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Asymptotic Buffer Overflow Probabilities
In Multiclass Multiplexers: An
Optimal Control Approach

Dimitris Bertsimas, loannis Ch. Paschalidigember, IEEE and John N. TsitsiklisSenior Member, IEEE

Abstract—We consider a multiclass multiplexer with support delivers to its users. Since voice and video are very sensitive
for multiple service classes and dedicated buffers for each service to such phenomena the network should have the ability to
class. Under specific scheduling policies for sharing bandwidth %uarantee certain QoS parameters to the user. We quantify

among these classes, we seek the asymptotic (as the buffe M . .
size goes to infinity) tail of the buffer overflow probability for oS by the probability of buffer overflow. It is desirable to

each dedicated buffer. We assume dependent arrival and service Operate the network in a regime where packet loss probabilities
processes as is usually the case in models of bursty traffic. In theare very small, e.g., in the order of 10 An essential

standard large deviationsmethodology, we provide a lower and step for preventing congestion through a variety of control
a matching (up to first degree in the exponent) upper bound on e chanisms (buffer dimensioning, admission control, resource

the buffer overflow probabilities. We introduce a novel optimal locati is to det . h it d t timat
control approach to address these problems. In particular, we allocation) is to determine how it occurs and to estimate

relate the lower bound derivation to adeterministic optimal control the probabilities of congestion phenomena. The problem is
problem which we explicitly solve. Optimal state trajectories of particularly difficult since it essentially requires finding the
the control problem correspond to typical congestion scenarios. distributions of queue lengths in a multiclass network of G/G/1
We explicitly and in detail characterize the most likelymodes of queues with correlated arrival processes (since it is needed to

overflow. We specialize our results to thegeneralized processor ' - L -
sharing policy (GPS)and the generalized longest queue first policy model bursty traffic) and nonexponentially distributed service

(GLQF). The performance of strict priority policies is obtained ~ times. In this light, it is natural to focus on terge deviations
as a corollary. We compare the GPS and GLQF policies and regime and obtain asymptotic expressions for the tails of
conclude that GLQF achieves smaller overflow probabilities than congestion probabilities.
GPS for all arrival and service processes for which our analysis | 'this paper we focus on a simplified version of the problem
holds. Our results have important implications for traffic man- hich retains th t salient feat that is. it i lticl
agement of high-speed networks and can be used as a basis for anvhich retains the mos- salient fea qres, atis, itis mu '? ass
admission control mechanism which guarantees a different loss and has correlated arrival and service processes. In particular,
probability for each class. we consider anulticlass multiplexer (switchyhich accommo-

Index Terms—ATM-based B-ISDN, communication networks, dates multi_pl_e service chsses.sArv_ice cla_\ss'ss cha_lracterized
large deviations. by the statistical properties of the incoming traffic and by the
QoS requirements. Different types of traffic (i.e., voice, video,
data, etc.) have different statistical properties, and in addition
, o they may have distinct QoS requirements (e.g., video may
H IGH-SPEED packet-switched communication networkfeed more stringent QoS requirements than voice), thus they

for example ATM-based B-ISDN networks, acCOmmopg|ong to different service classes. Moreover, sessions of the

date various types of traffic (digitized voice, encoded vide@gme type of traffic may belong to different service classes if
and data) and offer a variety of services. One of the central a{ppéy have different QoS requirements (e.g., we can consider a
most challenging current problems in computer networking i$;ation where we want to support both high- and low-quality
the design and the operation of these networks. video)

Congestion causes packet losses, due to buffer overflowsynqer specific scheduling policies for sharing bandwidth
and excessive delays, phenomena that greatly contribute

X X i among service classes, we seek the asymptotic (as the buffer
the degradation of theuality of service (QoShat the network ;¢ goes to infinity) tail of the buffer overflow probability that
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In the standardarge deviationsmethodology, we provide the control problem correspond to the most likely modes
a lower and a matching (up to first degree in the exponent) of overflow; from the solution of the control problem we
upper bound on the buffer overflow probabilities. We prove obtain a detailed characterization of these modes. This
that overflows occur in one out of twuoost likelyways (modes optimal control formulation is general enough to include
of overflow), and we explicitly and in detail characterize these any scheduling policy; only the dynamics of the system
modes. We address the case of multiplexing two different are policy-dependent. Optimal control formulations are
traffic streams. (The general case/®fstreams is more com- also used in [31] for large deviations results for jump
plicated since there is an exponential explosion of the number Markov processes.
of overflow modes.) Our results have important implications « The extension of some GPS results existing in the liter-
in traffic management of high-speed networks. They can be ature to the case of a stochastic service capacity. This
used as a basis for an admission control mechanism which extension makes it possible to treat more complicated
provides statistical QoS guarantees for each service class and service disciplines. Consider for example the case where
allows for different QoS requirements for each class (see [28] we have a deterministic server and three classes with
where this direction is pursued). dedicated buffers. We give priority to the first class
We wish to note at this point that although our principal and use the GPS policy for the remaining two. These
motivation for studying this problem is computer networking, two remaining classes face a GPS server with stochastic
our results have applications in other queueing situations, e.g., capacity. Stochastic capacity significantly alters the way
service industry and manufacturing systems. overflows occur. To see this, note that in deriving their
Large deviations techniques have been applied recently to a results [11] and [34] use the departure process from a
variety of problems in communications (see [33] for a survey). G/D/1 queue. The large deviations behavior of the depar-
The problem of estimating tail probabilities of rare events in  ture process is different with deterministic and stochastic
a single class queue has received extensive attention in the service capacity as it is pointed out in [1] and [8].
literature [22], [20], [23], [24], [21], [15], [32]. The extension < The introduction of a new policy, the GLQF, which gen-
of these ideas to single-class networks, although much harder, eralizes the LQF policy. We provide analytic performance
has been treated in various versions and degrees of rigor in analysis results for the GLQF policy and compare it to
[1], [18], [7], [25], and [10]. the GPS policy. We argue that GLQF is preferable, at
Closer to the subject of this paper, the asymptotic tails of the least in the absence of fairness considerations.
overflow prObabi”tieS for the GPS pOllcy with deterministic Regarding the structure of this paper, we begin in Section Il
service capacity are obtained in [11] and [34]. Both papeyth a brief review of the large deviations results that we
use a large deviation result for the departure process freffll use. We also state a set of assumptions to which arrival
a G/D/1 queue [10]. Tail overflow probabilities for the GPQnd service processes need to conform. In Section Ill we
policy and deterministic service capacity were also reportedférmally define the multiclass model that we consider, and
[26] and [7]. The authors in [7] view the problem as a contrgh Subsections IlI-A and IlI-B we introduce the GPS and
problem where control variables are the capacity that the serygg GLQF policy, respectively. Moreover, in Subsection 11I-C
allocates to each buffer, as a function of the current sta{ge provide an outline of the methodology that we follow in
This approach has some technical problems with boundari@$ving our results. In Section IV we establish lower bounds
because it requires Lipschitz continuity of the controls.  on the overflow probability under the GLQF (Subsection IV-
In [19] the authors suggest the use of the LQF policy in) and the GPS policy (Subsection IV-B). The optimal control
high-speed networks and use a deterministic model (only thmulation is introduced in Section V and the results are
rate of each incoming stream is known) to calculate buffgpecialized to the GPS (Subsection V-A) and the GLQF (Sub-
sizes that guarantee no loss with probability one. Our analysisction V-B) case. In Section VI we describe the most likely
significantly extends the scope of this work by generalizingodes of overflow, under both policies, obtained from the
the policy (GLQF) and by taking the statistical properties afolution of the corresponding control problems. In Section VI
the incoming traffic into account. This leads to a more efﬁCieWe state the upper bound for the GPS pohcy (the proof is quite
utilization of the network resources. Large deviations resuwéchnicaﬂ and involved and we omit it in the interest of space;
for the LQF policy in an M/M/1 setting are also reported ifve refer the interested reader to [3]). Section VIII contains the

[31]. _ _ _ proof for the upper bound in the GLQF case. We gather our
We consider the following to be some of the main contrinain performance analysis results in Section IX, where we
butions of the work in this paper. also treat the special case of strict priority policies. Finally,

« The derivation of tight asymptotic expressions for theve compare the two scheduling policies in Section X, and
performance of multiclass multiplexers operated under seanclusions are in Section XI.
phisticated (and of interest in practice) scheduling policies
for sharing bandwidth among classes.

« The introduction of aroptimal control approach to ad- Il PRELIMINARIES
dress the problem. Our formulation is different from the In this section we review some basic results on the theory of
one in [7]. In particular, the exponent of the overflowarge deviations [13], [31], [4] that will be used in the sequel.
probability is the optimal value of the control problem, We first state the &rtner—Ellis theorem [17], [14] (see also
which we explicitly solve. Optimal state trajectories oBucklew [4] and Dembo and Zeitouni [13]) which establishes
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a Large Deviations Principle (LDP)or dependent random Note that the random variabl§, = >"""_, X, corresponds to

variables inR. It is a generalization of Cra@m's theorem the terminal value (at = 1) of the process,,(t), t € [0, 1]. In

[6] which applies to independent and identically distributed key paper [12], under certain mild mixing conditions on the

(i.i.d.) random variables. stationary sequencgX;; ¢ > 1}, Dembo and Zajic establish
Consider a sequendé, S, - - -} of random variables, with an LDP for the procesS,,(-) in D[[0, 1], (R, ||-||)] (the space

values inR and define
NOE 1 log E[¢?*]. (1)
n

For the applications that we have in minf,, is a partial
sum process. Namelys,, = E?:l X;, whereX;, i > 1, are

of right continuous functions with left limits equipped with the
supremum norm topology). Their result is a starting point for
our analysis in this paper. In particular, we will be assuming
the following version of the sample path LDP.

Assumption B:For allm € N, for everye;, e; > 0, and for

identically distributed, possibly dependent random variable€Very scalano, - -+, am 1, there existsi/ > 0 such that for all

Assumption A:
1) The limit

1
A(6) £ lim Ay (0) = lim glOgE[eesn o)

exists for all¢, wheretoo are allowed both as elements

of the sequencé,,(#) and as limit points.

2) The origin is in the interior of the domaif, = {4 |
A(#) < oo} of A(6).

3) A(#) is differentiable in the interior ofD,, and the

nzMand a”/{io,---,k‘mWithl =k < k1 < e S/{}mITL
m—1
exp{— <7’L€2 + Z (ki1 — ki)A*(ai)> }
i=0
S P[Skiy = Sk, = (kit1 — ki)ai| < e,
i=0,-- m—1]
m—1
< eXP{ <ﬂ62 - Z (kip1 — ki)A*(ai)> } (7)
i=0

derivative tends to infinity a8 approaches the boundary A detailed discussion of this assumption, and the technical

of Dy.
4) A(6) is lower semicontinuous, i.diminfys, ¢ A(6,,) >
A(6), for all 6.

Theorem 2.1 (@rtner—Ellis): Under Assumption A, the
following inequalities hold.

Upper Bound:For every closed sef’

1 Sh .
i —logP|— € F| < —inf A*(a). 3
hrllrisolipnlog [n € }_ inf (a) (3)

Lower Bound:For every open sef?

1 S,
liminf ~logP|— € G| > — inf A* 4
mint L lgP |26 2w @

where
A*(a) £ sup(fa — A(6)). (5)

4
We say that{.S,,} satisfies an LDP witlyood rate function

A*(-). The term “good” refers to the fact that the level sets

{a | A*(a) < k} are compact for alk < oo, which is a
consequence of Assumption A (see [13] for a proof).

It is important to note thaA(-) and A*(-) are convex duals
(Legendre transforms of each other). Namely,
it holds that

A(#) = sup(fla — A*(a)). (6)

conditions under which it is satisfied, is given in [12]. In
the simpler case where dependencies are not present (i.e.,
S; = E;lej, where X;’s are i.i.d.), Assumption B is a
consequence of Mogulskii's theorem (see [13]). Intuitively,
Assumption B deals with the probability of sample paths that
are constrained to be within a tube around a “polygonal” path
made up with linear segments of slopgs- - -, a,,—1. In [12]
it is proved that this assumption is satisfied by processes
that are commonly used in modeling the input traffic to
communication networks, that is, renewal processes, Markov
modulated processes, and correlated stationary processes with
mild mixing conditions.

We will be also making the following related assumption.

Assumption C:For all m € N there existsM > 0 and a
function I'(-) with 0 < I'(y) < oo, for all y > 0, such that
foralln > M and allkg, -+, k,, Wwith 1 = kg <k <--- <

kn = n
} (8)

m

E[c"7] < exp{Z[w = K- A0;) + ()]

=1

along with (%here)e = (917 T ern) andZ = (Sko ’ Skz - Sk17 T Skm -
Ko —1

Chang [5] provides a uniform bounding condition under
which Assumption B is true and verifies that the condition
is satisfied by renewal, Markov-modulated, and stationary

The Gartner—Ellis theorem intuitively asserts that for largﬁrocesses with mild mixing conditions. Using his uniform

enoughn and for smalle > 0

P[S, € (na — ne,na + ne)| ~ e~ A ()

bounding condition it can be verified (see [5] for a proof)
that Assumption C is also satisfied. This latter assumption can
be viewed as the “convex dual analog” of Assumption B.

A stronger concept than the LDP for the partial sum random On a notational remark, in the rest of the paper we will be

variable S,, € R is the LDP for the partial sunprocess
(sample path LDP
1 by
S, ==Y X, t e [0,1].
0=02 € 0.1]

denoting byS;’fj = >t Xx, © < j the partial sums of the
random sequencéX;; ¢ € Z}. We will be also denoting
by Ax(-) and A%(-) the limiting log-moment generating
function and the large deviations rate function [cf. (2) and
(5)], respectively, of the procesk.
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Al capacity to queu€)* and the remaining fraction, = 1 — ¢,
\ o to queue@?. The policy is defined to be work-conserving,

which implies that one of the queues, say quélie may get
I more than a fractioy; of the server’s capacity during times
that the other queud)?, is empty. This policy is also known

2
/ __?____ asfair queueingbecause it guarantees a certain fraction of the
available bandwidth to each class and thus avoids situations
Fig. 1. A multiclass model. that occur under first come/first served (FCFS) where a bursty
class can take the lion’s share of the bandwidth.
. A M ULTICLASS MODEL More formally, we can define the GPS to be the policy that
eslatisfies (work-conservation)

Az

In this section we introduce a multiclass multiplexer mod
that we plan to analyze, in the large deviations regime, under LilJrl + Li?Jrl = [Lzl + L2+ AL+ AZ — Bi]+
two specific scheduling policies for sharing bandwidth among
classes: the GPS and the GLQF. The former policy is describaiad
in Subsection llI-A, and the latter one in Subsection Ill-
B. Subsection III-C provides an outline of the approach we
follow. o where [z]* £ max{z,0}.

Consider the system depicted in Fig. 1. We assume a slotted
time model (i.e., discrete time) and we ldf (respecti_vely, B. The GLQF Policy
A?), i € Z, denote the number of class 1 (respectively, 2) ] . o
customers that enter quedg (respectively,?) at time i. 1F|g.22 dep|cts.the operation of the GL.QF policy in the
Both queues have infinite buffers and share the same serfer L~ Space. Fix the parameter of the poli@y> 0. There is
which can processB; customers during the time interval@ threshold line, of slopg, which divides the positive orthant
[i,i + 1]. We assume that the processpdl; i € Z of the L! — L% space in two regions. The GLQF policy serves
{:42. i€ 7}, and{Bi; i € Z} are stationary and mutually C1ass 2 customers above the threshold line and class 1 below
independent. However, we allow dependencies between the!Ne value = 1 corresponds to the longest queue first
number of customers at different slots in each process. KbRF) Policy. Intuitively, the GLQF policy tries to maintain a

L, <[+Al-¢B]", j=12

stability purposes we assume that for all desirable ratig? of the queue lengths per class by attending
to the class that overshoots this ratio. Since delays are due to
E[Bi] > E[4]] + E[A]]. (9) long queues, it is also intuitive that the GLQF policy tries to

balance (with g3 “bias”) the delay of the two classes.

L 5 o
We denote .byLi gnd L the gqueue Iengthls at tm;e More formally, we define the GLQF policy to be the work-

(without counting arrivals at timé) in queues@* and Q-, . 4 . .
conserving policy that at each time slétserves class 1

respectively. We assume that the server allocates its capamug
L 2 , .~ _CuStomers when

between queue®' and Q= according to a work-conserving

policy (i.e., the server never stays idle when there is work in L} <pL} and L?+ A%< /3(132L + A} - Bi)-

the system). We also assume that the queue length processes

{L!,j =1,2,i € Z} are stationary (under a work-conservingt serves class 2 customers when

policy, the system reaches steady state due to the stability 9 1 9 9 1 1

condition (9) by assuming ergodicity for the arrival and service Li>pL; and Lj+A7—D;> /3(LZ + AZ)'

processes). When
To simplify the analysis and avoid integrality issues we
assume a discrete-time “fluid” model, meaning that we will L? < BL; and L7+ A?>pB(Li + Aj — B;)

be treatingA}, A?, and B; as real numbers (the amount of

T

fluid entering or being served). This will not affect the result®’
in the large deviations regime. L? > pLt and L} + A? — B; < B(L} + A})

Finally, we assume that the arrival and service processes
satisfy an LDP (Assumption A) as well as Assumptions Bien the GLQF policy allocates appropriate capacity to both
and C. As we have noted in Section II, these assumptions afesses of customers such thaf,, = SL! ;. Similarly,
satisfied by processes that are commonly used to model bussheneverL? = 3L}, the GLQF policy allocates its capacity
traffic in communication networks, e.g., renewal processés,class 1 and 2 customers so tigt ;, = 8L, ,, if possible.
Markov-modulated processes, and more generally stationary
processes with mild mixing conditions. C. An Outline of Our Approach

. We are interested in estimating the steady-state overflow
A. The GPS Policy probability P[L} > U] for large values of/, at an arbitrary
The generalized processor sharin@PS) policy was pro- time sloté, under both the GPS and the GLQF policy. Having
posed in [9] and further explored in [29] and [30]. Accordingletermined this, the overflow probability of the second queue
to this policy the server allocates a fractign < [0,1] of its can be obtained by a symmetrical argument.

when
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12 A. GLQF Lower Bound
Proposition 4.1 (GLQF Lower Bound)Assuming that the
arrival and service processes satisfy Assumptions A and B,
g 9 and under the GLQF policy, the steady-state queue lehgth
erve of queue@! at an arbitrary time slot satisfies
1
lim —logP[L! > U] > -6 (12)
Serve 1 Umoo U0 [ vl GLQF
where 6 o IS given by
/ w3 O op = min | inf SA%, on(a), inf A ()| (13)
" Q LY g herar\@); M - AGLG
L and the functionsAf;qr(-) and Adiqp(-) are defined as
Fig. 2. The operation of the GLQF policy. follows:
Algr(@) 2 inf_ [Af(e1) + Ale(w2) + Ap(s)]
We will prove that these overflow probabilities satisfy 22 <, —2s)
. 14
P[L} > U] ~ ¢ Vlars (10) g (14)
d * - * * *
o 3 Adigr(a)®  inf - [Al(w1) + Ay (o2) + Aj(as)].
P[L} > U] ~ ¢ Y¥rar (11) 2o —(1—d)rs=Ba
0<e<l
asymptotically, agd/ — oo. (15)

To this end, we will develop a lower bound on each .
overflow probability, along with a matching upper bound. Fix ~ Proof: Let —n < 0 anda > 0. Fix z1, 22,23 > 0,
the scheduling policy and consider all scenarios (paths) tHha ¢ < 1, andey, e2,¢3 > 0 and consider the event

lead to an overflow. We will show that the probability of =, ;.4 ) 42 )
each such scenario asymptotically behaves asV®@), for 4 2|82 —ics = (n — | <, [S2, iy = (n— )|
some functiond(w). For everyw, this probability is a lower <em, |55, i1 — (n—i)as| < esn,

bound onP[L} > U]. We select the tightest lower bound by i=0,1,--,n—1}.

performing the minimizatio®,,q = min,, §(w), in the GPS

case, which amounts to solving a deterministic optimal contrbiotice thatxz;,z, (respectively,zs) have the interpretation
problem. Notice that both the functigt{w) and the overflow of empirical arrival (respectively, service) rates during the
pathsw depend on the policy, hence this minimization wilinterval [—-n, —1]. We focus on two particular scenarios:
yield a different optimal value in the GLQF case, which we
will denote by 6¢,; qr. Optimal trajectories (paths) of the
control problem correspond toost likelyoverflow scenarios. S . N -
We will show that these must be of one out of two possible cenario 2 T = ¢T3 =0
types, in both the GPS and the GLQF case. In other words, w2 = (1= )z = fa.
with high probability, overflow occurs in one out of twoUnder Scenario 1, even if the server always serves class 1

Scenario } T —T3=a

w2 < fB(x1 — 3) (16)

possible modes. customersin [-n,0] we have thatLy > na — ne}, where
To establish the tightness of the lower bounds and sha{v — 0 asei, ez, ¢35 — 0.
(10) and (11), we will obtain an upper bound BiL} > U]. Consider now Scenario 2, and let us for the moment ignore

We will first obtain a sample pa~th upper bound, ik}, < i} €'s (i.e., e1 = €2 = e3 = 0). We will argue thatL} > na. If
(which impliesP[L} > U] < P[L} > U]) and then establish L2 = gL! , then both queues build up together, with the
that P[L} > U] is at moste~Y%rs in the GPS case andrelation L? = 3L* holding in the interva[—n, 0]. According

e~Ufarar in the GLQF case. to the GLQF policy the server arbitrarily allocates its capacity
to the two queues, giving fractiop to Q! and the remaining
IV. A LOWER BOuUND 1—¢ to Q?, yielding L§ = na+ LY, > na. If L2, > BLL |

In this section we establish a lower bound on the overflof€" the first queue _re<1:e|ves less capacity thgtrs in
—n, 0], resulting also inL; > na. Finally, consider the case

probability P[L} > U] under each one of the two scheduling, , 1 ;

policies. We first present the lower bound in the GLQF ca "_<L{3L;"(' Thi)n( at sorr;ea::;n;t E L[2 ”’_E]( we tr)lave

and then the one in the GPS case. The main idea is that Wet = - T \" T1— %3 —t = Hep TR T )T

select the dominant overflow scenarios which are responsibléwhich is the case if we start from an empty system at time and the

for overflows with high probability. The optimal control for-arival and service rates are exactly. 2, x5, respectively. Then the second
lati in Secti V sub . hv th | d ueue, since it receives zero capacity, builds up with sateand its level

mulation In Section V substantiates why the selecte scenarl ys stays belowsL'. This is a necessary condition for the first queue to

are the dominant ones. be receiving all the capacity.
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Notice thatzo > f(z; — z3), since otherwise we have a Combining (17) and (18) we obtain that for all¢ > 0
contradiction, i.e., there existsiV such that for alln > N

Ja < 29 < Plag — < Ba.

Ba < zp < Bz — x3) < Pa llogP[LéZn(a—e)]
Thus, for large enough, there exists somg sayt*, such that n R [T
L2%,. = BLL,.. This relationship, along witi.! ,. 4+ L2,. > > = (min(AdLor(a), Acir(a) +¢). (19)
(n—t*)(14+3)a impliesLL,. > (n—t*)a. Now note that from ) ) . )
#* both queues build up together with the relatibh = 4L As a final step to this progf, letting’ = n(a—¢), we obtain
holding. Observing thal} > LL,. + t*a, we conclude that that for alle, ¢ > 0 there existd/y such that for all/ > Uy
Ly > na.

When we take the’s into account a similar argument holds. 1 log P[L! > U]
With €1, e2,e3 > 0 and with the same, there exists), > 0 U 1
such that the queue lengths are withinearband of the values = log P[L§ > n(a —¢)]
in the previous paragraph, resulting i} > na — ne), where ”(al_ ©)
ey — 0 aser, e, ez — 0. > — (min(AgLQF(a),AngF(a)) +6/)

The probability of Scenario 1 is a lower bound BYL§ >
na]. Calculating the probability of Scenario 1, maximizinqN
over x1, zo, and zz to obtain the tightest bound, and using
Assumption B we have

P[L{ > n(a—¢;)]

hich implies

.1 1. « *
ng%oﬁlogP[Ll > U] > —Emln(AIGLQF(a),AgLQF(a)).

Al .
> sup P[|an,_i_1 —(n— Z)$1| < ean, Sincea, in the above, is arbitrary we can select it in order to
223z —3) make the bound tighter. Namely
i=0,1,---,n—1] 1
: . 1
X PHS—Ai,—i—l - (7’L - L).’L’2| S €21, 1= 07 17 e, — 1] Ulgrclw ﬁ IOgP[L > U]
B (= Dpal < ean. i = e — P o1
X P[|S_n7_z_1 (n L)$3| <emn, i=0,1,-+-,n—1] > —min ;I;% EAIGLQF(CL),;I;% EAgLQF(a) O
> expl —n inf ANi(z) + A (o
P i (A (w0) + Mgat2) B. GPS Lower Bound
T2 XP(T1—T3
We next turn our attention to the GPS policy and establish
+ Ap(zs)] + e) } a lower bound on the overflow probability. In the interest of
space we provide an outline of the proof. The complete proof
= exp{—n(Aopr(a) + e (17) can be fqt_md in [3]. .

{ ( GLar )} Proposition 4.2 (GPS Lower BoundAssuming that the
Whe_re_n is large enqugh, and,, e —_>_0 ascy,€2,€3 = 0. arrival and service processes satisfy Assumptions A and B,
Similarly, calculating the probability of Scenario 2, we havend under the GPS policy, the steady-state queue lehbth

P[L > n(a - )] of queue! satisfies
> su P Sf;_i_ —(n—9x1| < en, o1 "
N wl—czbwps=a H i = ) 1| = UlﬂgoﬁlogP[Ll > U] > =0¢ps (20)
zo—(1—¢)zz=0Fa
0<e <1
i=0,1,,n—1] where ¢, is given by
X P[|S% i i —(n—i)as| <eon, i =0,1,---,n — 1] 1 1
S — Y 0%ps = min | inf ~Agpg(a), inf ~AS; 21
% PHan,—i—l —(n— i)a:3| <esm, i=0,1,-- n— 1] Gps = min) ni = crs(a) e crs(a) (21)
and the functions\Z () andAlhg(+) are defined as follows:
> expg —n _iq{lf A (@) + Al (w2) : R
o—(1—)rs=Ba Adps(a) = . +x1n_fx — [Ny (@1) + Az (22) + Ap(3)]
0<¢<t 11‘2§2¢29@33
(22)
+ Ap(ws)] +¢
and
= exp{—n(AH* (a) + 6/)} (]_8) I A . * * *
GLQF Agps(a) = inf  [A%y(21)+ Al (w2) + AR (23)]. (23)

r1—P1T3=0

wheren is large enough, and thg, ¢ — 0 ase, e2,63 — 0. x3 2w
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Proof (Outline): Let —n < 0 and ¢ > 0. Let also ag,ay,---,amn—1 appearing there converges to the empirical
x1, 2,23 > 0 be the empirical arrival and service rates duringate z(-), and the sum of rate functions appearing in the
the interval[—n, —1] (in the sense introduced in the proof ofexponent converges to an integral.

Proposition 4.1) We seek a path with maximum probability, i.e., a minimum
We focus on two particular scenarios: cost path where the cost functional is given by the integral
in the above expression. This optimization is subject to the

Scenariol z1+z2—z3=a i
b aitms - constraintsL! (=7) = L*(=T) = 0 and L*(0) = 1. The

<
Scenario 2 @ f2¢_x¢2f?’a fluid levels in the two queue&!(t) and L?(t) are the state
1372 >1¢23$; (24) variables, and the empirical rates(t), z2(t), and z3(t) are

the control variables. The dynamics of the system depend on
Under both scenarios it can be established fap na. Cal-  the state and the scheduling policy employed. According to
culating their probabilities we obtain a lower boundB[LE > the policy, we will distinguish a number of regions of system
na]. We then optimize over all the parameters involved artlynamics. We do not yet specify the scheduling policy, we
use arguments similar to the ones in Proposition 4.1 to arrimesume, however, that we employ a scheduling policy with

at (20). O linear dynamics. More specifically, we considéd convex
subsetsRy, - - -, Ras of the positive orthant such that
V. THE OPTIMAL CONTROL PROBLEM u
In this section we introduce an optimal control problem for U R; = {(L*, L?) | L' >0, L? > 0},
each of the two scheduling policies and show that its optimal im1
value provides the exponeréig g and_eaLQF, r_espectively, of RiNR; =0, Vi # j.
the overflow probabilities. We will first motivate the control
problem formulation and establish some properties that ang fix constantsy, ,,v% , forj=1,..-,M and: =1,2,3
independent of the scheduling policy. We will subsequentbnhd consider the fdllowiﬁ’g system dynamics.
specialize the results to the GLQF and the GPS policy. RegionR,: (L(t),L2(t)) € R, where
To motivate the control problem, we relate it, heuristically,
with the problem of obt_amlng an asymptotically tight estimate It = ’V7laj,1$1(t) + 771%23;2@) - 771%33;3@)
of the overflow probability?. For every overflow sample path, -y 9 9 9
leading toL} > U, there exists some timen < 0 that both L =g, 121(8) + 7R, 2%2() = T, 3%3(t)

gueues are empty. Since we are interested in the asymptotics L' + L? = z,(t) + z2(t) — z3(t).

aslUU — oo, we scale time and the levels of the processes

A, A? and B by U. We then letI” = % and define the Dotted variables in the above expressions denote deriva-
following continuous-time functions iM[—T,0] (these are tives3 Let (DYNAMICS) denote the set of state trajectories

right-continuous functions with left limits) Li(t), j = 1,2, t € [=T,0] that obey the dynamics given
, 1. above.
Li(t) = ﬁL’LU”, J=12, Motivated by this discussion we now formally define the
1 following optimal control problem (OVERFLOW). The con-
S¥(t) = ﬁSfUT, (e, X € {41, A% B}, fort e [-T,0]. trol variables arer;(t), j = 1,2,3, and the state variables are

. . . Li(t), j = 1,2, for t € [-T,0], which obey the dynamics
Notice that the empirical rate of a proce&sis roughly equal given in the previous paragraph

to the rate of growth ofS (¢). More formally, we will say (OVERFLOW)
that a proces( has empirical rate(¢) in the interval[—T, 0]

if for large U and smalle > 0 it is true . 0
g ¢ minimize / [A%1(21(8) + Al (wa(t)) + A (xs(t))] dt

t —T
‘SX(t) - / () dr| <, vVt € [-T,0] subject to: LY(-T)=L*(-T)=0
-7 LY 0)=1
where z(t) are arbitrary nonnegative functions. We let L?(0) : free
x1(t),z2(t), and z3(t) denote the empirical rates of the T : free
processesd!, A2, and B, respectively. The probability of {L7(t) : t € [-T,0], j = 1,2} € (DYNAMICS).
sustaining rates; (¢), z2(t), andxs(t) in the interval—UT, 0] (25)
for large values ofU is given (up to first degree in the
exponent) by The first property of (OVERFLOW) that we show is that

0 optimal control trajectories can be taken to be constaithin
exp{—U/ A% (z1(8) + Al (z2(t)) + AR (z3(t))] dt}. each of the state dynamics regions.
=T
This cost functional is a consequence of Assumption B. WitLﬁHere we use the notion of derivative for simplicity of the exposition. Note
t

. . at these derivatives may not exist everywhere. Thus, in Relgnfor
the scaling introduced here 85— oo the sequence of SIOpeSexample, the rigorous version of the statemBht+ L? = 24 (t) + 22(t) —

2Such a relation can be rigorously established using the sample path LBRt) is L (t2)+L?(t2) = L (t1)+L*(t )+ftt12 (@1 (t)+aa(t)—as(t)) dt
for the arrival and service processes, as it is defined in [12] and [5]. for all intervals(t1, t2) that the system remains in Regid?y,.
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Lemma 5.1:Fix a time interval[-77,—T3]. Consider a
segment of a control trajectoryxz;(t), z2(¢t), z3(t); t €
[T, —T»]}, achieving cost, such that the corresponding by (a)
state trajectoryf{ L1(t), L?(¢t); t € (=171, —1>)} stays in one of
the regionsR ;. Then there exist scalai® , z,, andZ3 such \
that the segment of the control trajectdey; (t) = Z1, z2(t) = a1
Za,x3(t) = T3;t € [-T11,—T»]} achieves cost at mo¥i, with
the same corresponding states at —7} andt = —15. b1 23 (b)

Proof: We will focus on one region of system dynamics,
say’R;. Consider a segment of any arbitrary control trajectory
{z1(t), z2(t), x3(t); t € [-T1,—T3]} that satisfies

(LH=T1), LA (=T71)) = (a1, 02) € R;
(LHN(=T2), L*(=T2)) = (b1, b2) € R, (26) by 22

and stays in RegiorR;, i.e., (L(¢),L3(t)) € R, for all
t € (-11,-13), where

LE ()

L2

IS

-t
= ay +/ [77’% L1 (T) v amo(T) — 3333(7)] dr, Fig.3. By the homogeneity property, optimality of the trajectory in (a)
-1 7 7 7 implies optimality of the trajectory in (b) which in turn implies optimality

k=1,2te (—Th —Tg). (27) of the trajectory in (c).
Moreover, we also have
L*(=Ty) and note that it leads to the final stétel.'(0), «L?(0)). Then,
=Ty N N N the cost of the) trajectory is given by
= ag +/ [’YRj,lxl(T) + ’YRj,2372(T) - ’YRj,3373(T)]dT
-1 0
=be k=12 @) [ [ (a200) + A% (sF(0) + A (a5 (0))]
—aT
We will prove that the time—average control trajectory 0 . . .
) -1 = a/T [Af (27 (1) + Al (22 (1) + AR (23 (1))] dt.
zi (1) = () dt, -
=g [, =

i=1,2,3Vr € [-T1,~Ts] (29) Qsing this ob;ervatioq, it follqws egsily that every scaled ver-
sion of an optimal trajectory is optimal for the corresponding

is no more costly. To this end, notice that the time—averagerminal state. For example, given thismogeneityproperty
trajectory has the same end points [i.e., satisfies (26)], mowes can compare the state trajectories in Fig. 3(a)—(c). If the
along a straight line, and thus stays in Region(by convex- trajectory in Fig. 3(a) is optimal, then so is the scaled version
ity) for ¢ € (=11, —1%). Moreover, by convexity of the rate (by o = a2/a;1) in Fig. 3(b). As a consequence, its segment

functions we have which appears in Fig. 3(c) is also optimal (since we have a
I . . free-time problem).
/T [Af(21(2) + Ao (22(8)) + Ap(za(?))] dt In the rest of this section we will specialize the optimal

control formulation to the GPS and the GLQF case and use

Lemma 5.1 along with the homogeneity property to obtain an
O optimal solution.

Given this property, to solve (OVERFLOW) it suffices to

res_trict ou_rselves to state trajectories W_ith cons_tant contrgl The GPS Optimal Control Problem
variables in each of the regiori8;. A trajectory is called ) L
optimal if it achieves the lowest cost among all trajectories [N the case of the GPS policy we will distinguish three
with the same initial and final state. Since we have a free-tif@dions of system dynamics, depending on which of the two
problem, any segment of an optimal trajectory is also optim@/€ues is empty. In particular, we have:
for the problem of moving from the start state to the end stateRegionRy: L*(t), L*(t) > 0, where according to the GPS

> (11 = T)[A4 (Z1) + A2 (T2) + A(T3)]-

of the segment. policy
Consider now a control trajectofy(¢); ¢ € [=T,0]} with cL .
corresponding state trajectoyL*(t), L2(t); ¢t € [-T,0]}, L' =a1(t) = ¢ras(t) and L7 = a(t) = dowa(t);

which leads to a final statéL!(0), L?(0)). Define a scaled
trajectory as

22 (1) = xk(t/a), i=1,2,3,t € [—al,0]

Q(t) = al’(t/a), j=12t€[-al,0] L2 = 21(t) + z2(t) — z3(8);

RegionRy: L(t) = 0, L*(¢) > 0, where according to the
GPS policy
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specifically, consider first an arbitrary trajectory with linear
pieces as the one in Fig. 5(a). We apply Lemma 5.1 to its
initial segment (until it reached.! = p), and we obtain
(a) (b) a no more costly segment which stays in Regign and
is arbitrarily close to the threshold ling? = gL!'. By a
continuity argument, we conclude that the initial segment of
the trajectory in Fig. 5(a) (until it reaches' = p) reduces
1 Lt 1 Ll to the corresponding segment of the trajectory in Fig. 5(b).
Using the same argument for the remaining segments of the
“fajectory in Fig. 5(a), it reduces to the one in Fig. 5(b). We
now apply the homogeneity property to the latter trajectory
to finally obtain the trajectory in Fig. 5(c). We conclude that
RegionR3: L'(t) > 0, L*(t) = 0, where according to the gptimal state trajectories can be reduced to having one of the
GPS policy forms depicted in Fig. 5(d)—(f).
it = 21(t) + 22(t) — 23(F). The optimal traj:ectory of the form shown in_ Fig. 5(d)
has value equal tmnfT[TAgLQF(%)], and the optimal tra-
We let (GPS-DYNAMICS) denote the set of state trajectorigectory of the form shown in Fig. 5(e) has value equal to
Li(t), j = 1,2, t € [T, 0] that obey these dynamics. We willinfr[TAZ} o (5)], where Afy op(-) and Aff () are de-
denote by (GPS-OVERFLOW) the special case of the probldined in (14) and (15), respectively. Consider now the best
(OVERFLOW), where state trajectories are constrained tjectory of the form shown in Fig. 5(f), which has value
satisfy (GPS-DYNAMICS). ] ] . . .
The main result of this subsection is the following theorem. HTlf m”;fi (A (1) + Ao (2) + A (23)]. (30)
Theorem 5.2:The optimal value of the problem (GPS- ,,2_;3 ZT@
OVERFLOW) is given byf¢ g, as it is defined in (21). _ .
Due to space limitations we will skip the proof; we refer he functionsA,. (x2) and A;(«3) are nonnegative, convex,
the interested reader to [3]. The proof uses Lemma 5.1 and ¥l achieve their minimum value which is equal to zero at
homogeneity property and follows an elaborate interchange &e-= E[A7] andz3 = E[By], respectively. Moreover, due to
gument to reduce any trajectory which is a potential candiddfte stability condition (9) we havE[Aj] — E[Bo] < 0. Since
for optimality to one of the two trajectories that appear i > 0 and in order to haver; — x3 > (1, it has to be the

L2 L2

Fig. 4. In searching for optimal state trajectories of (GPS-OVERFLOW),
only need to consider trajectories of the form in (a) or (b).

1
T

Fig. 4. case that eithex, > E[A3] or z3 < E[By]. If the former is
the case, we can decreasg and reduce the cost, as long as
B. The GLQF Optimal Control Problem zy —z3 > B holds. Also, ifz3 < E[Bo] is the case, we can

. . __increaserz and reduce the cost, as longas-z3 > /3% holds.
We next turn our attention to the GLQF policy. Dependmghus, at optimality it is true that, — 5 = /3%. Then, the

on the state of the system, we distinguish the following thr%‘?(pression in (30) is equal taf[TAL ()] with ¢ = 0
+ =

; e GLQF
regions of system dynamics: in the definition of A¢l} o ( L). Thus, since the calculation of

RegionR,: L*(¢) > .ﬁLl(t)’ where according to the A%’{QF(%) involves optimigation ovep, we conclude that the
GLQF policy state trajectory Fig. 5(f) is no more profitable than the one in
L= z1(t) and L2 = zo(t) — z3(t); Fig. 5(e), leaving us with only the trajectories in Fig. 5(d) and
(e) as possible candidates for optimality. We summarize the
RegionR»: L*(t) < pLY(t), where according to the apove discussion in the following theorem.

GLQF policy Theorem 5.3:The optimal value of the problem (GLQF-
LY =ai(B) —wa(t) and L2 = wa(8); OVERFLOW) is given by#g,; -

RegionRs: L2(t) = pBLYt), where according to the VI. THE MOST LIKELY PATHS

GLQF polic . . :
QF policy In essence, solving the control problem is equivalent to

LY 4+ 12 = 21 (8) 4 x2(t) — z3(t). discovering scenarios of overflow that maximize the overflow
) ._probability over all feasible overflow scenarios. In this section
Let (GLQF-DYNAMICS) denote the set of state trajectorleg/e summarize thesmost likelyways of overflow for both
L'(t), j = 1,2, t € [-T,0] that obey these dynamics.isies.
We will denote by (GLQF-OVERFLOW) the special cas
of the problem (OVERFLOW), where state trajectories ar .
constrained to satisfy (GLQF-DYNAMICS). K. The GPS Most Likely Paths
This problem exhibits both the properties of constant control The two optimal state trajectories of (GPS-OVERFLOW)
trajectories (cf. Lemma 5.1) within each region of syster@re the two generic most likely ways that quedeoverflows,
dynamics and homogeneity. Using these properties, we darder the GPS policy. In particular, we distinguish two cases.
make the reductions appearing in Fig. 5(a)—(c), starting fromCase 1) Suppos..q = inf, AXps(a)/a holds. Leta* >
an arbitrary trajectory with piecewise constant controls. More 0 be the optimal solution of this optimization
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L? ' L? '
(2) :: (d) :
p: é L é L
(b) (e) '
{c) E (f) E

Fig. 5. By the property of constant controls within each region of system dynamics the state trajectory in (b) is no more costly than the trajectory in
(a). Also, by the homogeneity property, optimality of the state trajectory in (b) implies optimality of the trajectory in (c). Candidates for statienal
trajectories are depicted in (d)—(f). The trajectory in (f) is eliminated as less profitable to the one in (e). Hence, without loss of optimality we can
restrict attention to trajectories of the form in (d) and (e).

problem. In this case, the first queue is building detailed statistical model of the input traffic streams is
up to an O(U) level, while the second queueavailable) a statistical multiplexing gain can be realized. In the
stays at amw(U) level. The first queue builds up overflow mode described in Case 1 above, the second queue
linearly with ratea*, during a period with duration consumes less than the fractigs of the total service capacity,
U/a*. During this period the empirical rates of themplying that more class 1 connections can be allowed without
processesi!, A%, and B, are roughly equal to the compromising the QoS. Even if the overflow mode described
optimal solution(z%, 3, x%), respectively, of the in Case 2 above prevails, the overflow probability is explicitly
optimization problem appearing in the definitiorcalculated (in an exponential scale) and can be taken into
of Alps(a®) [cf. (22)]. The trajectory inL!~L? account in the design of the admission control mechanism.
space is depicted in Fig. 4(a).

Case 2) Suppost,pg = inf, Aliig(a)/a holds. Leta* > B. The GLQF Most Likely Paths
0 be the optimal solution of this optimization considering now the GLQF policy, the two optimal state
problem. In this case, both queues are buildingajectories for the problem (GLQF-OVERFLOW) are most
up to anO(U) level. The first queue builds upjikely ways that queue! overflows. We distinguish two
linearly with ratea™, during a period with duration cgses.

U/a*. During this period the empirical rates of the Case 1) Supposély, op = inf, AgLQF(a)/a holds. Let

processesi!, A%, and B are roughly equal to the a* > 0 be the optimal solution of this optimiza-

optimal solution(x*, z3,x%), respectively, of the tion problem. The first queue builds up linearly

optimization problem appearin_g in thc_e definition with rate o*, during a period with duratiod/ /a*.

of Agps(a®) [cf. (23)). The trajectory inL'-L? During this period the empirical rates of the pro-

space is depicted in Fig. 4(b). cessesAl, A2 and B are roughly equal to the

It is interesting to reflect at this point on the implications optimal solution(z%, 2%, %), respectively, of the

of this result on admission control for ATM multiplexers op- optimization problem appearing in the definition of
erating under the GPS policy. Consider the admission control AgLQF(a*) [cf. (14)]. In this case the first queue
mechanism for queu€)® and suppose that the objective of is building up to anO(U) level, while the second
this mechanism is to keep the overflow probability below queue builds up at a rate of;, in such a way that
a given desirable threshold. A worst case analysis as in the server allocates its entire capacity to the first
[29] would conclude that the admission control mechanism queue. The trajectory ik!—L? space is depicted
has to be designed with the assumption that the second in Fig. 5(d).

queue always uses a fractiof, of the service capacity. Case 2) Supposéf;or = inf, A%’{QF(a)/a holds. Let
If instead the results of this paper are used (assuming that a* > 0 be the optimal solution of this optimization
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problem. Again, the first queue builds up linearly Lemma 8.1:For A*(-) andA(-) being convex duals, it holds
with ratea*, during a period of duratioty/a*, and
with the empirical rates of the processds, AZ,
and B being roughly equal to the optimal solu-
tion (x}, x5, %), respectively, of the optimization where6™ is the largest root of the equatiok(#) = 0.
problem appearing in the definition afif ,r(a*) Proof:
[cf. (15)]. In this case both queues are building

up, the first to anO(U) level and the second to

an O(3U) level. The trajectory inL-L? space is

depicted in Fig. 5(e).

1
inf ~A*(a) = 6"
Lot

P O 1
oA @ = Inhsp i l6e — AG)

= inf sup[f — ' A(6
;,gosgp[ a’A(6)]

= sup 6.
8:A(6)<0

VII. A GPS UPPER BOUND _ -
) ) _In the second equality above, we have made the substitution
In this section we present an upper bound on the probabilify. _ 1 and in the last one we have used duality. O
P[L(?] > U], i”blthﬁ gashe of the GPS politr:]y. In particular, On ‘a notational remark, we will be denoting B o ()
we have established that 48 — oo we have P[L; > IT L I
U] < e farsU+e(U) whereo(U) denotes functions [w?th the andAgpor (), the convex duals acy.qr () andAcigr(-)
= _ olt) X e respectively. Notice that the latter are convex functions. For
property limy o, =~ = 0. The proof is quite involved sl  (4), convexity is implied by the fact that it is the
and uses the special structure of the problem which Wggjye function of a convex optimization problem with
revealed by the corresponding optimal control problem. Thugynearing only in the right-hand side of the constraints. For

the results in Section V are critical in establishing the uppgrgiQF(a), the same argument applies when we note the

bound. following reformulation:

Due to space limitations we omit the proof, which can be
found in [3]. In proving the upper bound we distinguishedci.qr(a) = inf  [ALi(21) + Al (22) + A (3)]
two cases: I

Case 1)E[4?] < ¢E[B]; 0=e<t

Case Z;E%AQ% > izE%B% = xlifgza [Af (1) + Ao (2) + Ap(2s)].
and established an upper bound for each one of them. The zy — (23 —x% )=pa

. . . “y. /
main result is the following proposition. Osmsws

Proposition 7.1 (GPS Upper Boundssuming that the In preparation for the following theorem we prove the next
arrival and service processes satisfy Assumptions A and f@onotonicity lemma.
and under the GPS policy, the steady-state queue lebfth Lemma 8.2 (Monotonicity)Consider a random process

of queue@* at an arbitrary time slot satisfies {X;;i € Z} that satisfies Assumption A. Assumi& > 0, €
Z. Then for allg < ¢ we haveAx(6) < Ax(6).
lim llogP[Ll > U] < B 31  Proof: X; >0, i € Z implies S{%, > 0 which in turn
U—oco U implies

85 8’'s:*
| < n
VIIl. A GLQF U PPER BOUND E[e™in] < E[e%ir]
In this section we develop an upper bound on the probabih"t?r allo <o U
P[L} > U], for the GLQF case. In particular, we will prove The above lemma clearly applies to the arrival and service
that asl/ — oo we haveP[L} > U] < e~fararU+oU) \where Processes. The nextresultis critical in establishing a matching

o(U) denotes functions with the properiyny .., 2% = 0. UPPer bound on :he overflow probability.

This proof is different from the corresponding one in the GPS Theorem 8.3:6¢, o is the largest positive root of the

case in that it is independent from the GLQF optimal contr&duation

formulation. Acrar(8) 2 max[AL; op(8), Al or ()] =0 (32
Before we proceed into the proof of the upper bound, we arar(f) [ arar(6): Adiar( )] (32)

derive an alternative expression féf, - which will be whereAg;or(-) is the convex dual oAg; o (-) and is given

essential in the proof. In the next theorem, we will show thaly

the calculation of is equivalent to finding the maximum )

oot of a convex function. GLar(f) = nf[Aar (6 = uf) + Asz(u) + Ap(=0 +uff)]
In preparation for this result, consider a convex function (33)

f(u) with the property f(0) = 0. We define thelargest I _ .

root of f(u) to be the solution of the optimization problemNdAgrqr(-) is the convex dual of\gfor(+) and foré > 0

SUPy: p(u)<o - If f(-) has negative derivative at = 0, there satisfies

are two cases: eithef(-) has a single positive root or it stays AL 0) = inf A 1 (6 — w3 4+ A o

below the horizontal axis = 0, for all > 0. In the latter crar(?) 'lego[ ar(l = uf) + A lu)

case we will say thaf(-) has a root at. = co. + max(Ag(—u),Ag(—0+up))]. (34)
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Proof: Let us first calculate\t; or(-) andAdqr(-) by which implies (by convexity) that the infimum over unre-
using convex duality. We have stricted« has to be the same with the infimum owei> 0.
Using the result of Lemma 8.Ja; £ inf, 1A% op(a) is

I
Acror(®) N the largest positive root oL -(f) = 0 (it is not hard
= sup [fa — Adrqr(a)] to verify that this equation has a positive, possibly infinite
a .. A . 1 A TIx . .
— 5 o — A%, A%, _ A root). Similarly, p2 = inf, ; Agiqr(a) is the largest positive
lip xl_ligza [pa ) () 5(w3)] root of AgLQF(H) = 0. By (13), 0¢.qr = min(p1, p2). This
2 She—wa) . implies thatt¢,; o is the largest positive root of the equation
- S‘;p mf‘g’:a (01 = 5) = Ay (1) InaX[AIGLQF(e)v AgLQF(e)] =0. u
w2 <B(w1—x3) We next prove the upper bound for the overflow probability.
=AY (z2) — Ag(xs)] Eroposition .8.4 (GLQF Upper Bound)Under the GLQF .
_ sup  [B(zy — 23) — Al (21) policy, assuming that the arrival and service processes satisfy
w0 <B(x1—w3) Assumptions A and C, the steady-state queue ledgthof
— A (z0) — Ag(xs)] queue®! at an arbitrary time slot satisfies

_ _ A% L _A* . . 1 "
LILI%%JJS;}ZI,)J;S[Q(%I 373) AA (-’171) AA (-’172) Uhm EIOgP[Ll > U] < _HGLQF' (36)

— Ny(a3) — u(Bry — Pus — x2)]

Proof: Without loss of generality we derive an upper
= inf [A 1 (6 = uf) + Ao () + Ap(—0 + uB)]. g y Pp

bound forP[L§ > U]. We will restrict ourselves to sample
paths with L§ > 0 since the remaining sample paths, with
L} = 0, do not contribute to the probabilil?[L{ > U].
A%LQF(H) Consider a busy period for the system that starts at some
= sup [6a — AL o (a)] time —n < 0 (L, = L2, = 0) and has not ended until time

a zero. Such a time-n exists due to the stability condition (9).

Similarly

= sup sup [fa — A% (z1) — A2 (2) Note that since the system is busy in the inteffvah, 0], the
@ o (1—3);523@751— da3) server works at capacity and therefore serffgesustomers at
<<l slots, for ¢ € [—n, 0]. We will partition the set of sample paths,
— A5(m3)] with L§ > 0, in three subset®1, 2>, and{2;. The first subset,
s * * 21, contains all sample paths at which only class 1 customers
= inf 6(z1 — - A% — A% L
W Slj%%i[ (1 = ga) arl) () get serviced in the intervdln,0]. As a consequence
— Nj(xs) +u(wz = for + (B¢ + ¢ — Dws)] LY, =54 —SB
= A (0 —uf) + Aew)+ sup An(=0¢ L2, =5% . and L, 2 L%, Vke[0n]
+(Bp+ ¢ = Lu)] which implies

inf[A 41 (0 — uf3) + Asz(u)
+ max(Ap(—u), Ap(—0 4+ uf3))]
= inf[Aq (6 — uf) + A (v) and
20 AL B A
+ max(Ap(—u), Ap(=0 + uB))]. B4, 1 =85, 1) 252, 1.
In the fifth equality above, we have used the monotonicifjhus we have (37), as shown at the bottom of the next page.
of Ap(-) (see Lemma 8.2) and the fact that the argumentThe second subsef),, contains sample paths at which

—0¢+ (B¢ + ¢ — D is linear ing, thus taking its maximum class 1 customers do not receive the entire capacity, and
value at eitherp = 0 or ¢ = 1. For the sixth equality above, AL§ < L3. That is, there exists & € [0,1] such that class

Ly =84 sB

—-n,—1 7 X —n,—1

notice that becausfz(-) is nondecreasing it holds 1 customers receive only @ fraction of the total capacity
(¢SB, _;). Then we have
Aar(0—uB) + A2 (v) + max(Ag(—u), Ap(—60 + uf)) ’
B {AAl(e —uf) + Az (u) + Ap(—u), if u< %5  P[L;>U andQ,]
Agi(@—up)+ Az () + Ap(=0+up), if u> i3 <P[En>00<¢<1, st | —¢sP, | > U and
(35)

B(SA, _ - ¢SB, ) < 54 (1-¢)s8, ].

—n,—1 -n,—1
since at the upper branchu > —6 + uf and at the lower ] .
branch—u < —6 + «4. Differentiating the above expressionH€nce, we obtain an upper bound L > U and(;]

atw = 0, and foré > 0, we obtain which is given in (38), shown at the bottom of the next page.
. . . Finally, the third subsefs, contains sample paths at which
—BA4(0)+A42(0) —Ap(0) <O class 1 customers do not receive the entire capacity, and
20 ) BLE > L3. Then there existé € [0,7n] such that the interval
<0 [-%,0] is the maximal interval that only class 1 customers
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get serviced. That ispLt;, > L%, i € [0,k — 1] and L o = max  inf [(1—uB)S2A, _ +ust, )

BLY, < L?,. Since class 1 customers do not receive the 0<F<1 T
entire capamty, there exis8 < ¢ < 1 such thatL:, = +(=¢+ufp —u+up)SE, ]
S el = ¢an 4y SincepLl, < L%,, we have o _1(42)
/3( —n,— —1 - d)an —k— 1) and
B
<S5 i~ (1= $)SE . B9 L2 max {ullnf (w2t +ws™
Now, due to the way we defined we haveL!, = L!, + 00<§g§<n1
St i1 — 82 i1, @ € [0,k — 1], and the inequality -
/3L1< > L2, becomes + (=¢ + w1 o — ur+u19)SZ, 1]
. " + inf [(1+ uQ/J)S_k7_1 - U/QS_k7_1
B(SA, o1 =982, A5 i —SE i) U2 20
= sz,—k—l —(1=¢)SZ, i + Sf;,—i—l + (=1 —u2p)SZ, 1] } (43)
which by (39) implies Next, we will first upper bound the moment generating

functions of Lt o, Lérqr, and Létqr- For Lipqr and
for & > 0 we have
Thus we have (40), as shown at the bottom of the page. E[GQLIGLQF]

Let us now define

/j(S—Allc,—i—l -85 i) > Sfi,—i—la i €0,k —1].

Al < E exp{Q 1nf 1+uj uSAn _
Dhoor (st SZE| ()5 :
{n>0: B(S“n 1 S_n’_l)ZSfm_l}
B

and the quantitied.{}; o and Lt o, as shown at the bottom + (=1=pu)SZ, ] H

of the next page. By bringing the constraints in the objective o -
function we obtain < ZyliingE{eXP{e[(l +uB)S?, | —uS?t,

n>0 —
Largr £ max inf [(1+ u/J)SAn 11— uS_n 1 -
n>0 uw>0
= = +( 1_/3U)S—n —1] }:|
+(=1-pu)sZ, ] (41)

P[L§ > U and ]

<P[An>0, st.54, | —SP | >Uandg(s?, _, - S5, 1) >S4 ]
=P max (sS4 _ -S%. _)>U (37)
{n20:8(s4) _ | —8B _)>s542 ' ’
P[L{ > U and(;] =P max (SA, _1—6S2, ) >U (38)

{n>0, 0<p<L:B(SA, _ —¢SE _)<S4? _ —(1-¢)SB, _}

P[Lg > U and(s]
<P[An>0,0<k<n0<p<1,
SLSA L —¢SP i S - By > U and B(S2, 1 — ¢SZ, _i1)
< sz,—k—l (1—¢)SE, 4y andB(s2, _, — S5 ) > 54 k—l]

1 1
<P max sS4 —¢pSB . s4 -8B, >U
B n>0,0<k<n,0<p<1 (S20,—km1 = 20 et + 525 1 — S5 1)

1 2
B(SZ, _pi—eSE, i )SSE, i —(1=8)SE, iy
1 2
rﬁ(sfk,—l_sfk,—l)zsfk,—l

(40)
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< Z en(infuzg [A 1 (64+0uB)+A 12 (—ub)+Ap(—0—u86)]+er) < (E[CQAI(Q)] + E[CQAH(Q)] I E[CQAIH(Q)]) @_QU
nZIO o < 3K(8,€1, €, 63)6_0U
SK(fa) if Agigr(f) <O (44) if max(ALpqr(6), Al qr(6)) < 0.

In the third inequality above we have used the LDP for th?aking the limit asl/ — oo and minimizing the upper bound

arrival and service processes. In the last inequality abomth respect tof > 0, in order to obtain the tightest bound,
when the exponent is negative (thatIk%LQF(e) <Oander  \ya have -

is sufficiently small), the infinite geometric series converges to

a constani'(f, ¢;). Also, in the last inequality, we have made lim — lOgP[L(l) > U] < - sup 6.

the substitutiony := —6u in the expression in the exponent ™ {620:max(A1(9),AT1(6))<0}

and used the definition kg qr(6) [cf. (33)]. The right-hand side of the above is equal 4®% o by
Similarly, forLgLQF and foré > 0 we have (45), as shown Theorem 8.3. O

at the bottom of the page. In the third inequality above, the
expression to be maximized owgis linear, thus the maximum

is achieved at eithet = 0 or ¢ = 1, which implies thatwe can  In this section we gather our main results on the perfor-
upper bound it by the sum of the terms fo= 0 and¢ = 1. mance of multiclass multiplexers.

Also, for L{ii o and foré > 0 we have (46), as shown at ,
the bottom of the next page. In the third inequality above wes 1he GPS Main Results
have used the LDP for arrival and service processes, as welWe first combine Propositions 4.2 and 7.1 and summarize
as Assumption C. Concerning the maximization ogerwe our main results for the GPS policy. As a corollary we obtain
have used the same argument as in (45). In the fifth inequaligsults for priority policies.
above, since the exponent is linearinthe maximum over  Theorem 9.1 (GPS Main)Under the GPS policy, assuming
k is either atk = 0 or at k = n. Thus, we bound the that the arrival and service processes satisfy Assumptions A,
term by the sum of the terms fok = 0 and & = n. B, and C, the steady-state queue lenfithof queueQ! at an
Finally, for the last inequality, both series converge to arbitrary time slot satisfies
constant if both their exponents are negative, which requires | L .
max(Aby op(6), Al or(0)) < 0. Jim = logPIL™ > U] = —fgps (47)

To summarize (44)—(46), the moment generating functior\}v%ere 0% . is given by
of Lirqrs Lérgr, and Liii o are upper bounded by some GPS
constantK(H, €1, €2, 63) if m_a?((AIGLQF(H), AgLQF(H)) < 0, QEPS — min| inf lAgPS(a)a inf EAICE*PS(G) (48)
whereeq, €2, €3 > 0 are sufficiently small. We can now apply a>0q a>0q
the Markov inequality to obtain [using (37), (38), and (40)]

IX. MAIN RESULTS

and the functiond\ % () and A% (+) are defined as follows:

P[Lé > U] Tx -y . * * *
< P[L} > U and Case I+ P[L} > 1/ and Case 2 Adps(a) = n 12nf = (Al (1) + Ao (22) + Ap(z3)]
< o > U and Case [L+ o > U and Case e Lan
+P[L§ > U and Case B (49)
LgLQF 2 max (Sfrll _1—¢SZ, —1)
{n>0, 0<4<1:8(SA), | —¢SB, <842 —(1-¢)SB, _} ’ ’
41 41
Léigr = 120,00 8X et (52 —ke1 = 0SZ, i+ 52 1 — S5 1)

1 2
B2, _o1=SE, L )<SE, L —(1-9)SE, 4

1
B(S2, _1—SE _)=82 1y

E[GeLgLQF] < Z E {exp{901<n§><( 1132% [(1- uﬁ)Sf;,_l + u5f27_1 +(—p+ufp—u+ ud))S]_Bny_l] H
n>0 = =

<) ifE [exp{%glggl [(1—up)S2, _1 +uS, 1+ (=¢ +upp —u+up)SE, ] H

n>0 —
< Z inf (en([AAl(O—&u,ﬁ)—i—AAz (u8)+Ap(—8u)]+eh) + e ([Aa1(0—0uB)+A 42 (u&)—I—AB(—0+0'u,8)}+e’2’))
- u>0
n>0 —
<2 Z en(infuZO[AAl(0—0u,8)+AAz (u8)+max(Ap(—0u),Ap(—6+6ug8))]+e2) < ‘[(11(9762)7 if AgLQF(e) <0 (45)
n>0
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and slot satisfies
Agps(a) é wl_};llﬁgza [AAl (.Tl) + AA2 (.TQ) + AB(.’Eg)] Ulgrcl)o ﬁ IOgP[Ll > U] = —91-,2 (54)
Ty > o3

(50) Wwheref}p, is given by

An interesting observation is that strict priority policies are 07, = inf 1 A}, (a) (55)
a special case of the GPS policy. Class 1 customers have a>0a
higher priority whenp; = 1 and lower priority whenp; = 0. and where
We can therefore obtain the performance of these two priority A ) . . .
policies as a by-product of our analysis. Note that the resultr: (@) = | il [A% (21) + A2 (22) + Ap(23)]. (56)

for the policy that assigns higher priority to class 1 customers w2 ST3
matches the FCFS single class result (see [23], [21], and [1]) proof: For policy P, apply Theorem 9.1 withp; = 1.

since under this policy, class 1 customers are oblivious {y sychg,, it is easy to verify that\lipq(a) > A% (a), for
class 2 customers. We summarize the performance of priorfly , Thus, we define\’, (o) to be equal taAll () with
policies in the next corollary. The discussion of Section VI-4,  set to one. '

can be easily adapted to the cages= 1 and¢1 = 010 For policy P, apply Theorem 9.1 withp; = 0. Application
characterize thenost likely wayshat lead to overflow under of 4, — ¢ to Ao (a) yields

priority policies.

Corollary 9.2 (Priority Policies): Under strict priority pol-  Agps(a) = inf  [A%(21) + Al () + Aj(23)].
icy for class 1 customer§PF;), assuming that the arrival and xﬁac?g_ff_a
service processes satisfy Assumptions A, B, and C, the steady- (57)
state queue lengtli! of queue@! at an arbitrary time slot o _
satisfies Also, application ofg; = 0 to Allig(a) yields
lim 1 logP[L! > U] = —65 (51) Ag*Ps(a) = xilnzfa [Afa (1) + Al (22) + A(zs)].  (58)
U—oo U L T22>T3
where 67, is given by The functionsA’,, (z2) and A% (x3) are nonnegative, convex,
1 and achieve their minimum value, which is equal to zero, at
05, = inf ~A% (a) (52) z2 = E[A3] andz3 = E[By], respectively. Sinc&[B,] >
a0 q E[A3], the inequalityzs > x5 implies that eithers > E[AZ]
and where or z3 < E[B]. If the former is the case, we can decrease
o and reduce the cost, as long as > z3 holds. Also, if
b (a) = xlirg_a[A} (1) + A (x3)] (53) z3 < E[By] is the case, we can increasg and reduce the

cost, as long ag> > z3 holds. Thus, at optimalitys = x5
Under strict priority policy for class 2 custome($:), the in (58). But, the region characterized by = ¢ andzy = 3
steady-state queue lengift of queue@* at an arbitrary time is included in the region defined by the constraints in the

E [eeLgI{QF]

: Al A? B
< ;}0;’; E {exp{901§n§><( ot [(1—wB)S2, g +wS2, i+ (—p+uifo —w +we)SE, 4]

+0 inf [(1+u28)8%, 1 —uaS™ | + (=1 —u2)SE, ] H

<> > inf E|:exp{901§n§)<( X (1= wB)SA, oy +uS™ o+ (¢ + w B — s +ui)SZ, 1 1]

wy,uz >0
n>00<k<n -

0 [(1+uaB)SAy _; — S + (=1 —u2)SZ, ] H

< § § lnf [e(n—k)(AAl(0—0u1,8)+AAz (ule)-l—AB(—@ul)-I—Eg) + e(n—k)(AAl(0—0u1,8)+AAz (’u10)+AB(—0+0u1’8)+e’3’)]
- g, U2 >0
n>00<k<n

. MA AL (IH0uz B)+A 42 (—u26)+An(——buzB)+<}")

<2 Z Z c(=R) (AT (0)+E3) k(AT (0)+¢5) <2 Z nen(O)+e) 4 o Z Pt A (O)+E)
n>00<k<n n>0 n>0

< K8, ¢3), if maX(AIGLQF(e)aAgLQF(e)) <0 (46)
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optimization problem in (57). Hence, for all, and when B. The GLQF Main Results

¢1 =0, Adps(a) < Aghs(a). Therefore, we defin@}, (a) Combining Propositions 4.1 and 8.4 we obtain the following
to be equal to the expression in (57). ~ ' main GLQF theorem. An exact characterization of thest

As the results of Theorem 9.1 and Corollary 9.2 indicatgy ey waysthat lead to overflow was discussed in Section V-
the calculation of the overflow probabilities involves th
solution of an optimization problem. We will next show that .Theorem 9.5 (GLQF Main):Under the GLQF policy, as-
because of the special structure that these problems eXhiQLi}ming that the arrival and service processes satisfy Assump-

this is equivalent to finding the maximum root of a conve¥,s A B and C. the steady-state queue lenfthof queue
function. Such a task might be easier to perform in SOMEL at an arbitrary time slot satisfies

cases, analytically or computationally. This equivalence relies

mainly on Lemma 8.1. Hence, using duality, we expéss. 1 . .
as the largest root of a convex function. The result is given in S U log P[L" > U] = —6¢qr (62)
the next theorem, the proof of which is omitted due to space
limitations; it can be _found in [3]. N where 6, o is given by

Theorem 9.3:6¢, g is the largest positive root of the equa-
tion 1 1

£ _ . . — AL : = Al
Acrs(8) 0GLor = min ég% aAGLQF(a)a;I;% aAGLQF(a) (63)

A .
=Aa1(0)+ inf [Aa2(0 —u)+Ap(—0+ ¢pou)] =0.
ar(?) 0§u§0[ a2 )+ A P2 and the functionsAf;or(-) and Adiqp(-) are defined as
(59) follows:

Remark: Equation (59) has a positive, possibly infinite root. , 1. (a) A inf (A% (1) + A (2) + Al (03)]
- At A? B

To establish that, notice first thAt;pg(6) is a convex function ~ “LQF m—w5=a
of . This can be seen when we write it as the value function 2 SB(e1—2s) 64
of a convex optimization problem with appearing only in (64)
the right-hand side of the constraints, i.e.,
and
Agps(e) =Au (9) + iI_lfe [AAz (Z - U,) + AB(—Z + (/)QU,)]
0sust Adiqr(a) 2 dnf o [Ak () + Ale(w2) + Ap(as)]
zo—(l—¢)zs=08a
Observe now that § gi)<1
Acrs(8) < Aai(8) + Mg (8) + Ap(—6) (65)
and that both sides of the above inequality are zer &t0. It should be noted that the performance of strict priority
This implies that their derivatives & = 0 satisfy policies, which is characterized by Corollary 9.2, can also be
. . . . obtained as a corollary of the above theorem. We obtain the
Acrs(0) < Aai(0) +A42(0) — Ap(0) <0 performance of strict priority to class @P) when 8 = 0

. , . . _and the performance of strict priority to class(®;) when
where the last inequality follows from the stability condmorb — 0. It is not hard to verify that the result is identical to
(9). The conveX|ty_c_)ngps(-)_|s sufficient to guarantee theCorollary 9.2. The above theorem indicates that the calculation
existence of a positive, possible infinite root. of the overflow probabilities involves the solution of a convex

Again, as it was the case with Theorem 9.1, the result gfyimization problem. In Section VIII, and for the purposes of
Theorem 9.3 can be specialized to the case of priority po"c"?ﬁoving Proposition 8.4, we proved in Theorem 8.3 that the

Corollary 9.4: 67, is the largest positive root of the equagyponent of the overflow probability can also be obtained as

tion the maximum root of a convex function. This may be easier to
do in some cases. Here, we restate this latter result, simplifying
Ap1(8) 2 Ay (8) + Ap(—0) =0. 60 :
ru(0) = Aqr(9) + Ap(=0) ©0) e expression folarqr(-).
Also, 6%, is the largest positive root of the equation Thﬁorem 9.6:6¢1.qr Is the largest positive root of the
equation

Apa(6) = Aqr(9) + inf [Ase(0 = u)+ Ap(=0 +u)] = 0.
(61) AgrLqr(f) = max {AAl(e) + Ap(—6),

We conclude this subsection noting that, by symmetry, all inf  [Aa(0—uB) + A2 (u)
the results obtained here can be easily adapted (it suffices 0<ul i
to substitute everywheré:=2 and 2:=1) to estimate the
overflow probability of the second queue and characterize the + AB(—u)]} =0. (66)
most likely ways that it builds.
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Proof: Due to Theorem 8.3, it suffices to prove that the Therefore, ford < u* < L@ also, we have
expression in (66) is equal tmax[AIGLQF(H) A%LQF(G)]. . .
Recall the definitions ahf;; o (6) in (33) and ofAl; op () in max(AgLor(6), AcLor(f))
(34). Recall also the expression in (35) for the objective func- = max{A4:(0) + Ap(—6), inf [Agi (6 —up)
tion of the optimization problem correspondingA@LQF(e). Sustip
Now letu* be the optimal solution of the optimization problem + A2 (u) + Ap(—u)]} = Acrgr(8). O
in the definition ongLQF(e). We distinguish two cases.

) . o The results of this theorem can also be specialized to the
Case 1)u* > ¥5. Then, notice thau* is also the mini- ¢ase of priority policies, to obtain the characterization of
mizer of the objective function in the definition OfCoroIIary 9.4.
AGLqr()- Thus, due to convexity, the constraint e conclude this subsection, noting that by symmetry all
u < 0 is tight for the problem corresponding tothe results obtained here can be easily adapted (it suffices to

Atrqr(6), and substitute everywherg:=2, 2:=1, and = 1) to estimate
the overflow probability of the second queue and characterize
1T
max(AgLar(6), Acrar(9)) = Aax(0) + An(=6),  ihe most likely ways that it builds.
if u* > 125, (67)

But X. A COMPARISON

In this section we compare the overflow probabilities
achieved by the GPS and the GLQF policy.
[Aar (0 = uff) + Mgz (u) + Ap(~u)] Let = be an arbitrary work-conserving policy used to

1
0<us 2 .
’ allocate the capacity of the server to the two que@ésand

< Aa(f - “/3) + Az (u) + Ap(-u)] (2, and letll be the set of all work-conserving policies
_[a A 6 Let L' and L? denote the queue lengths ¢J' and ()?,
I T A 145 Tl /3 respectively, at an arbitrary time slot, when the system operates
=[Aa(6— uﬁ) + Ao (u) + Ap(—0 +uB)] e underr. Let us now defind™ the vector(87, 65 ) where
< [Au(0 = uf) + Agz(uw) + Ap(—0 + uf)]u=o T = lim %log P[L' > U]
IAA1(9)+AB(—9). and
_ , 7 = lim l1ogP[L2 > U]. (69)
In the second inequality above we have used the U—oo U

assumptionu* > 175 and convexity. Therefore, The GPS policy is a parametric policy with performance de-

combining it with (67) we obtain pending on the parametgt. To make this dependence explicit
I I we will be using the notation GR@, ). Also, the GLQF policy
max(Agror(9): Ador(9)) is a parametric policy with performance depending on the

parametep. For the same reason we will be using the notation
GLQK3). Special cases of a work-conserving policyare
the GP%¢;) policy, the GLQR?3) policy, the strict priority
+ Age(u) + AB(—u)]} to class 1 policy P, policy), and the strict priority to class 2
policy (P, policy). Using Theorems 9.1, 9.5, and Corollary 9.2
0 one can readily obtain the correspondiéf for the policies
= AcrLqr(8) if u* > 7 (68) GPS¢,), GLQF(3), Py, and P;.
It is intuitively obvious that
Case 2)0 < u* < 1%@ To conclude the proof we need
to show thatmax(Agqr(f), Acrgr(f)) is not o = <glgﬁ< 67 min 9’2’)
AGrqr(f) when the optimal solution, of the op-
timization problem appearing in the definition ofa

= max{AAl @)+ Ap(—6), inf [As(8—up)

AGLgr(0), is somei < 0. Let us, indeed, assume 6" = <min 67, max 972’).

. . . . well well

that this optimal solution is som& < 0. Then, for

all u € [0, 1{3) (hence foru*) we have In Fig. 6 we plotg©TS(¢1) as¢, varies in[0,1] and#SLQF ()

. . . . asf varies in[0, co). For simplicity the calculations were per-
Agrar(0) = [Aar(0 — 48) + A2 (4) + As(—0+48)]  formed with the arrival and service processes being Bernoulli
<[Aa(@—uf) + Aqz(u) + Ap(—0+uf)] (we saythata proceds\;;: € Z} is Bernoulli with parameter
< [Aa (8 — uB) + Az (u) + Ap(—u)] p, denoted byX ~ Ber(p), whenX; are i.i.d. andX; =1
with probability p and X; = 0 with probability 1 — p). Also,
where in the last inequality we have used thgor the calculations we used the expressions gy and

[

fact thatuw < - which implies [see also (35)] 6¢,; o given in Theorems 9.3 and 9.6, respectively, because

Ap(—u) > Ap(—0 + up). they were more efficient to perform numerically than the
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¢2 = (1—¢1). Thus, by Lemma 8.2, for al, # > 0 we have
that Ag(—6 + ¢pou) > Ag(—6+ ¢hu), which by Theorem 9.3
implies Agps(g,)(8) > Aaps(g))(6) for all 6. Therefore, by
convexity, foré¢ g, as it is defined in Theorem 9.3, we have
arsen) < farsi): =
A similar property is proven for the GLQF policy.
Lemma 10.3:If 3 < 3’ we have

elGLQF(,@) < elGLQF(,B’) and 92GLQF(,8) > QSLQF(,B’)'

Proof: Again we only prove the first relation. The second
can be obtained by a symmetrical argument. We use the
optimal control formulation of Section V-B. We argued there
that optimal trajectories have the form of Fig. 5(d) and (e),
with costinf, LA%) op(a) andinf, LAJS or(a), respectively.

Let us fix 8 and consider how the cost is affected by using
the policy with3’ = 3 + ¢, for smalle > 0.
Consider first trajectories of the form in Fig. 5(e). Note that

H IT*
we can rewriteA ] or 5)(a) as
1.4 1.6 1.8 2 2.2 24 26 28 3 3.2
AII* (a)
o GLQF(8)
e = inf _ [Afu (1) + Az (22) + Ap(23))].
Fig. 6. The performance“!>(¢1) of the GP$¢1) policy as¢; varies in +“’1:¢’Uj5&+ )
[0, 1], and the performancg“ Q' (%) of the GLQR 3) policy asg3 varies in e ;;2’1 @

[0,00), when Al ~ Ber(0.3), A% ~ Ber(0.2), and B ~ Ber(0.9).

. o We shall ShowAgT grsr) (@) 2 AGTqr(s(a) for all a > 0.
equivalent expressions in Theorems 9.1 and 9.5. Note tisume the contrary. Consider the optimal solution of the

o = garS) = gGLQF(=) and thaté™> = #SS(O) = problem corresponding t@ which satisfies the feasibility
geLQE(©), constraints
Fig. 6 indicates that the GLQF curve dominates the GPS
curve, i.e., the GLQF policy achieves smaller overflow proba- i —¢rs=a
bilities than the GPS policy. The question that arises is whether o +ah—ah =0 1+a)

this depends on the particular distributions and parameters
chosen in the figure or is a general property. In the sequel

we s_how that the latter is the case, that is, for all arrival_arw,e distinguish two cases¥ > 0 and ¢/ = 0. We provide
service processes that our analysis holds (process_es Sat'Sflé'Hgargument only for the first case. The second case can
Assumptions A, B, and C) the GLQF curve dominates g, handied similarly. Sincg,a > 0, at least one of the
GP.S curve. The |nFU|t|on behind this result is that the GLQE)”Ong holds: 2} > E[A}] or ), > E[A3] or x5 < E[B).
policy, which adaptively depends on the current queue 'engﬂﬁﬁspending on which one is the case, we can decrease

allocates capacity to the queue that builds up, thus achievi&gxé, or increaser, respectively, reducing the cost, until

smaller overflow probabilities than the GPS policy which i§ﬁ+$'2—$é — B(1+a). Thus, we have constructed a feasible

static. This suggests that when one has to deal with delg¥j tion of the problem corresponding fowith smaller cost

insensi'.[ive traffic _(i.e., when there are no delay constraintg),, AngFw,)(a). This contradicts our initial assumption.
GLQF is more suitable than GPS.

first f v def h h We conclude that by increasing to 3 we also increase the
Le_t us first formally define the ternhe GLQF curve optimal cost of trajectories having the form in Fig. 5(e).
dominates the GPS curve

If now an optimal trajectory has the form in Fig. 5(d), then
Definition 10.1: We say thathe GLQF curve dominates the b J y 9. 5(d)

GPS hen there d . ir of q it will still be the optimal, by convexity, whem is increased
curvewhen there does not exist a pairgf € [0, 1] an to . Thus, in this case, the optimal cost does not change.

A € [0, 00) satisfying#y"*) > TP and gFiEE) We summarize by considering how the cost is affected as
92GLQF(’8)- [ is increased from zero teco. At g = 0, possible optimal

In order to establish that the GLQF curve dominates thgsjectories have the form of Fig. 5(e). There is a threshold
GPS curve, we need to prove the three lemmata that followsalue 3 such that for all3 < 3 optimal trajectories have the

0< ¢ < 1.

Lemma 10.2:If ¢; < ¢} we have form of Fig. 5(e) with values increasing @sincreases from
geTS(#1) QGPS(qS’l) and §STS(L) < QGPS(qS’l) zero tof3. For all 3 >_/§, optimal trajectories have the form of
! =71 2 =72 ' Fig. 5(d) with slope3 and do not change &$increases from
Proof: We only prove the first relation. The second caf to oo. |

be obtained by a symmetrical argument. We use the result ofWe next prove a sufficient condition for the GLQF curve
Theorem 9.3. Note thap; < ¢} implies ¢, = (1 — ¢}) < dominating the GPS curve.
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Lemma 10.4:If for all 5 € [0,00) there existsp; € [0,1) wherez,;,j = 1,2,3,a solve the optimization problem cor-

such that responding to the overflow af! in mode one. Then, since
T, — ¢1xs > 11 — x3 = a Yoy, it is clear that for allp; the
91GPS(¢1) < HIGLQF('@) and 92GPS(¢1) < 92GLQF(,8) GPS policy will overflow@!. If we are in Case 1, then for
- - all ¢, the GPS policy will overflowQ?. If we are in Case
th ; 2, we have
en the GLQF curve dominates the GPS curve.
Proof: We use contradiction. Assume that the condition Yo — dys = a
given in the statement holds, but the GLQF curve does not
dominate the GPS curve. Then, by definition, there egist v~ (= ¢ys=a/f
and ¢, such that 0<¢<1
where y;,7 = 1,2,3,a,¢ solve the optimization problem

gOPS(E) o gGLAPW) gy GPS(Y) o (GLAF(),

> 0 corresponding to the overflow @? in mode two. Then, the
s GPS policy with¢; > 1 — ¢ will overflow Q2.
PS(¢1

By Lemma 10.2 all points withp; < ¢} have6, ) > Consider now Cases 3 and 4. We have

HQGPS(%) > HQGLQF('B,). Also, by the same lemma, all points

with ¢; > ¢ haved">(®) > g7 5 gELFE) This o1~ fos =a

contradicts our initial assumption. O z2— (1= ¢)rs =ap
We now have all the necessary tools to prove that the GLQF 0<9<1

curve dominates the GPS curve. . T
Theorem 10.5:Assuming that the arrival and service proyvhere %j,J = 1,2,3,a,¢ solve the optimization problem

cesses satisfy Assumptions A, C, and B, the GLQF Cur\(;(grresponding to the overflow @' in mode two. Then the
dominates the GPS curve T ’ GPS policy with¢; < ¢ will overflow Q2. In Case 3, for

Proof: Fix an arbitrarys. We will prove that there exists reasons explained in the previous paragraph, the GPS policy

. o ) .
¢, satisfying the condition of Lemma 10.4. It suffices to prov\év;\llgverflow @ forall ¢ If, finally, we are in Case 4, we
that for both queues and sugh, overflow with the GLQF3)

policy implies overflow with the GP&;) policy. Then, the yr— (1= ¢ ys =d

overflow probability of GLQFS) is a lower bound on the pO—

corresponding probability of GH&, ), i.e., it holds o 0< ‘Zj <1

P[LJGLQF(,B) > U] < P[LJGPs(qsl) > U]v J=12 where y;,5 = 1,2,3,4’,¢’ solve the optimization problem
corresponding to the overflow @? in mode two. Then the
which implies GPS policy with¢; > ¢’ will overflow Q2. To show that there
is at least one, that overflows both queues we need to show
guTS(@1) < gOLQEM)  gpg S8 < gGLAFE), ¢ = ¢'. To see that, notice that (by making the substitution
a :=pa’)
Since we have established that in both the GPS and the
GLQF case the overflow probability is equal to the probabiliti{ll,f pm yz—(l—irqlbf)ygza’ [Af (1) + A% (y2) + AR (ys)]
of overflowing according to one out of two scenarios, it yi—d'ya=a’ /8
suffices to establish the above only for these scenarios. In 0<¢'<1
parngular, we distinguish the following casgs dependmg on the_ 1 infl inf (A% (1) + Al (y2) + A% (s)].
possible modes of overflow for GL@P), which are described Baa yi—¢'ys=a’
in Section VI-B: v Jua=re
Case 1) Mode 1 for overflow of* and mode 1 for
overflow of (?;
Case 2) Mode 1 for overflow of* and mode 2 for
overflow of ?;
Case 3) Mode 2 for overflow of! and mode 1 for
overflow of ?;

Case 4) Mode 2 for overflow ofQ! and mode 2 for In this paper we considered a multiclass multiplexer with
overflow of Q2. segregated buffers for each service class. Under the GPS and

the GLQF policy, we have obtained the asymptotic (as the

buffer size goes to infinity) tail of the overflow probability

for each buffer. In the standatdrge deviationanethodology

1 — I3 =4a we provided a lower and matching (up to first degree of the
T2 < fa exponent) upper bound on the buffer overflow probabilities.

The right-hand side is exactly the problem corresponding to
the overflow ofQ! in mode two. O

Xl. CONCLUSION

In Cases 1 and 2, we have



334

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 3, MARCH 1998

We formulated the problem of calculating the maximune4] G. Kesidis, J. Walrand, and C. S. Chang, “Effective bandwidths for
overflow probability (over all scenarios that lead to overflow)

as an optimal control problem. The specifics of the policigss;
enter in the formulation of the control problem only througtfr6]
the system dynamics. Therefore, this approach can potenti gy]
be used to obtain the performance of other scheduling policies
as well. The optimal control formulation provides particulal28]
insight into the problem, as it yields an explicit and detailed

characterization of the most likely modes of overflow. We have9]
addressed the case of multiplexing two streams. The general

case of N streams remains an open problem.
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