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Approximating the Spectral Radius of Sets of Matrices in  given byz — loga: Roc — Rumax. To emphasize the parallel with
the Max-Algebra is NP-Hard existing results, we will state all our results in term&f, (see Table
).
Vincent D. Blondel, Stéphane Gaubert, and John N. Tsitsiklis  In the sequel, we will use the familiar algebraic notation in the con-
text of the semirindR ,, without further comments: e.g.,if € Rp**
sXt H . i i i P .
Abstract—The lower and average spectral radii measure, respectively, andB iRg h ‘L_lB IS th?; X t matrix with e.nm?%” — %",}flf;‘f’
the minimal and average growth rates of long products of matrices taken """ +p Ais Bsj. ?t | - Il denote a (conv$£1£|0na) norm. -loa
from a finite set. The logarithm of the average spectral radius is tradition- ~ finite set of matriced 4, ---. 4;} C R;*", we associate

ally called Lyapunov exponent. When one performs these products in the
max-algebra, we obtain quantities that measure the performance of Dis-

crete Event Systems. We show that approximating the lower and average P (A1, oo A,)d:ef lim max A, - A Hl/k
max-algebraic spectral radii is NP-hard. ' ’ " k—oo iy i €{l, 0} ' *
Index Terms—Computational complexity, discrete event systems, (2a)
max-plus algebra, NP-hard, spectral radius. ponin (A1, -+ 4’)déf lim min | As, - - A ||1/k
min b} s LA Passpet il,«~',ik6{1,»-*,l} <3ty <y,
(2b)
|. INTRODUCTION def . 1/k
- N ) pE(AL -+, A)= as. lim ||A;, - - A || (2¢c)
For all positive real numberg, the semiringR,, is the set of real k—eco
nonnegative number®., equipped with the addition
where in (2¢)i1, i2, - - - is a sequence of independent, identically dis-
. tributed, random variables with values{a, - - -, [}, drawn with the
a-+ bd—d(np—|—bp)1/p (1) . o i L o
Pp D= AR uniform distribution, and where “a.s. lim” means that the limit ex-

ists almost surely. The existence and values of all the limits in (2) are

together with the usual multiplicationThis family of semirings was clearly independent of the choice of the norm. In particular, we may

introduced independently by Maslov and Pap (see e.g. [19], [21] al@ke the norml|A|| = maxi<icy [Air] +p [dia] +p -+ 4 [Air]

the references therein). It has the following remarkable property: all théiich satisfies| AB|| < [|A[|[|B]|. Then, by a classical argument,

semiringsR,,, are isomorphic to the ordinary semirility of real non- the existence of the limit (2a) follows easily from the fact that the

negative numbers equipped with the usual operations. Lettiagd to  S€qUeNcerx = maxi,,...iy ||Ai, --- Ai, || is submultiplicative, i.e.,

o in (1), we obtain wi4+r < wiw,. The existence of..in is proved by the same argument.
As shown in [6] and [1, Chap. 7], the existencepef follows from
Kingman's subadditive ergodic theorem. We will callax, pmin and

@ +o0 b = max(a, b). pe the upper, lower, andaverage spectral radiuef {4y, ---, A;},
respectively. The logarithm gfg is traditionally called the.yapunov
exponenbr Lyapunov indicatarWe note that, trivially

The corresponding semirifig... (the sefR ™", equipped with+, and
the usual multiplication) is the max-times semiring or “max-algebra,”
whose role in dynamic programming, discrete event system theory, op-
timal control, and asymptotic analysis is well known (see, e.g., [1], [20],
[19], [15], and [18]). In contrast to the semiring, for finite p, this
semiring is not isomorphic t&, . In discrete event systems applicaWhenp = 1, both the upper and average spectral radius are much
tions, the max-algebra more frequently appears in an isomorphic addlddied quantities which are notoriously difficult to compute or approx-
tive form, the semirin@R..., which is the seR. U {—oo}, equipped imate in practice. In [22, Th. 1 and 2], it was shown that even in the case
with max as addition, and- as multiplication. The isomorphism is of two matricesdo, A, with entries in{0, 1}, approximatingomax.,
pmin andpg is NP-harck

Using the fact that all the semirind@, with finite p are isomorphic,
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time algorithm for a NP-hard problem would provide polynomial time algo-

IWhenp is an odd integeiR , can be embedded in the figlik, +,, x),but  rithms for all NP-complete problems, and would imply that the conjectute P
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is essential. true.

Pmin S PE S Pmax- (3)
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TABLE |
SUMMARY OF COMPLEXITY RESULTSAVAILABLE FOR pPmax; Pmin; PE
Pmax Pmin and pg
(R, +, x) Approximation algorithm [7] No approximation algorithm [22]
R, = (RF,+,, x) (finite p) Approximation is NP-hard [22] Approximation is NP-hard [22]
Ro, = (RY, 400, X) Exact polynomial time algorithm [11] | Approximation is NP-hard [this paper]

throughput) of random max-plus linear discrete event systems. Tty an intuitive interpretation of products of matrices in terms of the
most intuitive particular interpretation pf is probably the following: height of a heap of pieces. In [12] and [13], it was shown that the total
if you “play” in a Tetris game of infinite height, without applying anyheight of a Tetris-like heap df pieces is equal thog || 4:, - - - Ai, ||,
control, just letting pieces fall down randomly, you will see, asymptotivhere 4;,, ---, A;, are matrices associated to the pieces, and
cally, the heap of pieces grow at a certain mean speed: this speed is pr§} = max;; A;;. When all the pieces are of height Ibg pmin
ciselylog pr (see [11], [5], [13], [8], and also Section Il for details).coincides with the inverse of the largest number of mutually disjoint
The problem of computingg also arises in Statistical Physics, in thepieces. NP-hardness of computingi, then follows from the fact that
study of disordered systemis¢ px yields the free energy per site, atcomputing the largest number of mutually disjoint pieces is a problem
zero temperature, for some random one dimensional Ising models [#fjat is known to be NP-hard.
The study op& (structural properties, bounds, etc.) is one of the central
themes of [1]. The logarithm gf.... was called worst case Lyapunov 1. REDCUCTION FROMSAT
exponent in [11], for it measures the worst case cycle time of certainI th . tof th i at ~ and
max-plus linear discrete event systems. For a dual reason, the Iogarithrrrl1 NE remaining part ot the paper, we will assume that oc an
. we will use the matrix nornjl A|| = max;; A;;.
of pmin Was called optimal case Lyapunov exponent.

Since th imizati i hich is involved in the definiti LetY — p(X) be a nonnegative function that we wish to compute.
ince the maximization operation which Is involved in the detinitiog, . say thap is polynomial-time approximabléthere exists an algo-
of pmax IS SOMehow compatible with the structure laws of the max-

. . . 27 Yithm which, for every rational numbees € > 0 and every®, returns
gebrapmax can be computed quite easily: as shown in [11], |tc0|nC|d(-::é§n approximation™ (X, ¢, ¢') such thatp® — p| < ep + ¢, in time

W::h Lhe spebctral radius gf_the sllngle m?tﬂx: 45‘ +f“° ' h +BC A, Eolynomial in the description size ef ¢ andX. This allows for both
which can be computed in polynomial time. So far, the basic gefz % <oiute and a relative error.

eral technique to CompUfenin andyx CONSIStS of using an “induced Theorem 1: Unless P= NP, the lower and average spectral radii of
Markov chain” construction in the max-algebraic projective space [1, . : ] L e

. . ) A airs of matrices with entries i§0, 1} are not polynomial-time ap-
Section 8.4], [11, Section VII]: when this chain is finite, bath:, and Eroximable €0, 1} poly P

pE can be computed with a number of arithmetic operations which'is Proof: LetA,, As be square matrices with entriesfin, 1}. We
polynomial in the number of states of the chain. In some other spec& im that T '
casespg can also be computed via generating series techniques [16],

or, as illustrated in [5], by finding a closed form expression for the in-

variant measure of the above mentioned Markov chain, which is denu- pmin (A1, A2) = pE(A1, A2) € {0, 1}. 4)

merable, in general. A different approach was used in [2]: we can define

more generallyg in (2c) by taking a sequence of independent, identiyjeeq, in the max-algebra, any product of matrices with en-
cally distributed, random variablés - -, ix, drawnfrom{1, ---. I}  tijes in {0, 1} gives a matrix with entries in{0, 1}. A fortiori,
with a nonuniform distributionr = (w1, 72, ---, m), wherer; isthe 4. ... 4, || € {0, 1} for all i1, ---, ix. Hence, if none of the
probability of {i, = j}. productsA;, - -+ A;, i 0, pmin (A1, 42) = pr(A1, 42) = 1. Butif

Under some technical restrictiongg is an analytic function of one of these products is 0, themin(A4:, 42) = 0 and the product
™, -+, m nearr = (1, 0, -+, 0), and the coefficients of its power that gives 0 will appear almost surely as a factor of any infinite product
series expansion can be effectively computed. When this seriesis sfill 4, ... of independent, identically distributed, random matrices,
convergent atr = (1/1, ---, 1/1), this gives a way of approximating drawn from{4,, A} with the uniform distribution. This implies that
the average spectral radius. pE(A1, Ay) = 0.

The purpose of this paper is to analyze the complexity of computingDue to (4), it suffices to establish the theorem/gk.,. Any polyno-
pmin @ndpg whenp = oo. mial time approximation algorithm fo#m,in gives a polynomial time

In Section Il we show that, whem = oo, approximatingo,i, or  algorithm for distinguishing the casgs.i.» = 0 andpwmi» = 1. Thus,
pE is NP-hard. Our proof of this result is based on a reworking of tHe order to establish the theorem, it suffices to show that the problem of
argument given in [22, Proof of Th. 1]. We build an automaton whostetermining whethepmin (A1, A2) = 0 is NP-hard, even for the case
number of accepting paths measures the number of satisfied claugdgnary matrices. The proof is by reduction from SAT and is inspired
in a given instance of the satisfiability problem SAT. Our proof thehy [4, Proof of Th. 2].
follows from the fact that the satisfiability problem SAT is known to Consider an instance of SAT [10], with variablesx:, ---, x»
be NP-complete (see the problem LO1 in [10]) and that the numberaid m clausesC, ---, C,,. We can write each claus€’; as
accepting paths in this special automaton determines the spectral rafiius= Ci,1 or --- or C; ., whereC; ; is eitherz;, ornot (z;), or
of an associated set of matrices. the Boolean constardtalse.

This argument does not work when= co: since+.. isidempotent ~ LetC' = Ci and --- and C,,. For anyy € {true, false} and
(i.e.a+- a = a), several paths count as one. However, a variant of the€ {1. - -, n}, letM.(y) denote the diagonal x m Boolean matrix
reduction of [4, Proof of Th. 2] can be used to prove that approximatifgth diagonal entries
pmin @andpg is NP-hard.

In Section Ill we give a simple, independent, geometrical argument , 1, if C; k(y) = false
that shows that computing.i» is NP-hard. The argument is based (M ()i = {0, if C; x(y) = true.
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Then, for allz € {true, false}”

M, (z1)-++ M, (2z,) = 0if and only if = satisfiesC. (5)

Let U denote then x m matrix whose entries are all equal to one.
We now consider them x nm matricesd; = M(false), 42 =
M(true), where

U'—]\'[l (y)
Ma(y)
M(y) = . . . .
Fig. 1. A sequence of pieces and its associated heap.
M1 (y)
M, (y)U Question: Doe$og, pmin (A1, +++, 4) < ¢?
Theorem 2: COMPUTING pmin iS NP-hard.
(the blocks which are not shown are zero). We claim that Proof: The proof is based on a simple geometrical argument that
involves a Tetris-like heap of pieces.
_ o Consider a horizontal axis with > 1 slots labeled 1, 2, ---, n}.
C'is not satisfiable= pmin (A1, A2) =1 Apiece is a solid, possibly disconnected, block of height one occupying
C is satisfiable = pmin (A1, 42) = 0. some of the slots. Consider now a set of piedes= {a;, ---, a;}

each piece; being defined by the subs&(a;) C {1, 2, ---, n} of
slots it occupies. To an ordered sequence of pieces a;, ---a;,
In order to establish our claim, note first that for &ll and for all e associate a heap by piling up the pieces in the given order on a
Boolean sequencesof lengthkn, M(y1) - - - M(ykn) is a block di-  nhorizontal ground. Pieces are only subject to vertical translations and
agonal matrix with diagonal blocks occupy the lowest possible position that is above the ground and above
the pieces previously piled up. The height of a heapn slot: is de-
noted byh;(w). The heighth(w) of a heapw = a;, ---a;, is the
largest of the heights on all slots. For instance, whes= 3, A =
(63) {4y, as. as}, R(ar) = {1, 2}, R(az) = {3}, R(as) = {1, 3}, and
By =Mo(y1) - UMi(yn) Mo (ynt1) - - UMi(ypn) w = ajazazaias, We obtain the heap with heighfw) = 4 depicted
(6b) On the right of Fig. 1.
To k > 1, we associate the lowest possible height of a heap of
pieces taken fromt

Bn,k = A[n(y1 )LT et Am[n—1 (yn)z\/[n (Un+1 ) ct A”L[n—1 (ykn)- /\k = lnin{h(a’il e (l’ik ) | (l’il » T (l’ik E ‘4}'

By . =UMi(y1)--- Ma(yn))UUM: (yny1) - - Mo (yrn)U

(6¢) We claim that the limit
. Ak
A= lim
k—+oc k

Assume that”' is not satisfiable. Using (5), we get th& ., = 1 is equal tol /M, whereM is equal to the maximal number of pieces
for all possible Boolean sequence®f lengthkn. This implies that in a heap of height one. Indeed, a heawith % pieces has at most

pmin (A1, A2) = 1. M pieces per height level, and thés< h(w) x M. This implies
Next, assume that is satisfied by the Boolean sequenge - - x,,, that\i/k > 1/M. Moreover, ifz is a heap of height one with/
and consider the infinite sequence of period- 1: pieces, the heap obtained by repeating-timesz satisfiesh(w) = k
and containg M pieces. Thus); /kM < 1/M, and the claim is
established.
y=aiccanfrr o aaden o anle, For instance, for the piecas, «-, andes depicted in Fig. 1, the set

of heaps of height one i1, a2, as, araz}, andA = 1/2.
wheret can take an arbitrary Boolean value. Ror= n + 1, each Consider now the following NP-hard problem (see the problem SP3

of then products that giveB, , -+, B, i in (6) contains a factor in [10]). .

of the formMi (x1) - - - My (). SinceMy (x1) -+ - My (xn) = 0 we Problem (&7 PA?K'NG)“_ , L . ,

conclude thabumin (A;, As) = 0. [ Instance: a collectiod’ of finite sets, a positive integdt < |C.
Remark: It is not known whether the statement of the theorem re- Question: does” contain at leask’ mutually disjoint sets?

mains valid if we require that the matrices have positive entries, or hav odulo some changes of notation, this res‘_“t can be rephrased in our
a fixed, large enough, dimension. framework by saying that, for a given set of pieces= {a, ---, a;}

and a positive integek” < |4| = I, the problem of determining ik’
is larger than the maximal number of pieces in a heap of height one, is
NP-hard. Since. = 1/M an analogous statement is possibleXor
In discrete event systems applications, the quantity of interest is theTo conclude, we describe a connection between heights of heaps of
logarithm of pmin, rather tharpmin. In this section we show that the pieces and norms of products of matrices in the semiRng. To a
following problem is NP-hard. piecea; € A occupying the slotd2(ax) C {1, 2, ---, n} we asso-
Problem (®MPUTING pmin).: ciate the matrixd, € {0, 1, 2}"*" whose entries are identical to the
Instance: Matricesty, ---, A; € {0, 1, 2}™*", arational numbeg. entries of the identity matrix, with the exception of the elememdis), ;

Ill. REDUCTION FROM SET PACKING
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which are set to 2 whenevér; € R(ay). Itis shown in [13] thatthe [16] B. Gaujal and A. Jean-Marie, “Computational issues in recursive sto-

heighth(w) of the heapy = a;, -+ - a;, is given by chastic systems,” ildempotencyAug. 1995.
) [17] G. Gripenberg, “Computing the joint spectral radiukifiear Algebra

o) — A voo A Appl,, vol. 234, pp. 43-60, 1996.
hw) = logy iy -+ Al [18] J. Gunawardena, EdgempotencyPublications of the Newton Inst.,
i Cambridge Univ. Press, 1998.
From this it follows that [19] V. Kolokoltsov and V. Maslov,Idempotent Analysis and Applica-
. . ) tions  New York: Kluwer Acad., 1997.
A= klﬂl; il,«~»,i1131€1}{11 o log, [[Aiy -+ Ai | [20] V. Maslov and S. SamborskiEds., “ldempotent analysis,” iAdv. in
' o Sov. Math. AMS, RI, 1992, vol. 13.
= logy pmin (A1, -+, A1) [21] E.PapNull-Additive Set Functions New York: Kluwer, 1995.

. . . . [22] J. N. Tsitsiklis and V. D. Blondel, “The Lyapunov exponent and joint
Since the instance of @PUTING pmin iS constructed from the in-

stance of 8T PACKING in polynomial time, it follows that ©MPUTING

spectral radius of pairs of matrices are hard—When not impossible—To
compute and to approximateylath. Contr., Signals, Systwol. 10, pp.
31-40, 1997.

pmin 1S NP-hard. O

IV. CONCLUSION

Of course, the interest of the NP-hardness results of this paper is
mostly theoretical: Theorems 1 and 2 show that there is little hope
to find a polynomial algorithm to compuies Or pmin. But the situ- A Linear Programming Approach to Constrained Robust
ation seems much simpler in the case of the max-alg&bta, than in Predictive Control
the case of the usual algel®, +, x). For instance, as summarized
in Table I, the problem of approximating..x, which is NP-hard in
(R, +, x) becomes polynomially solvable R.... Moreover, in this

paper., V\I/\lePOEIy é)lr?k:/.ec.i that in lt(he semlr!g%i ,"appr(l)tx Ig] atlngpmin. Abstract—A receding horizon predictive control algorithm for systems
Orpe IS -hard: this Is a wea : IMpossIbllity” result, by COMParison ity model uncertainty and input constraints is developed. The proposed
to the fact that the corresponding problemg R, +, x) are unde- algorithm adopts the receding horizon dual-mode (i.e., free control moves
cidable. Indeed, unlike in the usual algebR, +, x), in the max-al- and invariant set) paradi_gm. The qpproach is novel in that it provides a
gebra,pmin andpg can be approximated (with an exponential execifonvenient way of combining predictions of control moves, which are op-

. - . . - al in the sense of worst case performance, with large target invariant
tion time), at least in some important special cases [16], [11], [14], aﬂ@ts. Thus, the proposed algorithm has large stabilizable set of states corre-

[2]. Improving and generalizing these algorithms, as well as identifyingonding to a cautious state feedback law while enjoying the good perfor-

new examples of exactly solved models, is certainly an interesting fgance of a tightly tuned but robust control law. Unlike earlier approaches

search direction. which are based on QP or semidefinite programming, here computational
complexity is reduced through the use of LP.

Y. I. Lee and B. Kouvaritakis
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