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Call Admission Control and Routing in Integrated
Services Networks Using Neuro-Dynamic

Programming
Peter Marbach, Oliver Mihatsch, and John N. Tsitsiklis

Abstract—We consider the problem of call admission control
(CAC) and routing in an integrated services network that handles
several classes of calls of different value and with different
resource requirements. The problem of maximizing the average
value of admitted calls per unit time (or of revenue maximization)
is naturally formulated as a dynamic programming problem, but
is too complex to allow for an exact solution. We use methods
of neuro-dynamic programming (NDP) [reinforcement learning
(RL)], together with a decomposition approach, to construct
dynamic (state-dependent) call admission control and routing
policies. These policies are based on state-dependent link costs,
and a simulation-based learning method is employed to tune the
parameters that define these link costs. A broad set of experiments
shows the robustness of our policy and compares its performance
with a commonly used heuristic.

Index Terms—ART neural networks, communication system
control, communication system routing, dynamic programming,
Markov processes.

I. INTRODUCTION

WE CONSIDER a communication network consisting of
a set of nodes and a set of unidi-

rectional links , where each link has a a
total capacity of units of bandwidth. There is a set

of different service classes, where each class
is characterized by its bandwidth requirement , its average
call holding time , and the immediate reward (or value)

obtained whenever such a call is accepted. The bandwidth
requirement may reflect either the peak transmission rate
requested by class calls, or their “effective bandwidth” as de-
fined and extensively studied in the context of ATM networks
[25]. Furthermore, the reward is not necessary a mon-
etary one, but may reflect the importance of different classes
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and their desired quality-of-service (QoS) (blocking probabili-
ties). We assume that the calls arrive according to independent
Poisson processes with known rates for class calls
with origin and destination . We also assume
that the holding times of the calls are independent, exponentially
distributed, with finite mean , and in-
dependent of the arrival processes.

When a new call of class , with origin and destination
arrives, it can be either rejected (with zero reward) or it can be
admitted (with reward ). In order to accept it, we need to
choose a route out of a predefined list of possible routes from

to . Furthermore, at the time that the call is accepted, each
link along the chosen route must have at least units of un-
occupied bandwidth. The objective is to exercise call admission
control (CAC) and routing in such a way that the long term av-
erage reward is maximized. Ideally, this maximization should
take place within the most general class of state-dependent poli-
cies, whereby the admission decision and the route choice are
allowed to depend on the current state of the network.

The CAC defined earlier and routing problem have been
studiedextensively; seee.g., [10], [18]and the references therein.
It is naturally formulated as an average reward dynamic pro-
gramming problem, but is too complex to be solved exactly, and
suitable approximations have to be employed to compute control
policies. One proposed approach in this context is the reduced
load approximation (also called Erlang fixed point method) [5],
[10]. It relies on link independence and Poisson assumptions
which allow to decompose the network into link processes where
calls arrive according to independent Poisson processes. The
corresponding arrival rates model the thinned (by blocking on
other links) external traffic and are computed by iteratively
solvingasystem of fixedpointequations. Thisapproach has been
used to analyze routing schemes such as probabilistic routing
(alsocalledproportional routing) [5], [9], [16]anddynamicalter-
native routing with trunk reservation [7], [11], [12]. As its name
suggests, state independent probabilistic routing assigns routes
to calls at random according to a given probability distribution.
Using the concept of a state independent link cost (link shadow
price), gradient methods for tuning the routing probabilities can
be devised [5], [9], [16]. Probabilistic routing can be shown to
be asymptotically optimal, however in a “coarse sense”: optimal
routing schemes are sensitive to the model parameters, i.e.,
small modeling errors can severely degrade performance [26].
More robust, but also more difficult to analyze and optimize,
is the state-dependent dynamic alternative routing with trunk
reservation. In the case of a single service class, a decomposition
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approach, that splits the reward associated with a call into link
rewards, can be employed to compute state-dependent link costs
(shadow prices) and to tune the trunk reservation parameters
[11]. However, in the case of multiple service classes, a judicious
choice of the trunk reservation parameters, that lead to near
optimal performance, can be difficult. An application of this
approach isdescribed in [13], [14], fora relativelysmallproblem,
but can easily become intractable for larger networks. A variant
of this approach was proposed which uses measurements in the
network to determine the arrival rates associated with each link,
thus avoiding the computational burden of solving fixed point
equations. Similar to [11], a decomposition approach of the
call rewards can be employed to compute state-dependent link
costs and to optimize the policy. This method can again become
intractable unless further approximations, such as link state
aggregations, are employed. An application of this approach is
given in [6].

The link independence and Poisson assumptions play an
important role in the methods described earlier and allow
one to construct a simpler model of the network process and
to compute implied link costs (shadow prices). These costs
are then used to obtain an approximation of the true implied
network costs (derived from the differential reward function of
dynamic programming) and to optimize and implement a CAC
and routing policy. In this paper, we develop a new approach
which allows us to avoid the use of a reduced model, i.e.,
explicitly decomposing the network process into independent
link processes. We start with a dynamic programming formu-
lation (Section II) and then use simulation based approximate
dynamic programming [also called reinforcement learning
(RL) or neuro-dynamic programming (NDP)] [2], [21] to
construct an approximate differential reward function and to
optimize the policy (Section III). In the following, we will
use the term NDP for simulation-based approximate dynamic
programming. For these methods, performance guarantees
exist only for special cases (see [2]); however, recent case
studies illustrate their ability to successfully address large scale
problems. In particular, they have been applied to resources
allocation problems in telecommunication systems, such as the
channel assignment problem in cellular telephone systems [19],
the link allocation problem [17], and the single link admission
control problem with self similar traffic [4] or with statistical
quality of service constraints [3]. A successful application of
NDP relies crucially on the choice of a suitable (parametric)
architecture for the approximation of the differential reward
function: it should be rich enough (i.e., involve enough param-
eters) to approximate closely the differential reward function,
but also simple (i.e., involve not too many parameters) to limit
the “training time” to obtain a good approximation. Typically,
an approximation architecture is chosen by a combination of
analysis, engineering insight, and trial and error. Motivated by
the analysis carried out in connection with the reduced load
approach and its variants, we rely on a function which depends
quadratically on the number of active calls of each class on
each link and which leads to policies that rely on “trained”
state-dependent link costs. Furthermore, we decompose the call
reward into link rewards to allow a decentralized implementa-
tion of the optimization method and the resulting policies. We

apply this approach to a large network involving 62 links and
with 992 tunable parameters in our differential reward function
approximator. To assess the method, we compare our CAC
and routing policies with the “open shortest path first” (OSPF)
heuristic (Section IV-B and Section IV-C). We show that the
performance of our NDP policy is very robust with respect to
changing arrival statistics. To investigate the accuracy of the
quadratic approximator, we also provide a case study involving
a single link (Section IV-A).

The main contributions of the paper are the following.

a) We show that NDP can be applied to the CAC problem in
a manner that supports decentralized training and decen-
tralized decision making.

b) By using NDP, we are able to avoid the use of a reduced
model, as it was introduced in previous approaches
through the link independence and Poisson assumption.

c) We avoid the computational burden associated with the
evaluation of the link reward functions, as it was encoun-
tered in [6], [11].

II. DYNAMIC PROGRAMMING FORMULATION

We will now formulate the problem of CAC and routing as a
continuous time, average reward, finite-state dynamic program-
ming problem [1]. For any time, let be the number of
class calls that are currently active (have been admitted and
have not yet terminated) and which have been routed along route
. The state of the network at time consists of a list of the

numbers , for each and . The state space (the set
of all possible states) is defined implicitly by the requirements
that each be a nonnegative integer and that

where is the set of routes that use link. Even though the
process evolves in continuous time, we only need to consider
the state of the network at the times when certain events take
place. The events of interest are the arrivals of new call requests
and the terminations of existing calls. Note that the nature of an
event is completely specified by the class, origin-destination
pair , and if it corresponds to a call termination, the route

occupied by the call. We denote by the (finite) set of all
possible events.

If the state of the system isand event occurs, a decision
has to be made. If corresponds to an arrival, the set of possible
decisions consists of the possible routes (subject to the
capacity constraints and the current state of the network) and of
the rejection decision. If corresponds to a departure, there are
no decisions to be made, which amounts to letting be
a singleton. Given the present state of the network, an event

, and a decision , the network moves to a new
state which will be denoted by . The resulting reward will be
denoted by : if corresponds to a classarrival and

is a decision to admit along some route, then
; otherwise, .
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We define a policy to be a mappingwhose domain is the
set and which satisfies

We note that under any given policy, the state evolves as a
continuous time finite state Markov process. Letbe the time
of the th event, and let be the state of the system just prior
to that event. (This notation is equivalent to assuming thatis
a left continuous function of time.) We then define the average
reward associated with a policyto be

(1)

where . Under the assumption that for all
service classes the average call holding time is finite, the state
corresponding to an empty system, to be denoted by, is recur-
rent. For this reason, the limit in (1) exists, is independent of the
initial state and is equal to a deterministic constant with proba-
bility one.

A policy is said to be optimal if

for every other policy . We denote the average reward associ-
ated with an optimal policy as .

An optimal policy can be obtained, in principle, by solving
the Bellman optimality equation for average reward problems,
which takes the form

(2)

(3)

Here, stands for the time until the next event occurs and
is the expectation of given that the current state is.

Furthermore, stands for the expectation with respect to
the next event , and stands for the state right after the event,
which is a deterministic function of, , and the chosen deci-
sion . If is the cardinality of the state space, the Bellman
equation is a system of nonlinear equations in the

unknowns , , and . Because the stateis
recurrent under every policy, the Bellman equation has a unique
solution and the function , called the optimal differential
reward, admits the following interpretation: if we operate the
system under an optimal policy, then is equal to
the expectation of the difference of the total rewards (over the
infinite horizon) for a system initialized at, compared with
a system initialized at.

Once the optimal differential reward function is avail-
able, an optimal admission control and routing policy is
given by

(4)

This amounts to the following: whenever a new classcall
requests a connection, consider admitting it along a permissible

route, and let be the resulting successor state. We compute
the value of such a decision by adding the immediate reward

to the merit of . We pick a route
that results in the highest value and route the call accordingly
if that value is higher than the value of the current state;
otherwise, the call is rejected.

However, the dynamic programming approach is impractical
because the state spaceis typically so large that it is impos-
sible to compute, or even store, the optimal differential reward

for each state . This leads us to consider methods
that work with approximations to the function .

III. NDP SOLUTION

NDP is a simulation based approximate dynamic program-
ming methodology for producing near optimal solutions to large
scale dynamic programming problems. The central idea is to ap-
proximate and the function by a tunable scalarand an
approximating function , respectively, where is a tun-
able parameter vector. The structure of the functionis chosen
so that for any given and , is easy to compute. Once
the general form of the function is fixed, the next step
is to set and so that the resulting function provides
an approximate solution to Bellman’s equation. Any particular
choice of leads immediately to a policy , given by

(5)

This is similar to (4), which defines an optimal policy, except
that the approximation is used instead of .

There are two main ingredients in this methodology, to be
discussed separately in the sections that follow:

a) defining an “approximation architecture,” that is, the gen-
eral form of the function ;

b) developing a method, usually simulation based, for tuning
and .

A. Approximation Architecture

In defining suitable approximation architectures, one usually
starts with a process of feature extraction. This involves a fea-
ture vector , which is meant to capture those “features”
of the state that are considered most relevant to the decision
making process. Usually, the feature vector is handcrafted based
on available insights on the nature of the problem, prior expe-
rience with similar problems, or experimentation with simple
versions of the problem. Our choice of a feature vector will be
described shortly.

Given the choice of the feature vector, a commonly used ap-
proximation architecture is of the form , where is
a multilayer perceptron with input and internal tunable
weights (see, e.g., [8]). This architecture is powerful because
it can approximate arbitrary functions of . The drawback,
however, is that the dependence onis nonlinear, and tuning
can be time consuming and unreliable.

An alternative is provided by a linear feature-based approxi-
mation architecture, in which we set
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Here, the superscript stands for transpose, and the dimension
of the parameter vectoris set to be equal to the number of fea-
tures—the dimension of the feature vector . Because of the
linear dependence on, the problem of tuning resembles the
linear regression problem, and is generally much more reliable.

Let be the number of class calls that are active and
which have been assigned to routes that go through link. We
view the variables and the products of the form
as features, and we will work with a linear approximation archi-
tecture of the form

(6)

Note that for this architecture the number of tunable parameters
is equal to

where is the number of unidirectional links in the network and
is the number of service classes, i.e., the “complexity” of the

architecture grows linear in the number of links and quadratic
in the number of service classes.

A main reason for choosing a quadratic function of the vari-
ables is that it led to essentially optimal solutions to single
link problems (see Section IV-A). Note that we have only in-
cluded those products associated with a common
link . There are two reasons behind this choice: it opens
up the possibility of a decomposable training algorithm (cf. Sec-
tion III-C). In addition, it results in policies with an appealing
decentralized structure, which we now discuss.

Let be the variables associated with the current state
of the network and suppose thatcorresponds to an arrival of
class . Let us focus on a particular decision ,
which assigns this call to route, resulting in a new state
and variables . Note that if

, and , otherwise. With some straightforward
algebra, the merit of this decision, in comparison
to rejection, is given by

The corresponding policy [cf. (5)] amounts to choosing
a route for which is largest, using this route if

, and rejecting the call if
. This is equivalent to assigning a link cost (or shadow price)

(7)

to each link, and using these link costs for admission control and
shortest path routing. Note that these link costs (shadow prices)
(7) are state dependent and reflect the instantaneous congestion
on each link which is in the spirit of [6], [11]. However, the no-
tion of a link cost results here from a specific choice of a approx-
imation architecture, and not from an explicit decomposition of
the network process into independent link processes as in [6],
[11].

The family of policies resulting from our approximation
architecture can provide a fair amount of flexibility. It remains
to assess:

a) whether there are systematic methods for finding good
policies within this family; this is the subject of the next
section;

b) whether they lead to significant performance improve-
ment in comparison to more restricted families of poli-
cies; this is to be assessed experimentally in Section IV.

B. The Training Algorithm

There are several methods that can be used to tune the pa-
rameter , most of which rely on simulation runs (or on online
observations of an actual system). We will use a variant of one of
the most popular methods, namely, Sutton’s TD(0) (“temporal
differences”) algorithm [20]. The standard TD(0) algorithm has
been designed for discrete time problems with a discounted cri-
terion (or for an undiscounted total reward criterion in systems
that eventually terminate), where the goal is to maximize the so
called discounted reward-to-go of state, given by

simultaneously for every state of the system. Here,
is a discount factor. So, some modifications are necessary to
apply TD(0) to our problem. The first one, going from discrete
to continuous time is fairly straightforward. The second one,
going from a discounted to an average reward criterion, is much
more substantial, since average reward dynamic programming
theory and algorithms are generally more complex. We will use
the recently developed temporal difference method for average
reward problems [24], which preserves the same convergence
properties and error guarantees of its discounted counterpart
[23]. It should be noted that this is the first time that this method
is applied to an engineering problem.

In the simplest version of TD(0), the controlled Markov
process is simulated under a fixed policy. Let be the
time of the th event , which finds the system at state ,
and let be the resulting decision. At such an
event time, the vector and the scalar are updated according
to

(8)

(9)
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where the “temporal difference” is defined by

and where and are small step size parameters. The only
difference from discrete time average reward TD(0) is in the
factor of that multiplies and which, in turn, is due
to the factor in Bellman’s equation. Note that with our
linear approximation architecture , we have

.
Under a fixed policy, and under the standard diminishing step

size conditions, converges to the average reward , and
converges to a limiting vector such that provides

a “good” approximation of . Here, is a function de-
fined similar to , but in a context in which there is a single
possible decision at each state, the one prescribed by the policy

. Furthermore, the approximation is “good” in the sense that
the approximation error , measured under a suit-
able norm, is of the same order of magnitude as the best possible
approximation error under the given approximation architecture
[24].

One can start with a policy, run TD(0) until it converges, use
the resulting limiting value of to define a new policy according
to (5), and then repeat. This method has some (weak) theoretical
guarantees [2], but it is common practice to keep changing the
underlying policy with each update of the parameter vector.
This optimistic TD(0) method is completely described by the
update rule (8) together with

(10)

where is the successor state that results from , and .
Even thoughoptimistic TD(0) has no convergence guaran-

tees, its discounted variant has been found to perform well in a
variety of contexts [19], [22], [27].

C. A Decomposition Approach

The algorithm described in the preceding section can be very
slow to converge, especially for networks with a substantial
number of links. This led us to consider a decomposition ap-
proach that breaks the reward associated with a call into link
rewards in the spirit of [6], [11], and which led to much shorter
training times. This improvement in terms of training time is es-
sential for applying NDP to large networks (see Section IV-C).

For any link , consider the local “state” .
Of course, this is not a state in the true sense of the word be-
cause, in general, it does not evolve as a Markov process, but
will be treated to some extent as if it were. We decompose the
immediate reward associated with theth event,
into a sum of rewards attributed to each link

In particular, whenever a new call (say, of class) is routed
over a route that contains the link, the immediate reward
associated with linkis set to , where is the number

of links along route . For all other events, the immediate reward
associated with link is equal to zero.

Let us fix a policy , let be the average reward at-
tributed to link , and note that

For each link, we introduce a scalar , which is meant to be
an estimate of , as well an approximation architecture

of the form

where is the vector of parameters , , and
, associated with link. Note that

and we are therefore dealing with the same approximation ar-
chitecture as in Section III-A. The key difference is that we will
not update according to (8), but will use an update rule which
is local to each link. The local TD(0) algorithm, for linkis
given by

where

(11)

and are small step size parameters, andis the time
of the th event associated with link. Here, we say that
an event is associated with linkif it can potentially result in a
change of ; this is the case if we have a departure of a call
that was using link, or if link is part of a route in the prede-
fined list of possible routes connecting the current origin-desti-
nation pair. This update rule is identical to the ordinary TD(0)
update under the assumption that is a Markov process that
receives rewards at the times of events

associated with link. Of course, is not Markov because its
transitions are affected by the global state. Although the up-
date rules for different links are decoupled, they are to be car-
ried out in the course of a single simulation of the entire system,
which accurately reflects all dependencies involved. This is to
be compared with [6], [11], where the entire system was explic-
itly decomposed into independent link processes, making
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truly Markov, however, at the expense of ignoring certain de-
pendencies and introducing an additional modeling error.

IV. EXPERIMENTAL RESULTS

In this section, we report the results obtained in a broad
set of experiments. We compare the policy obtained through
NDP with the commonly used heuristic OSPF. For every
pair of source and destination nodes, OSPF orders the list of
predefined routes. When a new call arrives, it is routed along
the first route in the corresponding list that does not violate the
capacity constraint. If no such route exists, the call is rejected.
For a single link problem, OSPF reduces to the naive policy
that always accepts an incoming call, as long as the required
bandwidth is available.

A. Single Link Problems

Our first set of experiments involved multiple classes, but a
single link. They were carried out in order to identify potential
difficulties with this approach and to validate the promise of the
quadratic approximation architecture. Naturally, with a single
link, no decomposition had to be introduced. Two case studies
were carried out involving three and ten service classes, respec-
tively. For the latter case, three different scenarios were consid-
ered corresponding to a highly, medium, and lightly loaded link,
respectively. A more detailed account of these experiments and
the results obtained can be found in [15].

The experiments were carried out using TD(0) for discounted
problems. The performance of the resulting policies was evalu-
ated on the basis of the average reward criterion. The discount
factor was chosen to be very small, which makes the discounted
problem essentially equivalent to an average reward problem.
The evaluation of the average reward is based on a trajectory of
4 time steps.

Besides TD(0) with a quadratic approximation architecture,
we also used TD(0) with a multilayer perceptron (MLP) [8].
Furthermore, for the smaller problem, which only involved three
classes, we also obtained an optimal policy through exact dy-
namic programming (DP) and used it as a basis of comparison.
A comparison was also made with a naive policy that always
accepts an incoming call, as long as the required bandwidth is
available. By inspecting the nature of the best policy obtained
using NDP, we observed that only some of the customer classes
were ever deliberately rejected, and we were then able to use this
knowledge to handcraft a trunk reservation (threshold) policy
that attained comparable performance. However, in the absence
of adequate tools for tuning trunk reservations parameters (as
it is the case for large networks), the use of NDP can become
very attractive. In addition, this illustrates that the quadratic ap-
proximator provides an adequate architecture for the differential
reward function of a single link.

The parameters and results of the case studies are given in
Tables I–V. One conclusion from these experiments is that NDP
led to significantly better results than the heuristic “always
accept” policy, except for the case of a lightly loaded link and
ten classes, where the performance of both approaches was
the same. (This is understandable because for a lightly loaded
system “interesting” events such as blocking are too rare to be

TABLE I
CASE STUDY FOR THREE SERVICE CLASSES

AND A LINK WITH A CAPACITY OF 12 UNITS

TABLE II
PROBLEM DATA OF THE CASE STUDY FOR TEN SERVICE CLASSES ON

A LINK WITH A CAPACITY OF 600 UNITS

TABLE III
CASE STUDY FOR TEN SERVICE CLASSES AND AHIGHLY LOADED LINK WITH A

CAPACITY OF 600 UNITS

TABLE IV
CASE STUDY FOR TEN SERVICE CLASSES AND AMEDIUM LOADED LINK WITH

A CAPACITY OF 600 UNITS

able to fine tune the policy.) In particular, for all cases, except
for the one just mentioned, the rewards associated with calls
that were blocked or deliberately rejected (these are the lost
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TABLE V
CASE STUDY FOR TEN SERVICE CLASSES AND ALIGHTLY LOADED LINK WITH

A CAPACITY OF 600 UNITS

Fig. 1. Telecommunication network consisting of four nodes and 12
unidirectional links.

TABLE VI
SERVICE CLASSES ANDARRIVAL RATES FOR THEFOUR-NODE NETWORK

rewards), were reduced by 10%–35%. For the case of three
classes, essentially optimal performance was attained. It was
also seen that the MLP architecture did not lead to performance
improvements, and this was an important reason for not using
it in larger problems.

B. A Four-Node Network

In thissection,wepresentexperimental resultsobtained for the
case of an integrated services network consisting of four nodes
and12unidirectional links.Therearetwodifferentclassesoflinks
with a total capacity of 60 and 120 units of bandwidth, respec-
tively (indicated by thick and thin arrows in Fig. 1). We assume
a set of three different service classes. The corre-
sponding parameters are given in Table VI. Note that the calls of
type 3 are much more valuable than the one of type 1 and 2. Fur-
thermore, for each pair of source and destination nodes, the list of
possibleroutesconsistsof threeentries: thedirectpathandthetwo
alternative two-hop routes.

This case study is characterized by a high traffic load and
by calls of one service class having a much higher immediate
reward than calls of the other types. Clearly, for this case, a
good CAC and routing policy should give “priority” to calls of

Fig. 2. “Empirical” average reward per time unit during the whole training
phase of 10 steps (solid) and during shorter time windows of 10steps
(dashed).

the service class with the highest reward. We chose this setting
to determine the potential of our optimization algorithm, i.e., to
find out if NDP indeed discovers a control policy which reserves
bandwidth for calls of the most valuable service type.

This experiment was carried out using TD(0) for discounted
problems combined with the decomposition approach. How-
ever, the performance of the resulting policies was evaluated on
the basis of the average reward criterion. Our value function ap-
proximator contains 120 tunable parameters. There are approx-
imately 1.6 different link state (feature) configurations.
Note that the cardinality of the underlying state space is even
higher. We make the following observations.

a) Employing the decomposition approach did not affect the
the performance of our final NDP policy and reduced the
training time by a factor of two. (Note that the decom-
posed optimization updates the parameters corresponding
to only five links instead of twelve at every time step.)
This was an important reason for using it in larger prob-
lems (see Section IV-C).

b) In order to assure convergence of the discounted TD(0)
method, we had to carefully handcraft some of the initial
parameter values of our function approximator. In par-
ticular, the magnitude of the parameter associated
with each link turned out to be critical. This procedure
becomes rapidly impractical as the number of links in-
creases. Larger problems can be solved much easier using
average reward algorithms which are less sensitive in this
respect (see Section IV-C).

c) For this case study, we could significantly improve the per-
formance of the resulting policy by enforcing an explicit
exploration of the state space during the training. At each
state, with probability , we apply a random ac-
tion, instead of the action recommended by the current
value function, to generate the next state in our training
trajectory. However, the successor state that is used

in update rule (11) is still chosen according to the greedy
action given in (10). The importance of using a certain



204 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 2, FEBRUARY 2000

Fig. 3. Four-node network: Comparison of the average rewards and rejection rates of the NDP and OSPF polices.

Fig. 4. Four-node network: comparison of the routing behavior of the NDP and OSPF policies.

amount of exploration in connection with NDP methods
is well known (see for example [2]).

The results of the case study is given in Fig. 2 (training phase),
Fig. 3 (performance), and Fig. 4 (routing behavior). We give
here a summary of the results.

1) Training Phase:Fig. 2 shows the performance improve-
ment during the optimization phase. Here, the “empirical”
average reward of the NDP policy (computed by averaging the
rewards obtained during the whole training and during shorter
time window of 10 steps) is depicted as a function of the training
steps.Although thisaveragereward increasesduring the training,
it does not exceed 141, the average reward of the heuristic OSPF.
This isdue to thehighamountofexploration in the trainingphase.
We obtained the final control policy after 10iteration steps.

2) Performance Comparison:We used simulated trajecto-
ries of 10 time steps to evaluate our policies. The policy ob-
tained through NDP gives an average reward of 212, which
as about 50% higher than the one of 141 achieved by OSPF.
Furthermore, the NDP policy reduces the number of rejected
calls for all service classes. The most significant reduction is
achieved for calls of service class 3, the service class, which

has the highest immediate reward. Fig. 3 also shows that the
average reward of the NDP policy is close to the potential av-
erage reward of 242, which is the average reward we would ob-
tain if all calls were accepted. This leaves us to believe that the
NDP policy is close to optimal. Fig. 4 compares the routing be-
havior of the NDP control policy and OSPF. While OSPF routes
about 15%–20% of all calls along one of the alternative two-hop
routes, the NDP policy uses alternate routes for calls of type 3
(about 25%) and routes calls of the other two service classes
almost exclusively over the direct route. This indicates, that the
NDP policy uses a routing scheme, which avoids two-hop routes
for calls of service class 1 and 2, and which allows us to use net-
work resources more efficiently.

C. A 16-Node Network

In this section, we present experimental results obtained for
a network consisting of 16 nodes and 62 unidirectional links
(see Fig. 5). The network topology is taken from [7]. The net-
work consists of three different classes of links with a capacity
of 60, 120, and 180 units of bandwidth, respectively. We as-
sume four different service classes. Table VII summarizes the
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Fig. 5. Telecommunication network consisting of 16 nodes and 62
unidirectional links.

TABLE VII
SERVICE CLASSES FOR THE16-NODE NETWORK

Fig. 6. “Empirical” average reward obtained during the training as a function
of training steps. The performance initially improves and then suddenly
deteriorates.

corresponding bandwidth demands, average holding times, and
immediate rewards. The table of arrival rates is also taken from
[7]. However, for our experiments we rescaled them by a factor
of two. The list of accessible routes consists of a maximum of
six minimal hop routes for each pair of source and destination
nodes. Routes with an equal number of hops are ordered by their
absolute path length (in miles) which is also reported in [7].

For this experiment, there are approximately 1.4 dif-
ferent link state (feature) configurations and 992 tunable param-
eters. The results of the case study are summarized by Figs. 6
(training), 7 (performance), 8 (routing), and 9 (robustness).

We make the following observations.

a) Without using the decomposition approach, no substantial
improvement over the initial policy is achieved within a
reasonable amount of computation time (24 h, say). This

illustrates the importance of the decomposition approach
in applying NDP to the CAC and routing problem.

b) Discounted reward algorithms failed due to their critical
dependence on initial parameter values (see Section
IV-B). This difficulty does not arise withaveragereward
algorithms.

c) Instabilities can occur during the training phase, even
when exploration is employed (see the discussion below).

d) Our NDP policies are very robust with respect to changes
of the underlying arrival statistics.

1) Training Phase:Fig. 6 shows the “empirical” average re-
ward of the NDP policy (computed by averaging the rewards
obtained during the simulation run) as a function of the training
steps. In contrast to the four-node example, the NDP policy does
not converge towards a final policy better than OSPF, although
the average reward significantly improved during the first 4
training steps. Afterwards, a sudden performance breakdown
occurs, from which the system never recovers. This loss of sta-
bility did not disappear, even if we introduce explicit exploration
during the training. For the subsequent performance comparison
between NDP and OSPF, we pick the best policy (given by the
parameter values just before the loss of stability) generated in
the course of the algorithm, not the last one.

2) Performance Comparison:The policies are empirically
evaluated based on simulated trajectories of 10time steps. The
OSPF policy almost exclusively routes all calls over the shortest
path. This leads to an average reward of about 4254. The rate of
rejected calls is positive for all service classes. The two most
valuable service classes 3 and 4 receive the highest rejection
rate. In contrast, the NDP policy comes up with a very different
routing scheme that uses alternative paths for all types of ser-
vices. Now, the rejection rates for calls of type 1, 3 and 4 vanish
whereas that for service class 2 increases. The NDP policy re-
jects these calls in a strategic way, i.e., NDP is not forced to
do so by the capacity constraint. Instead, it explicitly reserves
bandwidth for the most valuable calls of type 3 and 4. The av-
erage reward of 4349 obtained through the NDP policy is about
2.2% higher than the one achieved by OSPF. While this might
appear to be a small improvement, it has to be viewed in per-
spective: even if we could achieve the potential average reward
(which is 4438) by accepting every arriving call, the reward
would only increase by 4.3%. Thus, the 2.2% improvement in
rewards, is a substantial fraction of the best possible improve-
ment. In fact, NDP reduces the lost average reward (potential av-
erage reward minus actual average reward) by about 52% com-
pared with OSPF. Note that for this type of problems, the lost
average reward is a more meaningful performance measure than
the average reward. For example, if we have a single link and a
single service class, it coincides with the blocking probability
(rejection rate), which is the generally accepted performance
metric. Blocking probabilities in well-designed systems are gen-
erally small, and an improvement from, say, 4% to 2% is gener-
ally viewed as substantial, even though it only represents a 2%
increase of calls accepted.

3) Robustness:We applied our best policy obtained through
training under the arrival statistics mentioned earlier to prob-
lems with randomly changed arrival rates in order to show the
robustness of NDP policies. In particular, each arrival rate is
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Fig. 7. 16-node network: comparison of the average rewards and rejection rates of the NDP and OSPF policies.

Fig. 8. 16-node network: comparison of the routing behavior of the NDP and OSPF policies.

multiplied by a factor , where is indepen-
dently drawn from a uniform distribution. An arrival rate is set
to zero, if happens to be negative. We carried out a set
of experiments by varying the magnitude in steps of
0.1, which amounts to rather strong perturbations of the traffic
statistics. Fig. 9 shows the result of these experiments. The mag-
nitude of the relative perturbations of the arrival rates is de-
picted against the relative lost reward defined as

Here, , , and denote the potential average
reward, the NDP policy and the OSPF policy, respectively. The
experiments show, that our NDP policy is indeed very robust

against changes in the arrival rates. There is only one out of
twenty experiments where the NDP policy happened to be worse
then OSPF. (We did not average several experiments with equal
perturbation parameter.) For all other arrival statistics the
NDP policy still outperforms OSPF with a relative lost reward
between 25% and 70%.

V. CONCLUSION

The CAC and routing problem for integrated service net-
works is naturally formulated as an average reward dynamic
programming problem, but with a very large state space. Tradi-
tional dynamic programming methods are computationally in-
feasible for such large scale problems. We use neuro-dynamic
programming, based on the average reward TD(0) method of
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Fig. 9. Relative lost reward of the NDP policy applied to networks with
randomly changed arrival statistics.

[24], combined with a decomposition approach that views the
network as consisting of decoupled link processes. This decom-
position has the advantage that it allows for decentralized deci-
sion making and decentralized training, which reduces signifi-
cantly the training time. We have presented experimental results
for several example problems of different sizes. The case study
involving a 16-node network shows that NDP can lead to sophis-
ticated control policies involving strategic call rejections, which
are difficult to obtain through heuristics.

Compared with the heuristic OSPF, the NDP policy reduces
the lost average reward by 50% (heavily loaded four node net-
work), 52% (lightly loaded 16-node network), and (except for
one out of twenty experiments) by 20%–70% (16-node network
under different loads). This illustrates that NDP has the poten-
tial to significantly improve performance over a broad range of
network loads.

Concerning the practical applicability of this general
methodology, there are two somewhat distinct issues. The
first is whether dynamic policies based on state-dependent
costs (depending linearly on the variables ) can lead to
significant performance improvements. Our results suggest
that this is indeed the case, although a comparison with alter-
native policies (such as dynamic alternative routing with trunk
reservation) remains to be made. A somewhat related issue
is whether efficient performance evaluation tools are possible
(based on ideas similar to the reduced load approximation, that
do not involve simulation) which apply to policies of the form
considered in this paper.

The second issue refers to computational requirements. Sim-
ulation based methods such as TD can be slow. For example, the
computation times for our different experiments ranged from
one to four hours of CPU time on a Sun Sparc 20 workstation.
On the other hand, once we can see promise in an application do-
main, a variety of ways of improving speed can be considered.
Besides optimizing the code, these could include batch linear
least squares methods for tuning(to replace small step size
incremental training), or the use of a smaller set of tunable pa-
rameters after identifying those “features” that are most critical
for improved performance. Nevertheless, it seems that NDP is

best suited as a tool for offline rather than online optimization
of the CAC and routing policy.

It should be noted that while the (offline) training time of the
NDP policy can be in the order of minutes or hours, the “com-
plexity” of implementing (online) a NDP policy (for a fixed pa-
rameter vector) is very similar to the one of OSPF, i.e., the “cost”
of a route can be determined by simply adding up the corre-
sponding “link shadow prices,” which are given by a quadratic
functions.
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