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Call Admission Control and Routing in Integrated
Services Networks Using Neuro-Dynamic
Programming

Peter Marbach, Oliver Mihatsch, and John N. Tsitsiklis

Abstract—We consider the problem of call admission control and their desired quality-of-service (QoS) (blocking probabili-
(CAC) and routing in an integrated services network that handles  ties). We assume that the calls arrive according to independent
several classes of calls of different value and with different Poisson processes with known rates(m) for classm calls

resource requirements. The problem of maximizing the average = . L U
value of admitted calls per unit time (or of revenue maximization) with origin ¢ € A\ and destinatiory € . We also assume

is naturally formulated as a dynamic programming problem, but  thatthe holding times of the calls are independent, exponentially
is too complex to allow for an exact solution. We use methods distributed, with finite mean /»(m), m = 1, ..., M and in-

of neuro-dynamic programming (NDP) [reinforcement learning dependent of the arrival processes.

(RL)], together with a decomposition approach, to construct When a new call of class:, with origin i and destinatior

dynamic (state-dependent) call admission control and routing - it be eith ‘ected (with d it b
policies. These policies are based on state-dependent link costs?rr'ves' it can be either rejected (with zero reward) or it can be

and a simulation-based learning method is employed to tune the admitted (with reward:(rm)). In order to accept it, we need to
parameters that define these link costs. A broad set of experiments choose a route out of a predefined list of possible routes from

shows the robustness of our policy and compares its performance ; to ;. Furthermore, at the time that the call is accepted, each
with a commonly used heuristic. link along the chosen route must have at Iéést) units of un-
Index Terms—ART neural networks, communication system occupied bandwidth. The objective is to exercise call admission
control, communication system routing, dynamic programming, control (CAC) and routing in such a way that the long term av-
Markov processes. erage reward is maximized. Ideally, this maximization should
take place within the most general class of state-dependent poli-
|. INTRODUCTION cies, whereby the admission decision and the route choice are
owed to depend on the current state of the network.
The CAC defined earlier and routing problem have been
studied extensively; seee.g.,[10], [18] and the referencestherein.
It is naturally formulated as an average reward dynamic pro-
gramming problem, but is too complex to be solved exactly, and
| . ! : ) ) suitable approximations have to be employed to compute control
is characterized by its bandwidth requiremfab), its average olicies. One proposed approach in this context is the reduced

call holding timel /v (m), and the immediate reward (or value ad a L ) .
. . . pproximation (also called Erlang fixed point method) [5],
c(m) obtained whenever such a call is accepted. The bandwi 1'6] It relies on link independence and Poisson assumptions

requirement(rn) may reflect either the peak transmission ra hich allow to decompose the network into link processes where

fr_eqt(;jestedd b){[ cIas:& (I:a”? ((j)_r tge_lrtﬁffecuvte btan?X\VTl?\}Ih atswdel'(calls arrive according to independent Poisson processes. The
g‘: Ie:m thex enswet?]/ studied In the contex ° networ éorresponding arrival rates model the thinned (by blocking on
[25]. Furthermore, the rewa’d(@ IS Not necessary a mon- o links) external traffic and are computed by iteratively
etary one, but may reflect the importance of different class

§8Iving asystem of fixed pointequations. This approach has been
used to analyze routing schemes such as probabilistic routing
(also called proportional routing) [5], [9], [16] and dynamic alter-
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approach, that splits the reward associated with a call into liapply this approach to a large network involving 62 links and
rewards, can be employed to compute state-dependent link cogth 992 tunable parameters in our differential reward function
(shadow prices) and to tune the trunk reservation parametapproximator. To assess the method, we compare our CAC
[11]. However, in the case of multiple service classes, a judicioand routing policies with the “open shortest path first” (OSPF)
choice of the trunk reservation parameters, that lead to né@uristic (Section IV-B and Section IV-C). We show that the
optimal performance, can be difficult. An application of thigperformance of our NDP policy is very robust with respect to
approachisdescribedin[13], [14], forarelatively small problenchanging arrival statistics. To investigate the accuracy of the
but can easily become intractable for larger networks. A variagiadratic approximator, we also provide a case study involving
of this approach was proposed which uses measurements inatgingle link (Section IV-A).

network to determine the arrival rates associated with each link,The main contributions of the paper are the following.

thus avoiding the computational burden of solving fixed point gy We show that NDP can be applied to the CAC problem in
equations. Similar to [11], a decomposition approach of the 3 manner that supports decentralized training and decen-
call rewards can be employed to compute state-dependent link  {rgjized decision making.

costs and to optimize the policy. This method can again becomey) By using NDP, we are able to avoid the use of a reduced
intractable unless further approximations, such as link state = model, as it was introduced in previous approaches
aggregations, are employed. An application of this approachis  through the link independence and Poisson assumption.
givenin [6]. c) We avoid the computational burden associated with the

~ The link independence and Poisson assumptions play an  evaluation of the link reward functions, as it was encoun-
important role in the methods described earlier and allow  tered in [6], [11].

one to construct a simpler model of the network process and

to compute implied link costs (shadow prices). These costs

are then used to obtain an approximation of the true implied II. DYNAMIC PROGRAMMING FORMULATION

network costs (derived from the differential reward function of

dynamic programming) and to Optimize and imp|ement a CAC We will now formulate the prOblem of CAC and rOUting as a
and routing policy. In this paper, we develop a new approagﬁntinuous time, average reward, finite-state dynamic program-
which allows us to avoid the use of a reduced model, i.dNing problem [1]. For any time letn.(r, m) be the number of
explicitly decomposing the network process into independeffssm calls that are currently active (have been admitted and
link processes. We start with a dynamic programming formlhlave not yet terminated) and which have been routed along route
lation (Section 1I) and then use simulation based approximateThe stater; of the network at time consists of a list of the
dynamic programming [also called reinforcement learningUmberse(r, m), for eachr andm. The state spacg (the set
(RL) or neuro-dynamic programming (NDP)] [2], [21] toOf all possible states) is defined implicitly by the requirements
construct an approximate differential reward function and tbat eachu;(r, m) be a nonnegative integer and that

optimize the policy (Section IlI). In the following, we will

use the term NDP for simulation-based approximate dynamic

programming. For these methods, performance guarantees Z Z ne(r, m)b(m) < B(I), vie L

exist only for special cases (see [2]); however, recent case ,cr() mcm

studies illustrate their ability to successfully address large scale

problems. In particular, they have been applied to resourcebereR(!) is the set of routes that use lidkEven though the
allocation problems in telecommunication systems, such as fitecess evolves in continuous time, we only need to consider
channel assignment problem in cellular telephone systems [118 state of the network at the times when certain events take
the link allocation problem [17], and the single link admissioplace. The events of interest are the arrivals of new call requests
control problem with self similar traffic [4] or with statistical and the terminations of existing calls. Note that the nature of an
quality of service constraints [3]. A successful application aventis completely specified by the classorigin-destination
NDP relies crucially on the choice of a suitable (parametrigair (¢, j), and if it corresponds to a call termination, the route
architecture for the approximation of the differential reward occupied by the call. We denote 8y the (finite) set of all
function: it should be rich enough (i.e., involve enough paranpossible events.

eters) to approximate closely the differential reward function, If the state of the system isand event occurs, a decision

but also simple (i.e., involve not too many parameters) to lintitas to be made. § corresponds to an arrival, the set of possible
the “training time” to obtain a good approximation. Typicallydecisiond/(w, «) consists of the possible routes (subject to the
an approximation architecture is chosen by a combination cdpacity constraints and the current state of the network) and of
analysis, engineering insight, and trial and error. Motivated lilye rejection decision. lf corresponds to a departure, there are
the analysis carried out in connection with the reduced load decisions to be made, which amounts to letlifig:, w) be
approach and its variants, we rely on a function which depenasingleton. Given the present state of the netwgrkn event
quadratically on the number of active calls of each class aen and a decision. € U(x, w), the network moves to a new
each link and which leads to policies that rely on “trainedstate which will be denoted by . The resulting reward will be
state-dependent link costs. Furthermore, we decompose the datioted by(z, w, u): if w corresponds to a class arrival and
reward into link rewards to allow a decentralized implementa-is a decision to admit along some route, thgm, w, u) =

tion of the optimization method and the resulting policies. We(m); otherwise g(z, w, u) = 0.
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We define a policy to be a mappingwhose domain is the route, and let:’ be the resulting successor state. We compute

setS x €2 and which satisfies the value of such a decision by adding the immediate reward
g(z, w, u) = c(m) to the merith*(z") of «/. We pick a route
pz, w) € Uz, w), Vo €S, we that results in the highest value and route the call accordingly

We note that under any given poligy the stater; evolves as a if that value is higher than the valué (z) of the current state;

continuous time finite state Markov process. kgbe the time Otheérwise, the call is rejected. _ . _
of the kth event, and let,, be the state of the system just prior HOWEVer, the dynamic programming approach is impractical

to that event. (This notation is equivalent to assumingthas Pecause the state spages typically so large that it is impos-
ible to compute, or even store, the optimal differential reward

a left continuous function of time.) We then define the averai. ! ) -
*(z) for each state: € S. This leads us to consider methods

reward associated with a poligyto be X ~ x
that work with approximations to the functiart.
N—-1

> glwe, wi, ur,) ) Ill. NDP SOLUTION
k=0

. 1
) = Jim
NDP is a simulation based approximate dynamic program-
ming methodology for producing near optimal solutions to large
Wle dynamic programming problems. The central idea s to ap-
roximatev* and the functiork*(-) by a tunable scalarand an
%proximating functionﬁ(-, ), respectively, wherd is a tun-
2ble parameter vector. The structure of the functios chosen
so that for any given: and®é, B(a:,ﬂ) is easy to compute. Once
the general form of the functioh(-, -) is fixed, the next step
o(p*) > v(p) is to setd and® so that the resulting functioh(-, 6) provides
an approximate solution to Bellman’s equation. Any particular
for every other policy:. We denote the average reward assocthoice off leads immediately to a policy?, given by
ated with an optimal policy,* asv*.

wherew;, = p(xs,, we, ). Under the assumption that for all

corresponding to an empty system, to be denoted, liyrecur-
rent. For this reason, the limit in (1) exists, is independent of t
initial state and is equal to a deterministic constant with prob
bility one.

A policy p* is said to be optimal if

An optimal policy can be obtained, in principle, by solving Pz, w) = arg max [g(7, w, u) + h(z', 6)]. (5)
the Bellman optimality equation for average reward problems, ucl(@,w)
which takes the form This is similar to (4), which defines an optimal policy, except
x x that the approximatioh(z’, #) is used instead of(z’).
E. h LN T . .
BT 4 () . There are two main ingredients in this methodology, to be
= Ew{uelgfl;fw)[g(% w,u) +h (@]} w €5 (2) giscussed separately in the sections that follow:
a) defining an “approximation architecture,” that is, the gen-
eral form of the functioriz(-, -);
h*(2) = 0. (3)  b) developing a method, usually simulation based, for tuning

Here, 7 stands for the time until the next event occurs and ¢ and.

L. {r|z} is the expectation of given that the current stateds A Approximation Architecture
Furthermore E.{-} stands for the expectation with respect to™ PP
the next event, andz’ stands for the state right after the event, In defining suitable approximation architectures, one usually
which is a deterministic function of, w, and the chosen deci- Starts with a process of feature extraction. This involves a fea-
sionw. If |S] is the cardinality of the state space, the Bellmaf¥re vectorf(x), which is meant to capture those “features”
equation is a system dfS| + 1 nonlinear equations in the of the stater that are considered most relevant to the decision
|S| 4 1 unknownsh*(z), = € S, andv*. Because the statieis making process. Usually, the feature vector is handcrafted based

recurrent under every policy, the Bellman equation has a unic@i@ available insights on the nature of the problem, prior expe-

solution and the function*(-), called the optimal differential rience with similar problems, or experimentation with simple

reward, admits the following interpretation: if we operate theersions of the problem. Our choice of a feature vector will be

system under an optimal policy, thén(x) — i*(y) is equal to described shortly.

the expectation of the difference of the total rewards (over theGiven the choice of the feature vector, a commonly used ap-

infinite horizon) for a system initialized at, compared with Proximation architecture is of the ford( f(x), ¢), whereh is

a system initialized a. a multilayer perceptron with inpuf(z) and internal tunable
Once the optimal differential reward functidri(-) is avail- Weightsd (see, e.g., [8]). This architecture is powerful because

able, an optimal admission control and routing poliey is it can approximate arbitrary functions ¢fz). The drawback,

given by however, is that the dependencetbis nonlinear, and tuning
can be time consuming and unreliable.
p*(z, w) = arg uclg?;(w)[g(w, w, u)+h*(z")]. (4 Analternative is provided by a linear feature-based approxi-

mation architecture, in which we set
This amounts to the following: whenever a new clasall )
requests a connection, consider admitting it along a permissible h(z, 6) = 607 f(x).
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Here, the superscrifff stands for transpose, and the dimensiaio each link, and using these link costs for admission control and
of the parameter vectdris set to be equal to the number of feashortest path routing. Note that these link costs (shadow prices)
tures—the dimension of the feature vecfor). Because of the (7) are state dependent and reflect the instantaneous congestion
linear dependence ah the problem of tunin@ resembles the on each link which is in the spirit of [6], [11]. However, the no-
linear regression problem, and is generally much more reliablimn of a link cost results here from a specific choice of a approx-
Let n;, ., be the number of class calls that are active and imation architecture, and not from an explicit decomposition of
which have been assigned to routes that go throughllife the network process into independent link processes as in [6],
view the variables:; ,,, and the products of the formy, ,,,n, »  [11].
as features, and we will work with a linear approximation archi- The family of policiesy:? resulting from our approximation

tecture of the form architecture can provide a fair amount of flexibility. It remains
to assess:
h(z, 6) = Z () + Z 0, m)ng, m a) whether there are systematic methods for finding good
lec m policies within this family; this is the subject of the next
section;
+ Z 6(1, m, m")ng mny me | - (6) b) whether they lead to significant performance improve-
(m, m):m! <m ment in comparison to more restricted families of poli-

) ) cies; this is to be assessed experimentally in Section IV.
Note that for this architecture the number of tunable parameters

is equal to B. The Training Algorithm

L(2+ 1.5M + 0.5M?) There are several methods that can be used to tune the pa-

herel is th ber of unidirectional links in th work rameterd, most of which rely on simulation runs (or on online
whereL s the number ot unidirectional inks in thé networ an%bservationsofr:m actual system). We will use a variant of one of

M is the number of service classes, i.e., the “complexity oftr}ﬁe most popular methods, namely, Sutton’s TD(0) (“temporal

grchltecture grows Im_ear in the number of links and quadraté‘ffferences") algorithm [20]. The standard TD(0) algorithm has
in the number of service classes.

A mai for ChooSi dratic functi fth been designed for discrete time problems with a discounted cri-
main reason for cnoosing a guadralic function of the varg, ., (or for an undiscounted total reward criterion in systems
ablesn; ., is that it led to essentially optimal solutions to singl

§hat eventually terminate), where the goal is to maximize the so
link problems (see Section IV-A). Note that we have only in- y ) g

. . called discounted reward-to-go of stategiven b
cluded those products; ,,nv, s associated with a common 9 y
link (I =1). There are two reasons behind this choice: it opens 0o
qpthe possibility gfadgcomposgbletrgi'ning glgorithm (cf. $ec- E Z e Phglay, , wry ue)|wo = =
tion 111-C). In addition, it results in policies with an appealing b0
decentralized structure, which we now discuss. .

Let nz, ., be the variables associated with the current stateSimultaneously for every state of the system. Hete> 0

of the network and suppose thatcorresponds to an arrival of is @ discount factor. So, some modifications are necessary to
classm*. Let us focus on a particular decisiance U(z, w), apply TD(0) to our problem. The first one, going from discrete
which assigns this call to route resulting in a new state’ to continuous time is fairly straightforward. The second one,
and variables) , . Note thatn, = n;,, +1ifl €r m = goingfromadiscounted to an average reward criterion, is much
m*, andn} = L s otherwise. With some straightforwardmore substantial, since average reward dynamic programming
algebra, the merif)(z, w, r, #) of this decision, in comparison theory and algorithms are generally more complex. We will use

to rejection, is given by the recently developed temporal difference method for average
reward problems [24], which preserves the same convergence
Qz, w, r, 0) properties and error guarantees of its discounted counterpart
= g(z, w, u) + Mz’, ) — h(z, 6) [23]. It should be noted that this is the first time that this method
is applied to an engineering problem.
=c(m") +Z 6(l, m*) +6(I, m*, m*)(2ny m» + 1) In the simplest version of TD(0), the controlled Markov
ler processe; is simulated under a fixed policy. Let ¢, be the

time of thekth eventw;, which finds the system at staig, ,
+ > 60, m m)ngm+ Y (0, m, m ) m| - and letus, = pu(z, , wi,) be the resulting decision. At such an
m<m? m>m’ event time, the vectdat and the scalad are updated according
The corresponding policy? (-, -) [cf. (5)] amounts to choosing to
a router* for whichQ(z, w, r, 8) is largest, using this route if .
Q(z, w, r*, 8) > 0, and rejecting the call iQ(z, w, 7*, ) < Ok = Or—1 + mdi Vohl(ar, ., Or1) (8)
0. This is equivalent to assigning a link cost (or shadow price)

61, m*) +6(1, m*, m*)(2ny, m- + 1)
+ 3 0 mt, myng Y O, m)ng (7)) Ok = Ot (9@ Wit ) = (e~ te1) )

m<m* m>m* (9)
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where the “temporal differencely, is defined by of links along route-. For all other events, the immediate reward
associated with linK is equal to zero.
dr = g(xe, o, wr—1, wy ) — (e — teo1) U1 Let us fix a policyy, let v (u) be the average reward at-
+ (@, Ope1) — M(we, s k1) tributed to link/, and note that
and wherey;, andrn;. are small step size parameters. The only v(p) = Z V().
difference from discrete time average reward TD(0) is in the e

factor ofty, —#x_, that multipliesv,.—, and which, in turn, is due For each link, we introduce a scal@f’, which is meant to be
to the factort; {7« } in Bellman’s equation. Note that with our , | octimate 0b® (1), as well an approximation architecture
linear approximation architectufe(z, §) = 67 f(z), we have A (2, D) of the for’m
Veoh(z, 0) = f(x). ’

Under a fixed policy, and under the standard diminishing step;, ), 9y = g(1) + Z (1, m)n. m
size conditionsg;, converges to the average rewar(l:), and -~ ’
), converges to a limiting vectdt such that:(-, 8) provides /
a “good” approximation ofi*(-). Here,h*(-) is a function de- + Z 60, m, ), e, e
fined similar toh*(-), but in a context in which there is a single
possible decision at each state, the one prescribed by the pojifiere 6 is the vector of parameterg(l), 6(I, m), and
p+. Furthermore, the approximation is “good” in the sense thal; ., /), associated with link Note that
the approximation erroi(-, 6) — i*(-), measured under a suit-

(m,m’): m’<m

able norm, is of the same order of magnitude as the best possible /}(x, ) = Z ii(l)(x(l)7 9(1))
approximation error under the given approximation architecture IcC
[24].

One can start with a poligy, run TD(0) until it converges, use an_d we are thereforg dealing with the same approximation_ar-
the resulting limiting value of to define a new policy according chitecture as in Seg:uon llI-A. The key difference is that we WlII
to (5), and then repeat. This method has some (weak) theoret[t%j uPdate according to (8), but will use an update rule which
guarantees [2], but it is common practice to keep changing lﬁelocal to each link. The local TD(0) algorithm, for lirkis
underlying policy with each update of the parameter vegor 91Ven by

This optimistic TD(0) method is completely described by the

l l i i 7 l i
update rule (8) together with 0 =60, + 2 d V0 hO <$E§j)> ; 91&1)

wy =g max [go(z, wr w) +h(z', )] (10) 50 =50, + 9 <g<l> (@f% LW )
w Ty, Wk ko1 k—1
wherez’ is the successor state that results frem wy,, anduw. —(tg) - tg)l)f/,(f)l>

Even thoughoptimistic TD(0) has no convergence guaran-
tees, its discounted variant has been found to perform well i@ ere
variety of contexts [19], [22], [27].
l ! l l l (1
A0 =g (o) el ) 00 =002,

C. A Decomposition Approach

The algorithm described in the preceding section can be very +r® <x(il)>7 91(21> _ L0 <37(£z)> 7 9](21> (11)
slow to converge, especially for networks with a substantial t tela
number of links. This led us to consider a decomposition apr;, 0 ) ui ,
proach that breaks the reward associated with a call into lifk a1d7;~ are S?ﬂ)a” step size parameters, aitiis the time
rewards in the spirit of [6], [11], and which led to much shorte?f the kth eventw,” associated with link. Here, we say that
training times. This improvement in terms of training time is e€iN €vent is associated with lidkf it can potentially result in a
sential for applying NDP to large networks (see Section Iv-c§hange of:("; this is the case if we have a departure of a call
For any linki, consider the local “statei® = (4, m: V). that was using link, or if link [ is part of a route in the prede-
Of course, this is not a state in the true sense of the word figed list of possible routes connecting the current origin-desti-
cause, in general, it does not evolve as a Markov process, ggtion pair. This update rule is identical to the ordinary TD(0)
will be treated to some extent as if it were. We decompose tHedate under the assumption thg? is a Markov process that
immediate rewarg(x;, , wx, uz) associated with thkth event, receives reward§<l>(xif?>, w,ﬁ’), “t§l>) atthe timeﬁg) of events
¢ :

into a sum of rewards attributed to each link associated with link. Of courseazgl) is not Markov because its

transitions are affected by the global state Although the up-
date rules for different links are decoupled, they are to be car-
ried out in the course of a single simulation of the entire system,
In particular, whenever a new call (say, of clas$ is routed which accurately reflects all dependencies involved. This is to
over a route- that contains the link, the immediate rewargt”?  be compared with [6], [11], where the entire system was explic-
associated with linkis settoc(m) /#r, where#r is the number itly decomposed into independent link processes, makfrlfg

g(xtm Wk U'tk) = Z g(l)(xtw Wk U'tk)'
el



202 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 2, FEBRUARY 2000

truly Markov, however, at the expense of ignoring certain de- TABLE |
pendencies and introducing an additional modeling error. CASE STUDY FOR THREE SERVICE CLASSES
AND A LINK WITH A CAPACITY OF 12 UNITS
IV. EXPERIMENTAL RESULTS Service Class m 1 2 3
In this section, we report the results obtained in a broax Bandwidth Demand b(m) 100 2.00  2.00

set of experiments. We compare the policy obtained throug Average Holding Time 1/v(m) 200 125 111

NDP with the commonly used heuristic OSPF. For every ﬁnﬁﬁiiitiéggd c(m) i:gg 1?:88 é:gg

pair of source and destination nodes, OSPF orders the list

predefined routes. When a new call arrives, it is routed alon Performance

the first route in the corresponding list that does not violate th Average Reward  Lost Average Reward

capacity constraint. If no such route exists, the call is rejectec Always Accept 40,09 31.86

For a single link problem, OSPF reduces to the naive poliC ., - Reservation 4723 24.72

that always accepts an incoming call, as long as the requirépynamic Programming 4723 24.72

bandwidth is available. TD(0): MLP 47.19 24.76
TD(0): Quadratic 47.19 24.76

A. Single Link Problems

Our first set of experiments involved multiple classes, but a TABLE I

PrROBLEM DATA OF THE CASE STUDY FOR TEN SERVICE CLASSES ON

single link. They were carried out in order to identify potential & LINK WITH A CAPACITY OF 600 LNITS

difficulties with this approach and to validate the promise of the

guadratic approximation architecture. Naturally, with a singlservice Class m 1 2 3 4 5
link, no decomposition had to be introduced. Two case studitg,,qyidth Demand b(m) 200 200 400 400 600
were carried out involving three and ten service classes, resptAverage Holding Time 1/v(m) .00 100 125 125 1.67
tively. For the latter case, three different scenarios were consilmmediate Reward c(m) 200 140 500 250 1000
ered corresponding to a highly, medium, and lightly loaded linkAmival Rate A(m) (high load) 15.0015.00 12.00 12.00 10.00

ivel P A 9 d Ig dy fth gnhtly . Arrival Rate A(m) (medium load) 15.00 15.00 10.00 10.00 7.00
respectively. A more detailed account of these experiments & s v Rate A(m) (ightload) ~ 16.00 1600 12.00 1200  7.00
the results obtained can be found in [15].

The experiments were carried out using TD(0) for discounteService Class m 6 7 8 v 10
problems. The performance of the resulting policies was evalBandwidth Demand b(m) 6.00 800 800 10.00 10.00
ated on the basis of the average reward criterion. The discoyAverage Holding Time 1/v(m) 167 250 250 500 5.00
factor was chosen to be very small, which makes the discount mediate Reward c(m) 400 2000 7.00 500 16.00

- very ' Arrival Rate A(m) (high load) 1000 600 600 400 4.00
problem essentially equivalent to an average reward problelArrival Rate A(m) (medium load) ~ 7.00  3.00 300 180 1.80
The evaluation of the average reward is based on a trajectory Arrival Rate A(m) (light load) 7.00 240 240 110 110
4x10° time steps.

Besides TD(0) with a quadratic approximation architecture, TABLE Il
we also used TD(0) with a multilayer perceptron (MLP) [8]CasE Stupy FOR TEN SERVICE CLASSES AND AHIGHLY LOADED LINK WITH A
Furthermore, for the smaller problem, which only involved three CAPACITY OF 600 UNITS

classes, we also obtained an optimal policy through exact dy-
namic programming (DP) and used it as a basis of comparison.
A comparison was also made with a naive policy that always

Performance

Average Reward  Lost Average Reward

accepts an incoming call, as long as the required bandwidth is ~ Atways Accept 412.77 293.15
available. By inspecting the nature of the best policy obtained -k Reservation 1817 187.67

; - By Inspecting policy TD(0): MLP 505.46 200.34
using NDP, we observed that only some of the customer classes Tp(): Quadratic 511.45 194.71

were ever deliberately rejected, and we were then able to use this
knowledge to handcraft a trunk reservation (threshold) policy TABLE IV
that attained comparable performance. However, in the abse'&@E STUDY FOR TEN SERVICE CLASSES AND AMEDIUM LOADED LINK WITH

of adequate tools for tuning trunk reservations parameters (as A CAPACITY OF 600 UNITS
it is the case for large networks), the use of NDP can become
very attractive. In addition, this illustrates that the quadratic ap- Performance
proximator provides an adequate architecture for the differential Average Reward  Lost Average Reward
reward function of a single link. Always Accept 389.53 34.31

The parameters and results of the case studies are given in Trunk Reservation 396.68 26.97
Tables I-V. One conclusion from these experiments is that NDP }gggi gl:‘al;mﬁc ggg’:gg gz:g

led to significantly better results than the heuristic “always
accept” policy, except for the case of a lightly loaded link and
ten classes, where the performance of both approaches whke to fine tune the policy.) In particular, for all cases, except
the same. (This is understandable because for a lightly loaded the one just mentioned, the rewards associated with calls
system “interesting” events such as blocking are too rare to tiet were blocked or deliberately rejected (these are the lost
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TABLE V
CASE STUDY FOR TEN SERVICE CLASSES AND ALIGHTLY LOADED LINK WITH
A CAPACITY OF 600 WNITS

Performance

Average Reward Lost Average Reward

Always Accept 370.82 8.89
Trunk Reservation 372.40 7.70
TD(0): MLP 370.82 8.89
TD(0): Quadratic 370.82 8.89

Fig. 1. Telecommunication network consisting of four nodes and
unidirectional links.

TABLE VI
SERVICE CLASSES ANDARRIVAL RATES FOR THEFOUR-NODE NETWORK

Service Class m 1 2 3
Bandwidth Demand b(m) 1 3 5
Average Holding Time 1/v(m) 10 10 2
Immediate Reward c(m) 1 2 50

Arrival Rates
Service Class 1 2 3

203

Performance During Learning

160} : . E
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Fig. 2. “Empirical” average reward per time unit during the whole training

phase of 10 steps (solid) and during shorter time windows of° 1€teps
(dashed).

{he service class with the highest reward. We chose this setting
to determine the potential of our optimization algorithm, i.e., to
find out if NDP indeed discovers a control policy which reserves
bandwidth for calls of the most valuable service type.

This experiment was carried out using TD(0) for discounted
problems combined with the decomposition approach. How-
ever, the performance of the resulting policies was evaluated on
the basis of the average reward criterion. Our value function ap-
proximator contains 120 tunable parameters. There are approx-
imately 1.6<10% different link state (feature) configurations.
Note that the cardinalitys| of the underlying state space is even
higher. We make the following observations.

Origin-Destination Pairs (0-2)(2-0)(1-3)(3-1) 440 2.64 044

a
All Other Origin-Destination Pairs 200 120 020 )

rewards), were reduced by 10%—35%. For the case of three
classes, essentially optimal performance was attained. It was
also seen that the MLP architecture did not lead to performance
improvements, and this was an important reason for not using
it in larger problems. b)

B. A Four-Node Network

Inthis section, we present experimental results obtained forthe
case of an integrated services network consisting of four nodes
and 12 unidirectionallinks. There aretwo differentclasses oflinks
with a total capacity of 60 and 120 units of bandwidth, respec-
tively (indicated by thick and thin arrows in Fig. 1). We assume
asetM = {1, 2, 3} ofthree different service classes. The corre-
sponding parameters are given in Table VI. Note that the calls of®)
type 3 are much more valuable than the one of type 1 and 2. Fur-
thermore, for each pair of source and destination nodes, the list of
possibleroutes consists ofthree entries: the directpath and the two
alternative two-hop routes.

This case study is characterized by a high traffic load and
by calls of one service class having a much higher immediate
reward than calls of the other types. Clearly, for this case, a
good CAC and routing policy should give “priority” to calls of

Employing the decomposition approach did not affect the
the performance of our final NDP policy and reduced the
training time by a factor of two. (Note that the decom-
posed optimization updates the parameters corresponding
to only five links instead of twelve at every time step.)
This was an important reason for using it in larger prob-
lems (see Section IV-C).

In order to assure convergence of the discounted TD(0)
method, we had to carefully handcraft some of the initial
parameter values of our function approximator. In par-
ticular, the magnitude of the paramet#i) associated
with each link turned out to be critical. This procedure
becomes rapidly impractical as the number of links in-
creases. Larger problems can be solved much easier using
average reward algorithms which are less sensitive in this
respect (see Section IV-C).

For this case study, we could significantly improve the per-
formance of the resulting policy by enforcing an explicit
exploration of the state space during the training. At each
state, with probabilityp = 0.5, we apply a random ac-
tion, instead of the action recommended by the current
value function, to generate the next state in our training
trajectory. However, the successor statﬁ%) that is used

in update rule (11) is still chosen accor&ing to the greedy
action given in (10). The importance of using a certain
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Average Reward

potential reward
reward obtained by NDP
reward obtained by OSPF

I 1 1
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reward per time unit
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percentage of calls rejected

Fig. 3. Four-node network: Comparison of the average rewards and rejection rates of the NDP and OSPF polices.

Routing (OSPF)

ol

5 direct link

22 alternative route no. 1
8 alternative route no. 2
53

o

1 i 1 1
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percentage of calls routed on direct and alternative paths

Routing (NDP)

—

direct link
alternative route no. 1
alternative route no. 2

service type
W N

1 1 1 1 1 1.
0 10 20 30 40 50 60 70 80 90 100
percentage of calls routed on direct and alternative paths

Fig. 4. Four-node network: comparison of the routing behavior of the NDP and OSPF policies.

amount of exploration in connection with NDP methodbkas the highest immediate reward. Fig. 3 also shows that the
is well known (see for example [2]). average reward of the NDP policy is close to the potential av-
The results of the case study is given in Fig. 2 (training phas€yage reward of 242, which is the average reward we would ob-

Fig. 3 (performance), and Fig. 4 (routing behavior). We giviin if all calls were accepted. This leaves us to believe that the
here a summary of the results. NDP policy is close to optimal. Fig. 4 compares the routing be-
1) Training Phase:Fig. 2 shows the performance improvehavior of the NDP control policy and OSPF. While OSPF routes
ment during the optimization phase. Here, the “empiricaftbout 15%-20% of all calls along one of the alternative two-hop
average reward of the NDP policy (computed by averaging theutes, the NDP policy uses alternate routes for calls of type 3
rewards obtained during the whole training and during shortgbout 25%) and routes calls of the other two service classes
time window of 10 steps) is depicted as a function of the traininglmost exclusively over the direct route. This indicates, that the
steps. Although this average reward increases during the trainibgP policy uses a routing scheme, which avoids two-hop routes
it does not exceed 141, the average reward of the heuristic OSfPFcalls of service class 1 and 2, and which allows us to use net-
Thisis due tothe highamount of explorationinthe training phas&ork resources more efficiently.
We obtained the final control policy after 1eration steps.
2) Performance Comparisonwe used simulated trajecto-C: A 16-Node Network
ries of 10 time steps to evaluate our policies. The policy ob- In this section, we present experimental results obtained for
tained through NDP gives an average reward of 212, whiehnetwork consisting of 16 nodes and 62 unidirectional links
as about 50% higher than the one of 141 achieved by OSIisee Fig. 5). The network topology is taken from [7]. The net-
Furthermore, the NDP policy reduces the number of rejecteark consists of three different classes of links with a capacity
calls for all service classes. The most significant reduction @ 60, 120, and 180 units of bandwidth, respectively. We as-
achieved for calls of service class 3, the service class, whistime four different service classes. Table VII summarizes the
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illustrates the importance of the decomposition approach
in applying NDP to the CAC and routing problem.

b) Discounted reward algorithms failed due to their critical
dependence on initial parameter values (see Section
IV-B). This difficulty does not arise witlaveragereward
algorithms.

¢) Instabilities can occur during the training phase, even
when exploration is employed (see the discussion below).

d) Our NDP policies are very robust with respect to changes
of the underlying arrival statistics.

1) Training Phase:Fig. 6 shows the “empirical” average re-
ward of the NDP policy (computed by averaging the rewards
Fig. 5. Telecommunication network consisting of 16 nodes and e3Ptained during the simulation run) as a function of the training
unidirectional links. steps. In contrast to the four-node example, the NDP policy does

not converge towards a final policy better than OSPF, although
TABLE VII the average reward significantly improved during the firg02
SERVICE CLASSES FOR THELG-NODE NETWORK training steps. Afterwards, a sudden performance breakdown
Service Class m ] 2 3 1 occurs, from \_/vhich the syste_m Never recovers. _This loss of_ sta-
Bandwidih Demand b(m) 100 200 300 400 b|||t_y did not d_ls_appear, even if we introduce explicit exploratlc_)n
Average Holding Time 1/v(m) 125 125 125 125 during the training. For the subsequent performance comparison
Immediate Reward c(m) 0.25 1.00 6.00 15.00 between NDP and OSPF, we pick the best policy (given by the
parameter values just before the loss of stability) generated in
4600 : : : : : , . , the course of the algorithm, not the last one.
2) Performance ComparisonThe policies are empirically
4500 | evaluated based on simulated trajectories 6ftiiie steps. The
{ OSPF policy almost exclusively routes all calls over the shortest
path. This leads to an average reward of about 4254. The rate of
rejected calls is positive for all service classes. The two most
valuable service classes 3 and 4 receive the highest rejection
rate. In contrast, the NDP policy comes up with a very different
routing scheme that uses alternative paths for all types of ser-
vices. Now, the rejection rates for calls of type 1, 3 and 4 vanish
whereas that for service class 2 increases. The NDP policy re-
jects these calls in a strategic way, i.e., NDP is not forced to
4000 | do so by the capacity constraint. Instead, it explicitly reserves
bandwidth for the most valuable calls of type 3 and 4. The av-
3900 . . . . , , , , erage reward of 4349 obtained through the NDP policy is about
oz 4 6 Sqeps 21 16 18 220 higher than the one achieved by OSPF. While this might
P x10° appear to be a small improvement, it has to be viewed in per-
Fig. 6. “Empirical” average reward obtained during the training as afuncti(ﬁpeCtive: even if we could achieve the potential average reward
of training steps. The performance initially improves and then suddenfyvhich is 4438) by accepting every arriving call, the reward
deteriorates. would only increase by 4.3%. Thus, the 2.2% improvement in
rewards, is a substantial fraction of the best possible improve-
corresponding bandwidth demands, average holding times, aféht. In fact, NDP reduces the lost average reward (potential av-
immediate rewards. The table of arrival rates is also taken fl’CéFage reward minus actual average reward) by about 52% com-
[7]. However, for our experiments we rescaled them by a factgared with OSPF. Note that for this type of problems, the lost
of two. The list of accessible routes consists of a maximum Q{/erage reward is a more meaningful performance measure than
six minimal hop routes for each pair of source and destinati@ie average reward. For example, if we have a single link and a
nodes. Routes with an equal number of hops are ordered by th@iigle service class, it coincides with the blocking probability
absolute path length (in miles) which is also reported in [7]. (rejection rate), which is the generally accepted performance

For this experiment, there are approximatelyx118°>° dif-  metric. Blocking probabilities in well-designed systems are gen-
ferentlink state (feature) configurations and 992 tunable paragtally small, and an improvement from, say, 4% to 2% is gener-
eters. The results of the case study are summarized by FigalI§ viewed as substantial, even though it only represents a 2%
(training), 7 (performance), 8 (routing), and 9 (robustness). increase of calls accepted.

We make the following observations. 3) RobustnessWe applied our best policy obtained through

a) Without using the decomposition approach, no substantiedining under the arrival statistics mentioned earlier to prob-

improvement over the initial policy is achieved within dems with randomly changed arrival rates in order to show the
reasonable amount of computation time (24 h, say). Thisbustness of NDP policies. In particular, each arrival rate is

2 & 2
8 ] 8

average reward

o
8
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Average Reward
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reward obtained by OSPF
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Fig. 7. 16-node network: comparison of the average rewards and rejection rates of the NDP and OSPF policies.

Routing (OSPF)
1 I t
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Routing (NDP)
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'z alternative route no.
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Fig. 8. 16-node network: comparison of the routing behavior of the NDP and OSPF policies.

multiplied by a factorl + p, wherep € [—«, «] is indepen- against changes in the arrival rates. There is only one out of
dently drawn from a uniform distribution. An arrival rate is setwenty experiments where the NDP policy happened to be worse
to zero, if1 + p happens to be negative. We carried out a stten OSPF. (We did not average several experiments with equal
of experiments by varying the magnitudec [0, 2] in steps of perturbation parametex.) For all other arrival statistics the
0.1, which amounts to rather strong perturbations of the traffdDP policy still outperforms OSPF with a relative lost reward
statistics. Fig. 9 shows the result of these experiments. The mbagtween 25% and 70%.

nitude « of the relative perturbations of the arrival rates is de-

picted against the relative lost reward defined as V. CONCLUSION

The CAC and routing problem for integrated service net-
works is naturally formulated as an average reward dynamic
programming problem, but with a very large state space. Tradi-
Here, vpotential, #nDP, @Nduospr denote the potential averagetional dynamic programming methods are computationally in-
reward, the NDP policy and the OSPF policy, respectively. THeasible for such large scale problems. We use neuro-dynamic
experiments show, that our NDP policy is indeed very robuptogramming, based on the average reward TD(0) method of

v(pnnr) — v(pospr)
Upotential — U(NOSPF)




MARBACH et al: CALL ADMISSION CONTROL AND ROUTING IN INTEGRATED SERVICES NETWORKS

207

0.7 best suited as a tool for offline rather than online optimization
0.6 of the CAC and routing policy.
It should be noted that while the (offline) training time of the
0.5 NDP policy can be in the order of minutes or hours, the “com-
g 04 plexity” of imple_menting_ (qnline) a NDP policy (for_ a fixed pa-
S rameter vector) is very similar to the one of OSPF, i.e., the “cost”
= 0.3 of a route can be determined by simply adding up the corre-
% 02t sponding “link shadow prices,” which are given by a quadratic
2 functions.
=01
&
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