by attending
to the class that overshoots this ratio. Since delays are due to
long queues, it is also intuitive that the GLQF policy tries to
balance (with a “bias”) the delay of the two classes.

More formally, we define the GLQF policy to be the work-
conserving policy that at each time slot serves class 1
customers when

and

It serves class 2 customers when

and

When

and

or when

and

then the GLQF policy allocates appropriate capacity to both
classes of customers such that . Similarly,
whenever , the GLQF policy allocates its capacity
to class 1 and 2 customers so that , if possible.

C. An Outline of Our Approach

We are interested in estimating the steady-state overflow
probability for large values of , at an arbitrary
time slot , under both the GPS and the GLQF policy. Having
determined this, the overflow probability of the second queue
can be obtained by a symmetrical argument.



BERTSIMAS et al.: ASYMPTOTIC BUFFER OVERFLOW PROBABILITIES 319

Fig. 2. The operation of the GLQF policy.

We will prove that these overflow probabilities satisfy

(10)

and

(11)

asymptotically, as .
To this end, we will develop a lower bound on each

overflow probability, along with a matching upper bound. Fix
the scheduling policy and consider all scenarios (paths) that
lead to an overflow. We will show that the probability of
each such scenario asymptotically behaves as , for
some function . For every , this probability is a lower
bound on . We select the tightest lower bound by
performing the minimization , in the GPS
case, which amounts to solving a deterministic optimal control
problem. Notice that both the function and the overflow
paths depend on the policy, hence this minimization will
yield a different optimal value in the GLQF case, which we
will denote by . Optimal trajectories (paths) of the
control problem correspond tomost likelyoverflow scenarios.
We will show that these must be of one out of two possible
types, in both the GPS and the GLQF case. In other words,
with high probability, overflow occurs in one out of two
possible modes.

To establish the tightness of the lower bounds and show
(10) and (11), we will obtain an upper bound on .
We will first obtain a sample path upper bound, i.e.,
(which implies ) and then establish
that is at most in the GPS case and

in the GLQF case.

IV. A L OWER BOUND

In this section we establish a lower bound on the overflow
probability under each one of the two scheduling
policies. We first present the lower bound in the GLQF case
and then the one in the GPS case. The main idea is that we
select the dominant overflow scenarios which are responsible
for overflows with high probability. The optimal control for-
mulation in Section V substantiates why the selected scenarios
are the dominant ones.

A. GLQF Lower Bound

Proposition 4.1 (GLQF Lower Bound):Assuming that the
arrival and service processes satisfy Assumptions A and B,
and under the GLQF policy, the steady-state queue length
of queue at an arbitrary time slot satisfies

(12)

where is given by

(13)

and the functions and are defined as
follows:

(14)
and

(15)

Proof: Let and . Fix
, and and consider the event

Notice that (respectively, ) have the interpretation
of empirical arrival (respectively, service) rates during the
interval . We focus on two particular scenarios:

Scenario 1

Scenario 2
(16)

Under Scenario 1, even if the server always serves class 1
customers1 in we have that , where

as .
Consider now Scenario 2, and let us for the moment ignore

’s (i.e., ). We will argue that . If
, then both queues build up together, with the

relation holding in the interval . According
to the GLQF policy the server arbitrarily allocates its capacity
to the two queues, giving fraction to and the remaining

to , yielding . If ,
then the first queue receives less capacity than in

, resulting also in . Finally, consider the case
. Then at some time we have

and .

1Which is the case if we start from an empty system at time�n and the
arrival and service rates are exactlyx1; x2; x3; respectively. Then the second
queue, since it receives zero capacity, builds up with ratex2, and its level
always stays below�L1. This is a necessary condition for the first queue to
be receiving all the capacity.
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Notice that , since otherwise we have a
contradiction, i.e.,

Thus, for large enough, there exists some, say , such that
. This relationship, along with
implies . Now note that from

both queues build up together with the relation
holding. Observing that , we conclude that

.
When we take the’s into account a similar argument holds.

With and with the same , there exists
such that the queue lengths are within anband of the values
in the previous paragraph, resulting in , where

as .
The probability of Scenario 1 is a lower bound on
. Calculating the probability of Scenario 1, maximizing

over and to obtain the tightest bound, and using
Assumption B we have

(17)

where is large enough, and as .
Similarly, calculating the probability of Scenario 2, we have

(18)

where is large enough, and the as .

Combining (17) and (18) we obtain that for all
there exists such that for all

(19)

As a final step to this proof, letting , we obtain
that for all there exists such that for all

which implies

Since , in the above, is arbitrary we can select it in order to
make the bound tighter. Namely

B. GPS Lower Bound

We next turn our attention to the GPS policy and establish
a lower bound on the overflow probability. In the interest of
space we provide an outline of the proof. The complete proof
can be found in [3].

Proposition 4.2 (GPS Lower Bound):Assuming that the
arrival and service processes satisfy Assumptions A and B,
and under the GPS policy, the steady-state queue length
of queue satisfies

(20)

where is given by

(21)

and the functions and are defined as follows:

(22)

and

(23)
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Proof (Outline): Let and . Let also
be the empirical arrival and service rates during

the interval (in the sense introduced in the proof of
Proposition 4.1)

We focus on two particular scenarios:

Scenario 1

Scenario 2
(24)

Under both scenarios it can be established that . Cal-
culating their probabilities we obtain a lower bound on

. We then optimize over all the parameters involved and
use arguments similar to the ones in Proposition 4.1 to arrive
at (20).

V. THE OPTIMAL CONTROL PROBLEM

In this section we introduce an optimal control problem for
each of the two scheduling policies and show that its optimal
value provides the exponents and , respectively, of
the overflow probabilities. We will first motivate the control
problem formulation and establish some properties that are
independent of the scheduling policy. We will subsequently
specialize the results to the GLQF and the GPS policy.

To motivate the control problem, we relate it, heuristically,
with the problem of obtaining an asymptotically tight estimate
of the overflow probability.2 For every overflow sample path,
leading to , there exists some time that both
queues are empty. Since we are interested in the asymptotics
as , we scale time and the levels of the processes

and by . We then let and define the
following continuous-time functions in (these are
right-continuous functions with left limits)

for

Notice that the empirical rate of a processis roughly equal
to the rate of growth of . More formally, we will say
that a process has empirical rate in the interval
if for large and small it is true

where are arbitrary nonnegative functions. We let
and denote the empirical rates of the

processes and , respectively. The probability of
sustaining rates and in the interval
for large values of is given (up to first degree in the
exponent) by

This cost functional is a consequence of Assumption B. With
the scaling introduced here as the sequence of slopes

2Such a relation can be rigorously established using the sample path LDP
for the arrival and service processes, as it is defined in [12] and [5].

appearing there converges to the empirical
rate , and the sum of rate functions appearing in the
exponent converges to an integral.

We seek a path with maximum probability, i.e., a minimum
cost path where the cost functional is given by the integral
in the above expression. This optimization is subject to the
constraints and . The
fluid levels in the two queues and are the state
variables, and the empirical rates and are
the control variables. The dynamics of the system depend on
the state and the scheduling policy employed. According to
the policy, we will distinguish a number of regions of system
dynamics. We do not yet specify the scheduling policy, we
assume, however, that we employ a scheduling policy with
linear dynamics. More specifically, we consider convex
subsets of the positive orthant such that

We fix constants for and
and consider the following system dynamics.

Region : where

Dotted variables in the above expressions denote deriva-
tives.3 Let (DYNAMICS) denote the set of state trajectories

that obey the dynamics given
above.

Motivated by this discussion we now formally define the
following optimal control problem (OVERFLOW). The con-
trol variables are , and the state variables are

for , which obey the dynamics
given in the previous paragraph

(OVERFLOW)

minimize

subject to:

free
free

(DYNAMICS)
(25)

The first property of (OVERFLOW) that we show is that
optimal control trajectories can be taken to be constantwithin
each of the state dynamics regions.

3Here we use the notion of derivative for simplicity of the exposition. Note
that these derivatives may not exist everywhere. Thus, in RegionRj for
example, the rigorous version of the statement_L1

+ _L2
= x1(t) + x2(t)�

x3(t) isL1
(t2)+L2

(t2) = L1
(t1)+L2

(t1)+
t

t
(x1(t)+x2(t)�x3(t)) dt

for all intervals(t1; t2) that the system remains in RegionRj .
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Lemma 5.1:Fix a time interval . Consider a
segment of a control trajectory

, achieving cost , such that the corresponding
state trajectory stays in one of
the regions . Then there exist scalars and such
that the segment of the control trajectory

achieves cost at most, with
the same corresponding states at and .

Proof: We will focus on one region of system dynamics,
say . Consider a segment of any arbitrary control trajectory

that satisfies

(26)

and stays in Region , i.e., for all
, where

(27)

Moreover, we also have

(28)

We will prove that the time–average control trajectory

(29)

is no more costly. To this end, notice that the time–average
trajectory has the same end points [i.e., satisfies (26)], moves
along a straight line, and thus stays in Region(by convex-
ity) for . Moreover, by convexity of the rate
functions we have

Given this property, to solve (OVERFLOW) it suffices to
restrict ourselves to state trajectories with constant control
variables in each of the regions . A trajectory is called
optimal if it achieves the lowest cost among all trajectories
with the same initial and final state. Since we have a free-time
problem, any segment of an optimal trajectory is also optimal
for the problem of moving from the start state to the end state
of the segment.

Consider now a control trajectory with
corresponding state trajectory ,
which leads to a final state . Define a scaled
trajectory as

Fig. 3. By the homogeneity property, optimality of the trajectory in (a)
implies optimality of the trajectory in (b) which in turn implies optimality
of the trajectory in (c).

and note that it leads to the final state . Then,
the cost of the trajectory is given by

Using this observation, it follows easily that every scaled ver-
sion of an optimal trajectory is optimal for the corresponding
terminal state. For example, given thishomogeneityproperty
we can compare the state trajectories in Fig. 3(a)–(c). If the
trajectory in Fig. 3(a) is optimal, then so is the scaled version
(by ) in Fig. 3(b). As a consequence, its segment
which appears in Fig. 3(c) is also optimal (since we have a
free-time problem).

In the rest of this section we will specialize the optimal
control formulation to the GPS and the GLQF case and use
Lemma 5.1 along with the homogeneity property to obtain an
optimal solution.

A. The GPS Optimal Control Problem

In the case of the GPS policy we will distinguish three
regions of system dynamics, depending on which of the two
queues is empty. In particular, we have:

Region : , where according to the GPS
policy

and

Region : , where according to the
GPS policy
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Fig. 4. In searching for optimal state trajectories of (GPS-OVERFLOW), we
only need to consider trajectories of the form in (a) or (b).

Region : , where according to the
GPS policy

We let (GPS-DYNAMICS) denote the set of state trajectories
that obey these dynamics. We will

denote by (GPS-OVERFLOW) the special case of the problem
(OVERFLOW), where state trajectories are constrained to
satisfy (GPS-DYNAMICS).

The main result of this subsection is the following theorem.
Theorem 5.2:The optimal value of the problem (GPS-

OVERFLOW) is given by , as it is defined in (21).
Due to space limitations we will skip the proof; we refer

the interested reader to [3]. The proof uses Lemma 5.1 and the
homogeneity property and follows an elaborate interchange ar-
gument to reduce any trajectory which is a potential candidate
for optimality to one of the two trajectories that appear in
Fig. 4.

B. The GLQF Optimal Control Problem

We next turn our attention to the GLQF policy. Depending
on the state of the system, we distinguish the following three
regions of system dynamics:

Region : , where according to the
GLQF policy

and

Region : , where according to the
GLQF policy

and

Region : , where according to the
GLQF policy

Let (GLQF-DYNAMICS) denote the set of state trajectories
that obey these dynamics.

We will denote by (GLQF-OVERFLOW) the special case
of the problem (OVERFLOW), where state trajectories are
constrained to satisfy (GLQF-DYNAMICS).

This problem exhibits both the properties of constant control
trajectories (cf. Lemma 5.1) within each region of system
dynamics and homogeneity. Using these properties, we can
make the reductions appearing in Fig. 5(a)–(c), starting from
an arbitrary trajectory with piecewise constant controls. More

specifically, consider first an arbitrary trajectory with linear
pieces as the one in Fig. 5(a). We apply Lemma 5.1 to its
initial segment (until it reaches ), and we obtain
a no more costly segment which stays in Region and
is arbitrarily close to the threshold line . By a
continuity argument, we conclude that the initial segment of
the trajectory in Fig. 5(a) (until it reaches ) reduces
to the corresponding segment of the trajectory in Fig. 5(b).
Using the same argument for the remaining segments of the
trajectory in Fig. 5(a), it reduces to the one in Fig. 5(b). We
now apply the homogeneity property to the latter trajectory
to finally obtain the trajectory in Fig. 5(c). We conclude that
optimal state trajectories can be reduced to having one of the
forms depicted in Fig. 5(d)–(f).

The optimal trajectory of the form shown in Fig. 5(d)
has value equal to , and the optimal tra-
jectory of the form shown in Fig. 5(e) has value equal to

, where and are de-
fined in (14) and (15), respectively. Consider now the best
trajectory of the form shown in Fig. 5(f), which has value

(30)

The functions and are nonnegative, convex,
and achieve their minimum value which is equal to zero at

and , respectively. Moreover, due to
the stability condition (9) we have . Since

and in order to have , it has to be the
case that either or . If the former is
the case, we can decrease and reduce the cost, as long as

holds. Also, if is the case, we can
increase and reduce the cost, as long as holds.
Thus, at optimality it is true that . Then, the
expression in (30) is equal to with
in the definition of . Thus, since the calculation of

involves optimization over , we conclude that the
state trajectory Fig. 5(f) is no more profitable than the one in
Fig. 5(e), leaving us with only the trajectories in Fig. 5(d) and
(e) as possible candidates for optimality. We summarize the
above discussion in the following theorem.

Theorem 5.3:The optimal value of the problem (GLQF-
OVERFLOW) is given by .

VI. THE MOST LIKELY PATHS

In essence, solving the control problem is equivalent to
discovering scenarios of overflow that maximize the overflow
probability over all feasible overflow scenarios. In this section
we summarize thesemost likelyways of overflow for both
policies.

A. The GPS Most Likely Paths

The two optimal state trajectories of (GPS-OVERFLOW)
are the two generic most likely ways that queueoverflows,
under the GPS policy. In particular, we distinguish two cases.

Case 1) Suppose holds. Let
be the optimal solution of this optimization
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Fig. 5. By the property of constant controls within each region of system dynamics the state trajectory in (b) is no more costly than the trajectory in
(a). Also, by the homogeneity property, optimality of the state trajectory in (b) implies optimality of the trajectory in (c). Candidates for optimalstate
trajectories are depicted in (d)–(f). The trajectory in (f) is eliminated as less profitable to the one in (e). Hence, without loss of optimality we can
restrict attention to trajectories of the form in (d) and (e).

problem. In this case, the first queue is building
up to an level, while the second queue
stays at an level. The first queue builds up
linearly with rate , during a period with duration

. During this period the empirical rates of the
processes and , are roughly equal to the
optimal solution , respectively, of the
optimization problem appearing in the definition
of [cf. (22)]. The trajectory in –
space is depicted in Fig. 4(a).

Case 2) Suppose holds. Let
be the optimal solution of this optimization

problem. In this case, both queues are building
up to an level. The first queue builds up
linearly with rate , during a period with duration

. During this period the empirical rates of the
processes and are roughly equal to the
optimal solution , respectively, of the
optimization problem appearing in the definition
of [cf. (23)]. The trajectory in –
space is depicted in Fig. 4(b).

It is interesting to reflect at this point on the implications
of this result on admission control for ATM multiplexers op-
erating under the GPS policy. Consider the admission control
mechanism for queue and suppose that the objective of
this mechanism is to keep the overflow probability below
a given desirable threshold. A worst case analysis as in
[29] would conclude that the admission control mechanism
has to be designed with the assumption that the second
queue always uses a fraction of the service capacity.
If instead the results of this paper are used (assuming that

a detailed statistical model of the input traffic streams is
available) a statistical multiplexing gain can be realized. In the
overflow mode described in Case 1 above, the second queue
consumes less than the fractionof the total service capacity,
implying that more class 1 connections can be allowed without
compromising the QoS. Even if the overflow mode described
in Case 2 above prevails, the overflow probability is explicitly
calculated (in an exponential scale) and can be taken into
account in the design of the admission control mechanism.

B. The GLQF Most Likely Paths

Considering now the GLQF policy, the two optimal state
trajectories for the problem (GLQF-OVERFLOW) are most
likely ways that queue overflows. We distinguish two
cases.

Case 1) Suppose holds. Let
be the optimal solution of this optimiza-

tion problem. The first queue builds up linearly
with rate , during a period with duration .
During this period the empirical rates of the pro-
cesses and are roughly equal to the
optimal solution , respectively, of the
optimization problem appearing in the definition of

[cf. (14)]. In this case the first queue
is building up to an level, while the second
queue builds up at a rate of , in such a way that
the server allocates its entire capacity to the first
queue. The trajectory in – space is depicted
in Fig. 5(d).

Case 2) Suppose holds. Let
be the optimal solution of this optimization
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problem. Again, the first queue builds up linearly
with rate , during a period of duration , and
with the empirical rates of the processes
and being roughly equal to the optimal solu-
tion , respectively, of the optimization
problem appearing in the definition of
[cf. (15)]. In this case both queues are building
up, the first to an level and the second to
an level. The trajectory in - space is
depicted in Fig. 5(e).

VII. A GPS UPPER BOUND

In this section we present an upper bound on the probability
, in the case of the GPS policy. In particular,

we have established that as we have
, where denotes functions with the

property . The proof is quite involved
and uses the special structure of the problem which was
revealed by the corresponding optimal control problem. Thus,
the results in Section V are critical in establishing the upper
bound.

Due to space limitations we omit the proof, which can be
found in [3]. In proving the upper bound we distinguished
two cases:

Case 1) ;
Case 2) ;

and established an upper bound for each one of them. The
main result is the following proposition.

Proposition 7.1 (GPS Upper Bound):Assuming that the
arrival and service processes satisfy Assumptions A and C,
and under the GPS policy, the steady-state queue length
of queue at an arbitrary time slot satisfies

(31)

VIII. A GLQF U PPER BOUND

In this section we develop an upper bound on the probability
, for the GLQF case. In particular, we will prove

that as we have , where
denotes functions with the property .

This proof is different from the corresponding one in the GPS
case in that it is independent from the GLQF optimal control
formulation.

Before we proceed into the proof of the upper bound, we
derive an alternative expression for which will be
essential in the proof. In the next theorem, we will show that
the calculation of is equivalent to finding the maximum
root of a convex function.

In preparation for this result, consider a convex function
with the property . We define thelargest

root of to be the solution of the optimization problem
. If has negative derivative at , there

are two cases: either has a single positive root or it stays
below the horizontal axis , for all . In the latter
case we will say that has a root at .

Lemma 8.1:For and being convex duals, it holds

where is the largest root of the equation .
Proof:

In the second equality above, we have made the substitution
, and in the last one we have used duality.

On a notational remark, we will be denoting by
and , the convex duals of and ,
respectively. Notice that the latter are convex functions. For

, convexity is implied by the fact that it is the
value function of a convex optimization problem with
appearing only in the right-hand side of the constraints. For

, the same argument applies when we note the
following reformulation:

In preparation for the following theorem we prove the next
monotonicity lemma.

Lemma 8.2 (Monotonicity):Consider a random process
that satisfies Assumption A. Assume

. Then for all we have .
Proof: implies which in turn

implies

for all .
The above lemma clearly applies to the arrival and service

processes. The next result is critical in establishing a matching
upper bound on the overflow probability.

Theorem 8.3: is the largest positive root of the
equation

(32)

where is the convex dual of and is given
by

(33)

and is the convex dual of and for
satisfies

(34)
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Proof: Let us first calculate and by
using convex duality. We have

Similarly

In the fifth equality above, we have used the monotonicity
of (see Lemma 8.2) and the fact that the argument

is linear in , thus taking its maximum
value at either or . For the sixth equality above,
notice that because is nondecreasing it holds

if
if

(35)

since at the upper branch and at the lower
branch . Differentiating the above expression
at , and for , we obtain

which implies (by convexity) that the infimum over unre-
stricted has to be the same with the infimum over .

Using the result of Lemma 8.1, is
the largest positive root of (it is not hard
to verify that this equation has a positive, possibly infinite
root). Similarly, is the largest positive
root of . By (13), . This
implies that is the largest positive root of the equation

.
We next prove the upper bound for the overflow probability.
Proposition 8.4 (GLQF Upper Bound):Under the GLQF

policy, assuming that the arrival and service processes satisfy
Assumptions A and C, the steady-state queue lengthof
queue at an arbitrary time slot satisfies

(36)

Proof: Without loss of generality we derive an upper
bound for . We will restrict ourselves to sample
paths with since the remaining sample paths, with

, do not contribute to the probability .
Consider a busy period for the system that starts at some

time and has not ended until time
zero. Such a time exists due to the stability condition (9).
Note that since the system is busy in the interval , the
server works at capacity and therefore servescustomers at
slot , for . We will partition the set of sample paths,
with , in three subsets and . The first subset,

, contains all sample paths at which only class 1 customers
get serviced in the interval . As a consequence

and

which implies

and

Thus we have (37), as shown at the bottom of the next page.
The second subset, , contains sample paths at which

class 1 customers do not receive the entire capacity, and
. That is, there exists a such that class

1 customers receive only a fraction of the total capacity
. Then we have

and

s.t. and

Hence, we obtain an upper bound on and
which is given in (38), shown at the bottom of the next page.

Finally, the third subset, , contains sample paths at which
class 1 customers do not receive the entire capacity, and

. Then there exists such that the interval
is the maximal interval that only class 1 customers
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get serviced. That is, and
. Since class 1 customers do not receive the

entire capacity, there exists such that
. Since , we have

(39)

Now, due to the way we defined we have
and the inequality

becomes

which by (39) implies

Thus we have (40), as shown at the bottom of the page.
Let us now define

and the quantities and , as shown at the bottom
of the next page. By bringing the constraints in the objective
function we obtain

(41)

(42)

and

(43)

Next, we will first upper bound the moment generating
functions of and . For and
for we have

and

s.t. and

(37)

and (38)

and

s.t. and

and

(40)
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if (44)

In the third inequality above we have used the LDP for the
arrival and service processes. In the last inequality above,
when the exponent is negative (that is, and
is sufficiently small), the infinite geometric series converges to
a constant . Also, in the last inequality, we have made
the substitution in the expression in the exponent
and used the definition of [cf. (33)].

Similarly, for and for we have (45), as shown
at the bottom of the page. In the third inequality above, the
expression to be maximized overis linear, thus the maximum
is achieved at either or , which implies that we can
upper bound it by the sum of the terms for and .

Also, for and for we have (46), as shown at
the bottom of the next page. In the third inequality above we
have used the LDP for arrival and service processes, as well
as Assumption C. Concerning the maximization over, we
have used the same argument as in (45). In the fifth inequality
above, since the exponent is linear in, the maximum over

is either at or at . Thus, we bound the
term by the sum of the terms for and .
Finally, for the last inequality, both series converge to a
constant if both their exponents are negative, which requires

.
To summarize (44)–(46), the moment generating functions

of and are upper bounded by some
constant if ,
where are sufficiently small. We can now apply
the Markov inequality to obtain [using (37), (38), and (40)]

and Case 1 and Case 2

and Case 3

if

Taking the limit as and minimizing the upper bound
with respect to , in order to obtain the tightest bound,
we have

The right-hand side of the above is equal to by
Theorem 8.3.

IX. M AIN RESULTS

In this section we gather our main results on the perfor-
mance of multiclass multiplexers.

A. The GPS Main Results

We first combine Propositions 4.2 and 7.1 and summarize
our main results for the GPS policy. As a corollary we obtain
results for priority policies.

Theorem 9.1 (GPS Main):Under the GPS policy, assuming
that the arrival and service processes satisfy Assumptions A,
B, and C, the steady-state queue lengthof queue at an
arbitrary time slot satisfies

(47)

where is given by

(48)

and the functions and are defined as follows:

(49)

if (45)
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and

(50)

An interesting observation is that strict priority policies are
a special case of the GPS policy. Class 1 customers have
higher priority when and lower priority when .
We can therefore obtain the performance of these two priority
policies as a by-product of our analysis. Note that the result
for the policy that assigns higher priority to class 1 customers
matches the FCFS single class result (see [23], [21], and [1])
since under this policy, class 1 customers are oblivious to
class 2 customers. We summarize the performance of priority
policies in the next corollary. The discussion of Section VI-A
can be easily adapted to the cases and to
characterize themost likely waysthat lead to overflow under
priority policies.

Corollary 9.2 (Priority Policies): Under strict priority pol-
icy for class 1 customers , assuming that the arrival and
service processes satisfy Assumptions A, B, and C, the steady-
state queue length of queue at an arbitrary time slot
satisfies

(51)

where is given by

(52)

and where

(53)

Under strict priority policy for class 2 customers , the
steady-state queue length of queue at an arbitrary time

slot satisfies

(54)

where is given by

(55)

and where

(56)

Proof: For policy apply Theorem 9.1 with .
For such , it is easy to verify that , for
all . Thus, we define to be equal to with

set to one.
For policy apply Theorem 9.1 with . Application

of to yields

(57)

Also, application of to yields

(58)

The functions and are nonnegative, convex,
and achieve their minimum value, which is equal to zero, at

and , respectively. Since
, the inequality implies that either

or . If the former is the case, we can decrease
and reduce the cost, as long as holds. Also, if

is the case, we can increase and reduce the
cost, as long as holds. Thus, at optimality
in (58). But, the region characterized by and
is included in the region defined by the constraints in the

if (46)
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optimization problem in (57). Hence, for all, and when
. Therefore, we define

to be equal to the expression in (57).
As the results of Theorem 9.1 and Corollary 9.2 indicate,

the calculation of the overflow probabilities involves the
solution of an optimization problem. We will next show that
because of the special structure that these problems exhibit,
this is equivalent to finding the maximum root of a convex
function. Such a task might be easier to perform in some
cases, analytically or computationally. This equivalence relies
mainly on Lemma 8.1. Hence, using duality, we express
as the largest root of a convex function. The result is given in
the next theorem, the proof of which is omitted due to space
limitations; it can be found in [3].

Theorem 9.3: is the largest positive root of the equa-
tion

(59)

Remark: Equation (59) has a positive, possibly infinite root.
To establish that, notice first that is a convex function
of . This can be seen when we write it as the value function
of a convex optimization problem with appearing only in
the right-hand side of the constraints, i.e.,

Observe now that

and that both sides of the above inequality are zero at .
This implies that their derivatives at satisfy

where the last inequality follows from the stability condition
(9). The convexity of is sufficient to guarantee the
existence of a positive, possible infinite root.

Again, as it was the case with Theorem 9.1, the result of
Theorem 9.3 can be specialized to the case of priority policies.

Corollary 9.4: is the largest positive root of the equa-
tion

(60)

Also, is the largest positive root of the equation

(61)

We conclude this subsection noting that, by symmetry, all
the results obtained here can be easily adapted (it suffices
to substitute everywhere and ) to estimate the
overflow probability of the second queue and characterize the
most likely ways that it builds.

B. The GLQF Main Results

Combining Propositions 4.1 and 8.4 we obtain the following
main GLQF theorem. An exact characterization of themost
likely waysthat lead to overflow was discussed in Section VI-
B.

Theorem 9.5 (GLQF Main):Under the GLQF policy, as-
suming that the arrival and service processes satisfy Assump-
tions A, B, and C, the steady-state queue lengthof queue

at an arbitrary time slot satisfies

(62)

where is given by

(63)

and the functions and are defined as
follows:

(64)

and

(65)

It should be noted that the performance of strict priority
policies, which is characterized by Corollary 9.2, can also be
obtained as a corollary of the above theorem. We obtain the
performance of strict priority to class 2 when
and the performance of strict priority to class 1 when

. It is not hard to verify that the result is identical to
Corollary 9.2. The above theorem indicates that the calculation
of the overflow probabilities involves the solution of a convex
optimization problem. In Section VIII, and for the purposes of
proving Proposition 8.4, we proved in Theorem 8.3 that the
exponent of the overflow probability can also be obtained as
the maximum root of a convex function. This may be easier to
do in some cases. Here, we restate this latter result, simplifying
the expression for .

Theorem 9.6: is the largest positive root of the
equation

(66)
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Proof: Due to Theorem 8.3, it suffices to prove that the
expression in (66) is equal to .
Recall the definitions of in (33) and of in
(34). Recall also the expression in (35) for the objective func-
tion of the optimization problem corresponding to .
Now let be the optimal solution of the optimization problem
in the definition of . We distinguish two cases.

Case 1) . Then, notice that is also the mini-
mizer of the objective function in the definition of

. Thus, due to convexity, the constraint
is tight for the problem corresponding to

, and

if (67)

But

In the second inequality above we have used the
assumption and convexity. Therefore,
combining it with (67) we obtain

if (68)

Case 2) . To conclude the proof we need
to show that is not

when the optimal solution, of the op-
timization problem appearing in the definition of

, is some . Let us, indeed, assume
that this optimal solution is some . Then, for
all (hence for ) we have

where in the last inequality we have used the
fact that which implies [see also (35)]

.

Therefore, for also, we have

The results of this theorem can also be specialized to the
case of priority policies, to obtain the characterization of
Corollary 9.4.

We conclude this subsection, noting that by symmetry all
the results obtained here can be easily adapted (it suffices to
substitute everywhere , and ) to estimate
the overflow probability of the second queue and characterize
the most likely ways that it builds.

X. A COMPARISON

In this section we compare the overflow probabilities
achieved by the GPS and the GLQF policy.

Let be an arbitrary work-conserving policy used to
allocate the capacity of the server to the two queuesand

, and let be the set of all work-conserving policies.
Let and denote the queue lengths of and ,
respectively, at an arbitrary time slot, when the system operates
under . Let us now define the vector where

and

(69)

The GPS policy is a parametric policy with performance de-
pending on the parameter. To make this dependence explicit
we will be using the notation GPS . Also, the GLQF policy
is a parametric policy with performance depending on the
parameter . For the same reason we will be using the notation
GLQF . Special cases of a work-conserving policyare
the GPS policy, the GLQF policy, the strict priority
to class 1 policy ( policy), and the strict priority to class 2
policy ( policy). Using Theorems 9.1, 9.5, and Corollary 9.2
one can readily obtain the corresponding for the policies
GPS , GLQF( ), , and .

It is intuitively obvious that

and

In Fig. 6 we plot as varies in and
as varies in . For simplicity the calculations were per-
formed with the arrival and service processes being Bernoulli
(we say that a process is Bernoulli with parameter
, denoted by , when are i.i.d. and

with probability and with probability ). Also,
for the calculations we used the expressions for and

given in Theorems 9.3 and 9.6, respectively, because
they were more efficient to perform numerically than the
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Fig. 6. The performance�GPS(� ) of the GPS(�1) policy as�1 varies in
[0; 1], and the performance�GLQF(�) of the GLQF(�) policy as� varies in
[0;1), whenA1 � Ber(0:3); A2 � Ber(0:2); andB � Ber(0:9).

equivalent expressions in Theorems 9.1 and 9.5. Note that
and that

.
Fig. 6 indicates that the GLQF curve dominates the GPS

curve, i.e., the GLQF policy achieves smaller overflow proba-
bilities than the GPS policy. The question that arises is whether
this depends on the particular distributions and parameters
chosen in the figure or is a general property. In the sequel
we show that the latter is the case, that is, for all arrival and
service processes that our analysis holds (processes satisfying
Assumptions A, B, and C) the GLQF curve dominates the
GPS curve. The intuition behind this result is that the GLQF
policy, which adaptively depends on the current queue lengths,
allocates capacity to the queue that builds up, thus achieving
smaller overflow probabilities than the GPS policy which is
static. This suggests that when one has to deal with delay
insensitive traffic (i.e., when there are no delay constraints)
GLQF is more suitable than GPS.

Let us first formally define the termthe GLQF curve
dominates the GPS curve.

Definition 10.1: We say thatthe GLQF curve dominates the
GPS curvewhen there does not exist a pair of and

satisfying and
.

In order to establish that the GLQF curve dominates the
GPS curve, we need to prove the three lemmata that follow.

Lemma 10.2:If we have

and

Proof: We only prove the first relation. The second can
be obtained by a symmetrical argument. We use the result of
Theorem 9.3. Note that implies

. Thus, by Lemma 8.2, for all we have
that , which by Theorem 9.3
implies for all . Therefore, by
convexity, for , as it is defined in Theorem 9.3, we have

.
A similar property is proven for the GLQF policy.
Lemma 10.3:If we have

and

Proof: Again we only prove the first relation. The second
can be obtained by a symmetrical argument. We use the
optimal control formulation of Section V-B. We argued there
that optimal trajectories have the form of Fig. 5(d) and (e),
with cost and , respectively.
Let us fix and consider how the cost is affected by using
the policy with , for small .

Consider first trajectories of the form in Fig. 5(e). Note that
we can rewrite as

We shall show for all .
Assume the contrary. Consider the optimal solution of the
problem corresponding to which satisfies the feasibility
constraints

We distinguish two cases: and . We provide
an argument only for the first case. The second case can
be handled similarly. Since , at least one of the
following holds: or or .
Depending on which one is the case, we can decrease,
or , or increase , respectively, reducing the cost, until

. Thus, we have constructed a feasible
solution of the problem corresponding towith smaller cost
than . This contradicts our initial assumption.
We conclude that by increasing to we also increase the
optimal cost of trajectories having the form in Fig. 5(e).

If now an optimal trajectory has the form in Fig. 5(d), then
it will still be the optimal, by convexity, when is increased
to . Thus, in this case, the optimal cost does not change.

We summarize by considering how the cost is affected as
is increased from zero to . At , possible optimal

trajectories have the form of Fig. 5(e). There is a threshold
value such that for all optimal trajectories have the
form of Fig. 5(e) with values increasing asincreases from
zero to . For all , optimal trajectories have the form of
Fig. 5(d) with slope and do not change as increases from

to .
We next prove a sufficient condition for the GLQF curve

dominating the GPS curve.
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Lemma 10.4:If for all there exists
such that

and

then the GLQF curve dominates the GPS curve.
Proof: We use contradiction. Assume that the condition

given in the statement holds, but the GLQF curve does not
dominate the GPS curve. Then, by definition, there exist
and such that

and

By Lemma 10.2 all points with have

. Also, by the same lemma, all points

with have . This
contradicts our initial assumption.

We now have all the necessary tools to prove that the GLQF
curve dominates the GPS curve.

Theorem 10.5:Assuming that the arrival and service pro-
cesses satisfy Assumptions A, C, and B, the GLQF curve
dominates the GPS curve.

Proof: Fix an arbitrary . We will prove that there exists
satisfying the condition of Lemma 10.4. It suffices to prove

that for both queues and such, overflow with the GLQF
policy implies overflow with the GPS policy. Then, the
overflow probability of GLQF is a lower bound on the
corresponding probability of GPS , i.e., it holds

which implies

and

Since we have established that in both the GPS and the
GLQF case the overflow probability is equal to the probability
of overflowing according to one out of two scenarios, it
suffices to establish the above only for these scenarios. In
particular, we distinguish the following cases depending on the
possible modes of overflow for GLQF , which are described
in Section VI-B:

Case 1) Mode 1 for overflow of and mode 1 for
overflow of ;

Case 2) Mode 1 for overflow of and mode 2 for
overflow of ;

Case 3) Mode 2 for overflow of and mode 1 for
overflow of ;

Case 4) Mode 2 for overflow of and mode 2 for
overflow of .

In Cases 1 and 2, we have

where solve the optimization problem cor-
responding to the overflow of in mode one. Then, since

, it is clear that for all the
GPS policy will overflow . If we are in Case 1, then for
all the GPS policy will overflow . If we are in Case
2, we have

where solve the optimization problem
corresponding to the overflow of in mode two. Then, the
GPS policy with will overflow .

Consider now Cases 3 and 4. We have

where solve the optimization problem
corresponding to the overflow of in mode two. Then the
GPS policy with will overflow . In Case 3, for
reasons explained in the previous paragraph, the GPS policy
will overflow for all . If, finally, we are in Case 4, we
have

where solve the optimization problem
corresponding to the overflow of in mode two. Then the
GPS policy with will overflow . To show that there
is at least one that overflows both queues we need to show

. To see that, notice that (by making the substitution
)

The right-hand side is exactly the problem corresponding to
the overflow of in mode two.

XI. CONCLUSION

In this paper we considered a multiclass multiplexer with
segregated buffers for each service class. Under the GPS and
the GLQF policy, we have obtained the asymptotic (as the
buffer size goes to infinity) tail of the overflow probability
for each buffer. In the standardlarge deviationsmethodology
we provided a lower and matching (up to first degree of the
exponent) upper bound on the buffer overflow probabilities.
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We formulated the problem of calculating the maximum
overflow probability (over all scenarios that lead to overflow)
as an optimal control problem. The specifics of the policies
enter in the formulation of the control problem only through
the system dynamics. Therefore, this approach can potentially
be used to obtain the performance of other scheduling policies
as well. The optimal control formulation provides particular
insight into the problem, as it yields an explicit and detailed
characterization of the most likely modes of overflow. We have
addressed the case of multiplexing two streams. The general
case of streams remains an open problem.
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