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Simulation-Based Optimization of
Markov Reward Processes

Peter Marbach and John N. Tsitsikl=ellow, |IEEE

Abstract—This paper proposes a simulation-based algorithm
for optimizing the average reward in a finite-state Markov reward
process that depends on a set of parameters. As a special case, the
method applies to Markov decision processes where optimization
takes place within a parametrized set of policies. The algorithm re-
lies on the regenerative structure of finite-state Markov processes,
involves the simulation of a single sample path, and can be imple-
mented online. A convergence result (with probability 1) is pro-
vided.

Index Terms—Markov reward processes, simulation-based opti-
mization, stochastic approximation.

. INTRODUCTION

ARKOV decision processes, and the associated dy-

namic programming (DP) methodology [1], [25],
provide a general framework for posing and analyzing prob-
lems of sequential decision making under uncertainty. DP
methods rely on a suitably defined value function that has to
be computed for every state in the state space. However, many
interesting problems involve very large state spaces (“curse ofy
dimensionality”). In addition, DP assumes the availability of
an exact model, in the form of transition probabilities. In many
practical situations, such a model is not available and one must
resort to simulation or experimentation with an actual system.
For all of these reasons, dynamic programming in its pure form,
may be inapplicable.

The efforts to overcome the aforementioned difficulties in-

volve the following two main ideas:

1) the use of simulation to estimate quantities of interest,
thus avoiding model-based computations;

2) the use of parametric representations to overcome the
curse of dimensionality.

(weights), andV is a so-called approximation archi-
tecture. For examplef((i, r) could be the output of a
multilayer perceptron with weights, when the input

is 7. Other representations are possible, e.g., involving
polynomials, linear combinations of feature vectors,
state aggregation, etc. When the main ideas from DP are
combined with such parametric representations, one ob-
tains methods that go under the names of “reinforcement
learning” or “neuro-dynamic programming” (see [5] and
[26] for textbook expositions, as well as the references
therein). A key characteristic is that policy optimization
is carried out in an indirect fashion; one tries to obtain
a good approximation of the optimal value function of
dynamic programming, and uses it to construct policies
that are close to optimal. Such methods are reasonably
well, though not fully, understood, and there have been
some notable practical successes (see [5] and [26] for
an overview), including the world-class backgammon
player by Tesauro [28].

) Parametrized Policiesn an alternative approach, which

is the one considered in this paper, the tuning of a parame-
trized value function is bypassed. Instead, one considers a
class of policies described in terms of a parameter vector
6. Simulation is employed to estimate the gradient of the
performance metric with respect & and the policy is
improved by updating in a gradient direction. In some
cases, the required gradient can be estimated using infin-
itesimal perturbation analysis (IPA) (see, e.g., [17], [12],
[8], and the references therein). For general Markov pro-
cesses, and in the absence of special structure, IPA is in-
applicable, but gradient estimation is still possible using
“likelihood-ratio” methods [14], [15], [13], [21], and [16].

Parametric representations, and the associated algorithms3) Actor—Critic MethodsA third approach, which is a com-

can be broadly classified into three main categories.

1) Parametrized Value Functiondnstead of associating
a valueV (i) with each state, one uses a parametric
form V' (i, r), wherer is a vector of tunable parameters
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bination of the first two, includes parameterizations of
the policy (actor) and of the value function (critic) [4].
While such methods seem particularly promising, theo-
retical understanding has been limited to the impractical
case of lookup representations (one parameter per state)
[19].

This paper concentrates on methods based on policy parame-
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f Markov decision processes, almost everything applies to the
marMore general case of Markov reward processes that depend on a
parameter vectdt, and we proceed within this broader context.
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metric that has been presented in different forms and for various
contexts in [15], [7], [11], [18], [29], and [9]. We then suggest a
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method for estimating the terms that appear in that formula. This  with probability 1, which is the strongest possible result
leads to a simulation-based method that updates the parameter for gradient-related stochastic approximation algorithms.
vectord at every regeneration time, in an approximate gradient 3) The method admits approximate variants with reduced
direction. Furthermore, we show how to construct an online  variance, such as the one described in Section V, or var-
method that updates the parameter vector at each time step. The ious types of actor—critic methods.
resulting method has some conceptual similarities with thoseThe remainder of this paper is organized as follows. In Sec-
described in [8] (that reference assumes, however, the avgin |1, we introduce our framework and assumptions, and state
ability of an IPA estimator, with certain guaranteed propertiegme background results, including a formula for the gradient of
that are absent in our context) and in [18] (which, however, dog& performance metric. In Section I1l, we present an algorithm
not contain convergence results). . that performs updates during visits to a certain recurrent state,
The method that we propose only keeps in memory and Ui sent our main convergence result, and provide a heuristic ar-
dates2K + 1 numbers, wheré( is the dimension 0. Other o, ment. Sections IV and V deal with variants of the algorithm
than ¢ itself, this includes a vector similar to the “eligibility 1,4 perform updates at every time step. In Section VI, we spe-

trace” in Sutton’s temporal difference methods, and (as in [18))yi;6 our methods to the case of Markov decision processes

an estimate\ of the average reward under the current value @i+ are optimized within a possibly restricted set of parametri-

9,; I tr:watt(_astlmzt_e V\t/asl acgtl;]rateﬁour method wouldhbe a standay y represented randomized policies. We present some numer-
stochastic gradient algorithm. However feiseeps changingy ;.o "reqits in Section VII, and conclude in Section VIII. The

is generally a biased estimate of the true average reward, andI %thy proof of our main results is developed in Appendices |
mathematical structure of our method is more complex than thlfHd I

of stochastic gradient algorithms. For reasons that will become

clearer later, standard approaches (e.g., martingale arguments or

the ODE approach) do not seem to suffice for establishing con- Il. MARKOV REWARD PROCESSESDEPENDING ON A
vergence, and a more elaborate proof is necessary. PARAMETER

Our gr:_adugnt esnmgtor can also be derived or m_terpre.ted Mn this section, we present our general framework, make a few
terms of likelihood ratios [15], [13]. An alternative simulation-

: ; : - assumptions, and state some basic results that will be needed
based stochastic gradient method, again based on a likelih :ﬁir P

ratio formula, has bgen provided in [14], and uses the SIMYa\ve consider a discrete-time, finite-state Markov chgint
tion of tworegenerative cycles to construct an unbiased estlm%ﬁ}h state Spacs — " -
) ) ; pacé = {1, ..., N}, whose transition probabili
of the gradient. We note some of the differences with the latt 2L depend on a parameter vealae ¥, and are denoted by
work. First, the methods in [14] involve a larger number of aux- '
iliary quantities that are propagated in the course of a regenera-
tive cycle. Second, our method admits a modification (see Sec- pij(0) = Plin = j|in_1 =1, 0).
tions IV and V) that can make it applicable even if the time until
the next regeneration is excessive (in which case, likelihosdhenever the state is equalitove receive a one-stage reward,
ratio-based methods suffer from excessive variance). Third, dbat also depends ah and is denoted by; ().
estimate\ of the average reward is obtained as a (weighted) For everyd € R%, let P(6) be the stochastic matrix with
average of all past rewards (not just over the last regeneratergriesp;;(6). Let P = {P(6) | § € RE} be the set of all such
cycle). In contrast, an approach such as the one in [14] wouteatrices, and leP be its closure. Note that every elemenif
construct an independent estimate)ofluring each regenera-is also a stochastic matrix and, therefore, defines a Markov chain
tive cycle, which should result in higher variance. Finally, ousn the same state space. We make the following assumptions.
method brings forth and makes crucial use of the value (differ- Assumption 1:The Markov chain corresponding to every
ential reward) function of dynamic programming. This isimporP ¢ P is aperiodic. Furthermore, there exists a staterhich
tant because it paves the way for actor—critic methods in whighrecurrent for every such Markov chain.
the variance associated with the estimates of the differential reane will often refer to the times that the stateis visited as
wards is potentially reduced by means of “learning” (value fungegeneration times
tion approximation). Indeed, subsequent to the first writing of Assumption 2:For every:, j € S, the functiong; ;(¢) and
this paper, this latter approach has been pursued in [20], [27],,(6) are bounded, twice differentiable, and have bounded first
In summary, the main contributions of this paper are as fodnd second derivatives.
lows. The performance metric that we use to compare different poli-
1) We introduce a new algorithm for updating the parameies is the average reward criteria¢¥), defined by
ters of a Markov reward process, on the basis of a single
sample path. The parameter updates can take place either t
during visits to a certain recurrent state, or at every time M) = lim lEg Z gik(9)] )
step. We also specialize the method to Markov decision t—oo t =0
processes with parametrically represented policies. In this
case, the method does not require the transition probalsilere, i is the state at timé, and the notatiorFy[-] indicates
ities to be known. that the expectation is taken with respect to the distribution of
2) We establish that the gradient (with respect to the parathe Markov chain with transition probabilities; (#). Under As-
eter vector) of the performance metric converges to zemymption 1, the average rewax¢p) is well defined for every,
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and does not depend on the initial state. Furthermore, the baherei is the state at timg, and7Z” = min{k > 0], = *}is

ance equations the first future time that stat& is visited. With this definition,
N it is well known thaty;- (#) = 0, and that the vectos(f) =
Z i ()i (0) =m;(8), j=1,...,N=1, (1) (v(8), ..., vn(6))Iis asolution to the Poisson equation
= g(0) = v+ NB)e — P(O)v
Z mi(0) =1 (2) Whereg(6) = [g1(0), ..., gn(6)] ande is equal to the all-one
=1 vector(l, ..., 1).
have a unique solution(8) = (71(8), ..., 7n(8)), with 7;(8) The following proposition gives an expression for the gra-
being the steady-state probability of statender that particular dient of the average reward(#), with respect td. A related
value ofé, and the average reward is equal to expression (in a somewhat different context) was given in [18],
N and a proof can be found in [7]. (The latter reference does not
A(#) = Z 7;(0)g:(6). (3) consider the case whegg() depends or#, but the extension
i=1 is immediate). Given the importance of this result, and because
We observe that the balance equations (1) and (2) are of thasting proofs are somewhat involved, we provide a concise
form self-contained proof, for the benefit of the reader.
Proposition 1: Let Assumptions 1 and 2 hold. Then,
A@)r(0)=a
where a is a fixed vector andA(6) is an N x N matrix. VA) =Y mi(6) (Vgi(e) +ZVPU(9)UJ(9)> :
(Throughout the paper, all vectors are treated as column €S Jjes
vectors.) Using the fact that(#) depends smoothly oft, we Proof: We carry out the proof using vector notation, and
have the following result. using the superscrigf to denote vector transposition. All gra-

Lemma 1: Let Assumptions 1 and 2 hold. Then(f) and dients are taken with respectdpbut to unclutter notation, the
A(6) are twice differentiable, and have bounded first and secoddpendence oé is suppressed.

derivatives. We start with the Poisson equatign= v + Ae — Pv, and
Proof: The balance equations are of the farf?)=(6) = left-multiply both sides withv=7', to obtain
a, where the entries afi(#) have bounded second derivatives (VaT)g = (VaTyw + AVaT e — (VaT)(Po). ©6)

(Assumption 2). Since the balance equations have a unique so- . _ ) . _
lution, the matrixA(6) is always invertible, and Cramer’s ruleNOte thatr™ ¢ = 1, which yieldsVz~ ¢ = 0. Using the balance

yields equationt’ P = 7', we obtain
%0) Vil = V@t P) = (VahP + 71 (VP).
m(6) = det(A(9)) @ we right-multiply both sides by, and use the resulting relation

. ) ] to rewrite the right-hand side of (6), leading to
where C(6) is a vector whose entries are polynomial func- T T
(Vrt)g=n"(VP)v.

tions of the entries ofd(#). Using Assumption 2(C(#) and
det(A(6)) are twice differentiable and have bounded first an@hus,
second derivatives. VA = V(WTQ) _ 7rT(Vg) + (VWT)Q _ 7rT(Vg) +7TT(VP)U

More generally, suppose th&t € P, i.e., P is the limit of

the stochastic matricef3(6;,) along some sequenég. The cor- which is the desired result. . n
Equation (3) forA(¢) suggests thalvA(#) could involve

responding balance equations are again of the fa{li)r = _ ; _
a, where A(P) is a matrix depending of. Under Assump- t_erms of the formivr;(6), but the expression given by Proposi-

tion 1, these balance equations have again a unique solutié®f) 1 involves no such terms. This property is very helpful in
which implies tha] det(A(P))| is strictly positive. Note that Producing simulation-based estimatesiot(6).

| det(A(P))|is a continuous function P, andP lies in the set . . .
P, which is closed and bounded. It follows thaet(A(P))] is B. A.\n Idealized Grad|.ent Algor?th.m

bounded below by a positive constantSince everyP(¢) be-  Given that our goal is to maximize the average rews(@),
longs to, it follows that|det(A(f))| > ¢ > 0, for everyq. itis natural to consider gradient-type methods. If the gradient of
This fact, together with (4), implies that ) is twice differen- A(¢) could be computed exactly, we would consider a gradient
tiable and has bounded first and second derivatives. The sadgorithm of the form

property holds true fok(#), as can be seen by twice differenti- Ort1 = Or + 7 VA().

ating the formula (3). Based on the fact that#) has bounded second derivatives, and

A. The Gradient of\(6) under suitable conditions on the stepsizgsit would follow
thatlimy ., VA(6x) = 0 and that\(6;) converges [2].

Alternatively, if we could use simulation to produce an un-
biased estimaté;, of VA(6:), we could then employ the sto-
chastic gradient iteration

For anyd € RX andi € S, we define the differential reward
v;(8) of statei by
T—1

w(8) =By |3 (0.0 - XO)lio=i| ()

0 Ort1 = Or + il
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The convergence of such a method can be established if we tsestimatey; (8), where) is some estimate of(6#). Note that

a diminishing stepsize sequence and make suitable assumptign&) = 0 and does not need to be estimated. For this reason,
on the estimation errors. While one can construct unbiased e let

timates of the gradient [14], it does not appear possible to use R .
them in an algorithm which updates the parameter vettatr Yi, (97 ’\> =0

every time step—which is a desirable property, as discussed ir"3 accumulating the above described estimates over a reqen-
Section lI-D. This difficulty is bypassed by the method devel- y umuiating the v ' >St Verareg
oped in Section I erative cycle, we are finally led to an estimate of the direction

of VA(#) given by

if n=¢t,,.

tm+171
Ill. THE SIMULATION -BASED METHOD < . <
_ _ _ _ By (9, A) = > (Uz (97 )\) Li,_yi, (6) + ng‘n(9)) :
In this section, we develop a simulation-based algorithm in ety
which the gradieniV\(6) is replaced with a biased estimate, 8

obtained by simulating a single sample path. We will eventuallhe random variables;,, (¢, A) are independent and identically
show that the bias asymptotically vanishes, which will then le&listributed for different values of, because the transitions
to a convergence result. For technical reasons, we make the #iring distinct regenerative cycles are independent.

lowing assumption on the transition probabilitis(6). We define f(6, A) to be the expected value df,, (6, V),
Assumption 3:For everyi and;, there exists a bounded func-namely
tion L;;(#) such that . N
: 7(6.3) =B [F (6,1)]. ©)

Vpi(0) = pi;(0)Li;(0), V9. . g . _
The following proposition confirms that the expectation of
Note that wherp;;(¢) > 0, we have F,.(8, \) is aligned withVA(8), to the extent thah is close
_ Vpij(e) to )\(9)
ii(0) = i (0) Proposition 2: We have

which can be interpreted as a likelihood ratio derivative term f (9, 5\) = Eo[TIVA(0) + G(0) ()\(9) - 5\)
[21]. Assumption 3 holds automatically if there exists a positiMghere
scalare, such that for every, 5 € S, we have

tm+171
eitherp;;(8) =0, V6, or py()>c V6. GO)=FEo| > (tmp1 - ”)Lin—lin(e)l - (10
n=t,,+1
Proof: Note that forn = ¢, +1, ..., t;1 — 1, we have
A. Estimation ofV A(6) tomg1—1

Throughout this subsection, we assume that the paraméter(& 5\) = > (G (O)=MO))+(tmp1—n) ()\(9) - 5\) :

vectorf is fixed to some value. Ldt,, } be a sample path of the k=n
corresponding Markov chain, possibly obtained through simiiherefore,
lation. Lett,,, be the time of thenth visit at the recurrent state - tmp1—1
i*. We refer to the sequenég, , i, 41, ..., 4,,,, as themth By, (9, )\) = Y anli,_,i, ()
regenerative cycleand we define itéength’Z;,, by n=ty+1
Frp1—1
T = g1 — tin- + Z (trn-f—l - 7’L) ()‘(9) - 5‘)
For a fixed#, the random variables,,, are independent identi- n=tm+l
cally distributed, and have a (common) finite mean, denoted by Fng 1
E(-)[T] : Linflin(e) + Z Vgin(e)a
Our first step is to rewrite the formula f&r A(6) in the form =
where
trgp1—1
VA =2 (O (VW) > p“(e)L“(””j(@)) | = Y (9.00) - A0, (11
1CS j€s =

Estimating the term;(6)Vg;(¢) through simulation is straight- \ya consider separately the expectations of the three sums above.
forward, assuming that we are able to compuig (¢) for any Using the definition of#(#), the expectation of the second sum
given: and¢. The other term can be viewed as the expectas oq, a1 to7(9)(A\(8) — A). We then consider the third sum. As
tion of v;(¢)Li; (), with respect to the steady-state probabilityg el known, the expected sum of rewards over a regenera-
mi(0)pi;(#) of transitions from to ;. Furthermore, the defini- i cycle is equal to the steady-state expected reward times the
tion (5) of v;(6), suggests that if,, < n < tmi1 —1,@nd  gypected length of the regenerative cycle. Therefore, the expec-
= j, We can use tation of the third sum is

tomgr—1 trmg1—1
G (9, X): 3 (gik(H)—S\) @) Eo| Y Ve, 0)| = B[11> w (0)Vei(6). (12)
k=n n=ty, 1ES
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We now focus on the expectation of the first sum. ko= the transition probabilitieg; ; (6., ) until the next time,,,+ that

tm + 1, ..., tmer — 1, let +* is visited, and update according to

An = (an - Vi, (9))Liqz—1iqz(9)' ern-f—l = ern + ’anFrn (97717 5‘771) (15)
Let 7, = {io, ..., in} stand for the history of the process . . tmt1—1 .
up to timen. By comparing the definition (11) af,, with the Am41 = A+ 17m Z (gin(em) - )‘m) (16)
definition (5) ofwv;, (6), we obtain =t

wherey,, is a positive stepsize sequence (cf. Assumption 4) and
Eelan | Fu] = vi, (6). (13) ;> 0 allows to scale the stepsize for updatihdy a positive
It follows that Es[A,, | F.] = 0 constant. To see the rationale behind (16), note that the expected

Let x, = 1if n < 41, @andy, = 0, otherwise. For any update direction fon is

n > t,,, we have tog1—1 ’ ’
Eq 9, (0) = \)| = Bo[T] (M6) - A) (A7)
E0 [XnAn | th] :E0 [EQ[XNAN |Fn] |th] n;m ( ) ( )

o benBolBn | Ful [ 71, which movesh\ closer toA(6).

We then have Assumption 4:The stepsizes,, are nonnegative and satisfy
tm41—1 ) =) [=S)
Eo| > AalFi | =Ee| X XnAn'ffm] Do Im=00 D <o
n=t,+1 n=t,,+1 m=1 m=1
_ i Eo[xnn | Fi ] =0 Assumption 4 is satisfied, for example, if we tgt, = 1/m.
- £ "~ b Xnn | Sl =T It can be shown that if is held fixed, but\ keeps being up-

dated according to (16), thenconverges to\(6). However, if
(The interchange of the summation and the expectation canéis also updated according to (15), then the estim\atecan
justified by appealing to the dominated convergence theorenilag behind”A(8,,,). As a consequence, the expected update di-

Therefore, we have rection foré will not be aligned with the gradiefz A(6).
to1—1 An aIterngtive approachwthat we do not pursue is to use dif-
E, Z anLi. i (6) ferent.stgpszeg fc_>r updatingandé. If the stepsmg used to up-
it no datef is, in the limit, much smaller than the stepsize used to up-
topi—1 date), the algorithm exhibits a two-time scale behavior of the
- E, Z v (0)Li. i (O] . form studied in [3]. In the Iimit)\m is an incregsingly accurate
PR noth estimate ofA(6,,,), and the algorithm is effectively a stochastic

gradient algorithm. However, such a method would make slower
The right-hand side can be viewed as the total reward ovepggress, as far d@is concerned. Our convergence results indi-
regenerative cycle of a Markov reward process, where the tate that this alternative approach is not necessary.

ward associated with a transition frarno j is v, (6)L;;(#). Re- We can now state our main result, which is proved in Ap-
calling that any particular transition has steady-state probabilggndix I.
7;(8)pi;(#) of being fromi to j, we obtain Proposition 3: Let Assumptions 1-4 hold, and 1¢¢,,,} be

top 1 the sequence of parameter vectors generated by the above de-

B, Z anLi (9)1 scribed algorithm. Them\(6,,,) converges and
n=tm+l lim VA(6,,)=0
=Eo[T1> > mi(0)pi; (0)Li;(0)v;(6).  (14) N
i€S jES with probability 1.

By combining (12) and (14), and comparing with the formulg A Heuristic Argument

for VA(6), we see that the desired result has been proves. . . . . .
In this subsection, we approximate the algorithm by a suitable

B. An Algorithm that Updates at Visits to the Recurrent Staté2PE (88 in [22]), and establish the convergence properties of
the ODE. While this argument does not constitute a proof, it

We now use the approximate gradient direction provided Ry, strates the rationale behind our convergence result.
Proposition 2, and propose a simulation-based algorithm thaiye replace the update directions by their expectations under

performs updates at visits to the recurrent statéVe use the ne current value of. The resulting deterministic update equa-
variablem to index the times when the recurrent staltés vis-  ions take the form

ited, and the corresponding updates. The form of the algorithm

is the following. At the timet,,, that statei* is visited for the 01 =0 + v f (9;1,,,, 5\;1,1)

mth time, we have available a current vedigy and an average - - -
reward estimate.,,. We then simulate the process according to A1 = Ao+ 1Ym Ega [T ()\(9;171,) - )‘;171,)
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wheref (6, \) is given by Proposition 2, and whefg, and)¢, D. Implementation Issues
are the deterministic counterparts&f and A,,,, respectively. For systems involving a large state space, as is the case in

With an asymptotically vanishing stepsize, and after rescalirﬁgany applications, the interval between visits to the statan
time, this deterministic iteration behaves similar to the following, large. Consequently.

system of differential equations: 1) the parameter vectdrgets updated only infrequently;

2) the estimatd’,,(#) can have a large variance.

y G(6:) 5

b0 =VAB) + Ey, [T (A(et) B )‘t) (18) In the following, we will address these two issues and propose
L < two modified versions: one which updatgat every time step,

Av =1 (A(et) B )‘t) : (19) " and one which reduces the variance of the updates.

Note that), and\(6,) are bounded functions since the one-stage

Lo 2~ V. AN ALGORITHM THAT UPDATES AT EVERY TIME STEP
rewardg;(¢) is finite-valued and, therefore, bounded. We will

now argue thaf, converges. In this section, we develop an algorithm which updates the
We first consider the case where the initial conditions satisBarameter vectat at every time step. We start by indicating an
Ao < A(#o). We then claim that economical way of computing the update directiBn (6, A).
y This will allow us to break?,,,(#) into a sum of incremental
A < A(6y) Yt > 0. (20) updates carried out at each time step.

. Taking into account that;, (0, \) = 0, (8) becomes
Indeed, suppose that at some titgave havel,, = A(6y,). If
VA(#:,) = 0, then we are at an equilibrium point of the dif- £,,(4, A)

ferential equations, and we haxe = A(6,) for all subsequent tonp1—1 fop1—1
times. Otherwise, iV A(d,,) # 0, thend,, = VA(6;,), and = G (9’ 5\) Li 0@+ Y Vg.(0)
M#,,) > 0. At the same time, we havg, = 0, and this im- n=tom A1 el
plies that\, < \(6,) for ¢ slightly larger thart,. The validity trmt1—1 tmip1—1 R
of the claim (20) follows. As long a&, < A(6;), A isnonde- = > | Vg, (6)+ Li, i, (6) > (g,;k(e) - A))
creasing and since it is bounded, it must converge. n=tp,+1 k=n

Suppose now that the initial conditions satisfy > A(6p). + Vg (8)
As long as this condition remains truay, is nonincreasing. trng1—1 R k
There are two possibilities. If this condition remains true for = Z Vg, (0) + (gik(ﬁ) - /\) Z Li, .. (9))
all times, then\, converges. If not, then there exists a titge k=t +1 =t +1

such that\,, = A(6,,), which takes us back to the previously —+ Vg;-(6)
considered case. tmt1—1

Having concluded that, converges, we can use (19) toargue = Vg (6) + > (Vgik (0) + (gik(e) — 5\) zk)
that A(f;) must also converge to the same limit. Then, in the k=t +1
limit, 8, evolves according 6, = VA(6,), from which it fol-
lows thatV A(¢;) must go to zero.

We now comment on the nature of a rigorous proof. There k k
are two common approaches for proving the convergence of sto-  ,, — Z Li . (0) = Z M
chastic approximation methods. One method relies on the exis- St netot1 Pinovin (0)
tence of a suitable Lyapunov function and a martingale argu- ] ) )
ment. In our contextA(6) could play such a role. However, S & vector (of the same dmensmn@sthat _becomes available
as long as\,, # A(6,.), our method cannot be expressed 2@ timek. It can be updated recursively, with
a stochastic gradient algorithm and this approach does not go
through. (Furthermore, it is unclear whether another Lyapunov Zt =0, (21)
function would do.) The second proof method, the so-call
ODE approach, shows that the trajectories followed by the al-
gqn.thr_n converge to the trajectories of a correspondmg dt_ater;ijr1 = 21+ Ligi, , (6), E=tm, ... tms1 — 2. (22)
ministic ODE, e.g., the ODE given by (18) and (19). This line
of analysis generally requires the iterates to be bounded fule note that, is the likelihood ratio derivative that commonly
tions of time. In our case, such a boundedness property is agises in likelihood ratio gradient estimation [15], [13].
guaranteed to hold. For examplegiktands for the weights of The preceding formulas suggest the following algorithm
a neural network, it is certainly possible that certain “neurongthich updates at every time step. At a typical timk, the
asymptotically saturate, and the corresponding weights drift$eate isi;, and the values of,, z, and.\; are available from
infinity. We therefore need a line of argument specially tailoreghe previous iteration. We updafieand A according to
to our particular algorithm. In rough terms, it proceeds along the
same lines as the above provided deterministic analysis, except 6.1 =6 + v (vgik(ek) + (gik(ek) — :\k) zk)
that we must also ensure that the stochastic terms are not signif- _ . .
icant. Akg1 = Ak + 107k (Qik(9k) - )\k) .

where, fork = ¢,, + 1, ..., tmy1 — 1,
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We then simulate a transition to the next state; according associated with likelihood ratio methods.) For this reason, it may
to the transition probabilities;;(8+1), and finally update by  be preferable to introduce a forgetting factere (0, 1) and
letting updatez; according to

P A if gy =" _fo, if Gppy =
“hotl 2k + Ligi,,, (0r), otherwise. P T\ azy + Ligi,,, (Bk)  otherwise.

In order to implement the algorithm, on the basis of the abovgis modification, which resembles the algorithm introduced in

equations, we only need to maintain in mem®#y + 1 scalars, [18], can reduce the variance of a typical update, but introduces

namely, and the vectors, z. a new bias in the update direction. Given that gradient-type
To prove convergence of this version of the algorithm, W@ ethods are fairly robust with respect to small biases, this mod-

have to strengthen Assumption 1 of Section Il. Assumptionifcation may result in improved practical performance; see the
states that for every fixed parameéemwe will eventually reach ymerical results in Section VII.

the state™. Here, we need to make sure that this will remain so, gimilar to [18], this modified algorithm can be justified if we
even if¢ keeps changing; see [23] for further discussion of thigynroximate the differential reward with
assumption.

Assumption 5:There exist a stat& € S and a positive in-

T
teger Ny, such that, for every statec S and every collection vi(8) = Ep Z o*(gi, (6) = A(©)) o = 'L]
{P,, ..., Py,} of Ny matrices in the seP, we have k=0
No [ whereT = min{k > 0|4 = ¢*} (which is increasingly accu-
S E] »o rate as 1 1), use the estimate
n=1 Li=1 PrRd _ T _
We also impose an additional condition on the stepsizes. i, (97 /\> => o (Qik (0) — /\>
Assumption 6:The stepsizes; are nonincreasing. Further- k=n
more, there exists a positive integeand a positive scalat  instead of (7), and then argue similar to Section . The analysis
such that of this algorithm is carried out in [23] and, with less detail, in
ntt [24].
D (m—m) S AL Vn, t>0.
k=n VI. MARKOV DECISION PROCESSES
Assumption 6 is satisfied, for example, if we kgt = 1/k. In this section, we indicate how to apply our methodology

With}hi; choice, and if we initializa to zero, itis_ easi_lyverified to Markov decision processes. An important feature, which is
that A, is equal to the average reward obtained in the #rst ¢\ igent from the formulas provided at the end of this section, is

transitions. _ o that the algorithm is “model-free”: as long as the process can be

We have the following convergence result, which is proved @) yyated or is available for observation, explicit knowledge of
Appendix 1. _ _ the transition probabilities;;(#) is not needed.

Proposition 4: Let Assumptions 16 hold, and 1¢6} be  \yg consider a Markov decision processes [1], [25] with fi-
the sequence of parameter vectors generated by the aboveflg-ciate spacé = {1, ..., N} and finite action spact/ =
scribed algorithm. Theny(6,) converges and {1, ---, M}. Atany state, the choice of a control actiane U

lim VA(6;) =0 determines the probability;; () that the next state j5 The im-
k=00 mediate reward at each time step is of the fagfu), wherei
with probability 1. andw is the current state and action, respectively.

The algorithm of this section is similar to the algorithm of A (randomizedlpolicyis defined as a mapping
the preceding one, except thais continually updated in the "
course of aregenerative cycle. Because of the diminishing step- S [0, 1]
size, these incremental updates are asymptotically negligibjg,, componentsu, () such that
and the difference between the two algorithms is inconsequen-
tial. Given that the algorithm of the preceding section converges, Z p(8) =1 Vies.
Proposition 4 is hardly surprising. The technique in our conver- wel

gence proof use is similar to the one in [8]. However, mappg,Ider a policyy, and whenever the state is equalifaction
i

s chosen with probability:,,(¢), independent of everything
else. If for every stateé there exists a single for which ., (%)
is positive (and, therefore, unity), we say that we haymiee
policy.
For problems involving very large state spaces, it is impos-
sible to even describe an arbitrary pure poligysince this re-
When the length of a regeneration cycle is large, the vectuires a listing of the actions corresponding to each state. This
zr. Will also become large before it is reset to zero, resultingads us to consider policies described in terms of a param-
in high variance for the updates. (This is a generic difficultgter vecto® = (61, - - -, ), whose dimensiolk is tractable

into the context of parametrized Markov reward processes,
assumes that the transition probabilitigs(¢) are independent
of ¢ [the one-stage rewards(#) can still depend od]. The sit-

uation here is more general, and a separate proof is needed

V. AN ALGORITHM THAT MAY REDUCE THEVARIANCE
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small. We are interested in a method that performs small incre- a method may stall within a poor set of policies for the

mental updates of the parameterA method of this type can simple reason that the actions corresponding to better
work only if the policy has a smooth dependence&pand this policies have not been sufficiently explored.
is the main reason why we choose to work with randomizedSince }°, ., pu(i, ) = 1 for every 6, we have
policies. > ey Viw(i, 8) =0, and

We allow @ to be an arbitrary element &t. With every ‘
6 € R, we associate a randomized polie{f), which at any Vgi(f) = Z Viea(d, 0)(gi(u) = A))-
given state; chooses actiom with probability 4, (¢, #). Nat- uel

urally, we require that every,, (i, #) be nonnegative and thatFurthermore,

> ucu Mu(i, 8) = 1. Note that the resulting transition proba- Vi (0w (0) = Yy (i 0)pes (B
e e e by D7 Vpig(6u(6) = - Y Vinuli, Opis (w)s(6).

Jjes JES el
pi(0) = (i, O)pij(w) (23) Using these relations in the formula f&FA(6) provided by
uel Proposition 1, and after some rearranging, we obtain
and the expected reward per stage is given by . Vi, 0
| VAO = 30 3w 0 u(0) )
gi(0) = pui, 0)gi(w). 5 Pl
uet where

The objective is to maximize the average reward under policy
1(6), which is denoted by\(6). This is a special case of the @i, u(f) = (gi(u) = M#)) + Z pij(w)v;(6)
framework of Section Il. We now discuss the various assump- jes
tions introduced in earlier sections. . .
In order to satisfy Assumption 1, it suffices to assume that =EBa | > (90 (w) = NO)) i = i, 0 =
there exists a staté which is recurrent under every pure policy, ) kz(,) )
a property which is satisfied in many interesting problems. f'd Wherei, andw, is the state and control at timie Thus,
order to satisfy Assumption 2, it suffices to assume that tHe(¢) iS the differential reward if control actioa is first ap-
policy has a smooth dependencefom particular, thaf, (i, §) plied in state/, and policy.(9) is followed thereafter. It is the

is twice differentiable (irf) and has bounded first and second@me as Watkinsi-factor [30], suitably modified for the av-
derivatives. Finally, Assumption 3 is implied by the followingEr@ge reward case.

T—1

condition. From here on, we can proceed as in Section Il and obtain an
Assumption 7:For everyi and «, there exists a boundeg?@lgorithm that update# at the timeg,,, that state™ is visited.
function L, (i, ) such that The form of the algorithm is
Vi, 6) = i, O)Lu(i 0) V6. Our = O+ (O )
This assumption can be satisfied in any of the following ways. 5 S t”i_l ( () — 5 )
1) Consider a smoothly parametrized functigii, 6) that meAL = Am T = Jin\lin "
maps state-action pai(g, «) to real numbers, and sup- h "
pose that where .
tog1— .
" 7 9 Y ~ VU'un (vaern)
i, 0) = —Pruli 0) Fo (9,,1, )\m) =Y o
ZeXP(T'u(@ 9)) nete, Huy \(tny Um
» and
Assumption 7 is satisfied once we assume thai, 6) . ot ‘ i
has bounded first and second derivatives. This particular i, kz_: (9“' (ur) — m) :

form is common in the neural network literature: the ) i ] ) _
ru(i, 0) are the outputs of a neural network with inpuﬁlmllar to Section IV, an on-line version of the algorithm is also
(i u’) and internal weights, and an action is selected POSSible. The convergence results of Sections Il and IV remain

by a randomized “soft maximum.” valid, with only notation changes in the proof.
2) We may artificially restrict to policies for which there
exists some > 0 such that VII. EXPERIMENTAL RESULTS FOR ANADMISSION CONTROL
PROBLEM

w(1,0) > ¢ Vi, u, 6. . . . . . .
Hali 0) 2 T In this section, we describe some numerical experiments with

Such policies introduce a minimal amount of “exa call admission control problem. This problem arises when
ploration,” and ensure that every action will be triec service provider with limited resources (bandwidth) has to
infinitely often. This can be beneficial because thaccept or reject incoming calls of several types, while taking
available experience with simulation-based methods forto account current congestion. The objective is to maximize
Markov decision processes indicates that performantmg-term average revenue. More details on the experiments re-
can substantially degrade in the absence of exploratiqgrorted here can be found in [23].
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A. Problem Formulation TABLE |
. L . . . CALL TYPES

Consider a communication link with a total bandwidthzef
units, which supports a finite sdtl, 2, ..., M} of different CALLTYPEm | 1 2 3
service types. Each service type is characterized by its band-

- . . . : b(m) 1 1 1
width requirement(m), its call arrival ratex(m), and its av- a(m) 18 16 14
erage holding timel /3(m), where we assume that the calls 1/B(m) 1/0.6 1/0.5 1/0.4
(customers) arrive according to independent Poisson processes, c(m) 1 2 4

and that the holding times are exponentially (and independently)
distributed. When a new customer requests a connection, we ~=%,
decide to reject, or, if enough bandwidth is available, to acce

the customer. Once accepted, a customer of classized(m) Boas
units of bandwidth for the duration of the call. Wheneverace §
of service typem gets accepted, we receive an immediate r &
ward of ¢(m) units. The reward(m) can be interpreted as the 200 |
price customers of service type are paying for using(m)

units of bandwidth of the link for the duration of the call. The ®®c %5 2 % 4 &% & 7 8 % 10
goal of the link provider is to exercise call admission control i
a way that maximizes the long term revenue. 13 r . r . r r r . r

Using uniformization, the problem is easily transformed int o ~ __—memmm 7T .

a discrete-time Markov decision process. The state canbeta 1} -7  __.----="""777 .
to be of the formi = (s(1), ..., s(M), w), wheres(m) de- wt s LemTT ]
notes the number of active calls of typg andw indicates the & 4/,~ i
type of event that triggers the next transition (a departure or i B'L -
rival of a call, together with the type of the call) Jfindicates an

7 L N L ! ) 2 " L !

arrival of a call of classn and if there is enough free bandwidth ~ °© ™ 2 % 0 nses . ¥ ¥ ®
to accommodate it, there are two available decisions, namely,
u, (accept) or,. (reject). Fig. 1. Parameter vectors and average rewards (computed exactly) of the

; i i~i ; orresponding admission control policies, obtained by the idealized gradient

We_conS|de_r randomized pOlICIeS of the fo”.OWI.ng form. Ifélgorithm. The solid, dashed, and dash-dot line correspond to the threshold
th?re is an arrival of a call of class, we accept it with proba- yajuess, , 6,, andés, associated with service types 1, 2, and 3, respectively.

bility

1 0.8868. (Of course, the optimal average reward within the re-

fu, (45 0) = . stricted class of randomized policies that we have introduced
1+exp(s-b—6(m)) T . .

earlier will have to be less than that.) Under an optimal policy,

Here,s - b = 3" s(m)b(m) is the currently occupied band-customers of type 2 and 3 are accepted whenever there is avail-

width andd(m), themth component of, is a policy parameter. able bandwidth. Customers of type 1 are accepted only if the
Note that currently used bandwidth does not exceed 7.

2) ldealized Gradient Algorithm:For such a small example,
o, (1, 6) > 0.5, ifandonlyif s-b<6(m). we can numerically calculat® A(¢), for any givend, which
allows us to implement the idealized algorithm
Thus,f(m) can be interpreted as a “fuzzy” threshold on system
occupancy, which determines whether typecalls are to be Ot = O + VAL

admitted or rejected. _ . of Section 1I-B. The evolution of this algorithm, starting with
In our experiments, we consider a link with a total band; _ (8, 8, 8), is shown in Fig. 1. After 100 iterations, we have
width of 10 units, and three different call types. The detaileéfl)00 _ 67':5455') 11,7511 12.8:;35) and the correspor;ding av-
parameters are given in Table | and correspond to a modg age reward is equal to 0.8808, which is very close to optimal.
ately-to-heavily loaded system. (If all calls were accepted, the,o o ronapilities of accepting a new call are given in Fig. 2.
I|nI_< ut|I|z_at|0n Wogld be 77.5%). The number pf link conﬂgu- 3) Simulation-Based Algorithm that Updates at Every Time
rations (i.e., possible choices sfthat do not violate the link gten: \we implemented a streamlined version of the algorithm
capacity constraint) turns out to be 286. given Section IV, where we reset the vectpmot only at visits
Any state(s, w) inwhichs = (0, ..., 0) andw corresponds y, e recurrent statéf, but at visits to all states — (s, w)
to an arrival of a new call, is recurrent under any policy, and cgf, \vhich s — (0, ..., 0). A justification of this modifica-
therefore play the role of". tion, which does not change the mean direction of the update
or the convergence properties, is given in [23]. In this version,
B. Results the vectorz;, gets updated roughly every 10 000 time steps. We
1) Optimal Policy: Since the state space is relatively smalktarted with the same initial parameter= (8, 8, 8), and the
an optimal policy can be obtained using standard dynamic piinitial estimate of the average rewakg was set to 0.78. The
gramming methods [1]. The optimal average reward is equaldoaling factor in the update equation was chosen tg b€0.1.
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Probability of accepting a call of service type 1 Probability of accepting a call of service type 1
T T T T 1 T T Y T
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1 g 1 4
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Fig. 2. Probabilities of accepting a new call, as a function of the alreadyd- 4. Probabilities of accepting a new call, given as a function of the used
occupied bandwidth, under the control policy associated with the parame@ndwidth on the link, under the control policy associated with the parameter
vector (7.5459, 11.7511, 12.8339) obtained by the idealized gradient algorithf@ctor (7.3540, 10.6850, 11.7713) obtained by the simulation-based algorithm.

x —T T
09 T T T T T T T
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H
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] ) ~ Fig. 5. Parameter vectors, and estimates of the average reward, obtained by
Fig. 3. Parameter vectors, and estimates of the average reward, obtaine¢nhbyified simulation-based algorithm using a discount faeto= 0.99. The
the simulation-based algorithm. The scaling factor for the iteration stdp$§is scaling factor for the iteration stepsii§>.

The corresponding trajectories of the parameter vectors and av3) The fluctuations in the estimate of the average reward

erage reward are given in Fig. 3. We have the following obser- ~ remain small and the performance of the control policies
vations. never deteriorates.

1) The algorithm makes rapid progress in the beginning, im_This behavior is not unlike the idealized algorithm (see

proving the average reward from 0.78 to 0.87 within thg!9- 1), where the average reward improves rapidly in the
first 1- 106 iteration steps beginning, but only slowly in the later iterations.

2) After 1 - 10° iterations, the algorithm makes only slow The probabilities of accepting a new call under the control
progress obtaining after - 10° iterations the parameterpolicy obtained with the simulation-based algorithm are given

vector in Fig. 4.
Modified Simulation-Based AlgorithmWe finally consider
fs.10s = (7.3540, 10.6850, 11.7713) the modified algorithm of Section V, using a forgetting factor of

a = 0.99. [Again, we reset the vectay, at visits to all states
which corresponds to an admission control policy with = (s, w) for whichs = (0, ..., 0).] As expected, it makes
an average reward of 0.8789. This average reward stitluch faster progress; see Fig. 5.
slightly below the average reward of 0.8808 obtained by After 10° iterations, we obtain a parameter vectorfof=
the idealized gradient algorithm. (7.3553, 10.6034, 11.6073) and an average reward of 0.8785,
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which is essentially the same as for the unmodified algorithwhere

afters- 108 iterations. Thus, the use of a forgetting factor speeds -
i i i i Frn 97717 )‘rn
up convergence by an order of magnitude, while introducing a
negligible bias. Hyp(rp) = | tmar—1 } - (29
U Z (gin (9 ) )\rn)
VIIl. CONCLUSION n=t,,

We have presented a simulation-based method for optimizihgt
a Markov reward process whose transition probabilities depend .
on a parameter vectér or a Markov decision process in which Fm = {907 Ao 0, 11, - -+ itm}
we restrict to a parametric set of randomized policies. The
method involves simulation of a single sample path. Updat&nd for the history of the algorithm up to and including time
can be carried out either when the recurrent state visited, m- Using Proposition 2 and (17), we have
or at every time step. In either case, the original method is
expected to work well mostly when the regenerative cycles ElHm (rm) | Fm] = h(rm)
are not too long. We have also proposed a modified, possilere
more practical method, and have provided some encouraging

numerical results. Eo[TIVA(B) + G(6) ()\(9) - :\)
Regarding further research, there is a need for more compu- h(r) = .
tational experiments in order to delineate the class of practical nEe [T ()\(9) - A)

problems for which this methodology is useful. In particular, . . .
further analysis and experimentation is needed for the modifig\{le then rewrite the algorithm in the form
on-line algorithm of Section V. In addition, the possibility of
combining such methods with “learning” (function approxima-

tion) of the differential reward function needs to be exploregvhere
On the technical side, it may be possible to extend the results to
the case of an infinite state space, and to relate the speed of con- em = Yo Hm(Tm) — h(rm))

vergence to the mixing time of the underlying Markov chains.
and note that

Trn—l—l = Tm + ranh(Trn) + Em (25)

APPENDIX |
E m m = 0'
PROOF OFPROPOSITION3 [ | F]

In this appendix, we prove convergence of the algorithm The proof rests on the fact that, is “small,” in a sense to be
made precise, which will then allow us to mimic the heuristic

st =Om + Y (em, }'\m) argument of Section 1II-C.
tog1—1 L
N . ~ A. Preliminaries
Am =Am + Tm i, (ern) - Am
ia ,g;m ( ) In this subsection, we establish a few useful bounds and char-
acterize the behavior ef,,.
where Lemma 2:
P, (9m, S\m) 1) There exist constants andp < 1 such that
tonin —1 Py(T =Fk) < Cp¥, Yk, 6
it ~i 9771,’ )\rn, Li,,,ﬂ,, 9771, + \% i 9771, . . . .
= (U ( ) =1 (Om) 9in )) where the subscrigtindicates that we are considering the
R - distribution of the length of the regeneration cytlg =
iy, (97 ’\) tm+1 — tm under a particular choice @k In particular,
tomg1—1 i F,[T] and E,[17] are bounded functions of
= (Qik(e) - )\) , o n=tn+1, -ty — 1 2) The functionG/(¢) is well defined and bounded.
k=n 3) The sequence,, is bounded, with probability 1.
and 4) The sequenck(r,,) is bounded, with probability 1.
Proof:
B, (97 }) —0. 1) For any transition probability matri® € 7, and because

of Assumption 1, the probability of reachiagin N steps
For notational convenience, we define the augmented parameter  iS bounded below by some positivel>), for every ini-

vectorr,, = (fm, Am), and write the update equations in the  tial state. Furthermore,(P) can be taken to be a con-
form tinuous function ofP. Using the compactness &f, we

havee® = min % () > 0, and the result follows with
"m+1 = Tm + ’anHrn(Trn) p = (6*)1/N_
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2) Note that We observe the following consequences of Lemma 3. First,
T em cCoONverges to zero with probability 1. Sineg, also con-
E, Z H (tmgs — 0) L i (6) H < CE, [TQ] verges to zero and the sequenge,, ) is bounded, we conclude
e e that
whereC is a bound orj| L;;(6)|| (cf. Assumption 3). The  lim (6,41 — 6,,) =0, Jim (A(fmt1) = A0n)) = 0,

right-hand side is bounded by the result of part a). It fo‘ijd

lows that the expectation defining(¢) exists and is a o A

bounded function o#. o ()‘m*l B Am) =0
3) Using Assumption 4 and part a) of this lemma, we obtajg;,, probability 1.

=)
Z ng(trn—l—l - trn)2

m=1

< 00 B. Convergence of,,, and A(6,,,)

In this subsection, we prove that, andA(6,,) converge to
which implies thaty,,, (¢,,+1 —tm ) converges to zero, with a common limit. The flow of the proof is similar to the heuristic

probability 1. Note that argument of IlI-C
. . We will be using a few different Lyapunov functions to an-
Amt1 £ (1= Ym(tmtr = tm))Am + vm(tngs = tm)C alyze the behavior of the algorithm in different “regions.” The

where C is an upper bound ong(6). For large Iemm_a below involves ggeneric Lyapunov functipand char-
enough m, we have v,u(tn1 — t.) < 1, and acterizes the changesdifr) caused by the updates
Am+1 < lnax{)\m, C%, from which it follows that
the sequence,,, is bounded above. By a similar argu- - -
ment, the sequenck,, is also bounded below. Let D, = {(8, \) € REFL||)\| < c}. We are interested in
4) Consider the formula that definégr). Parts a) and b) Lyapunov functions that are twice differentiable and for which
show thatEy_[T] andG(6,,,) are bounded. Also\(6,,,) ¢, V¢, andV2¢ are bounded of.. for everyc. Let ¢ be the
is bounded since thg (8) are bounded (Assumption 2).set of all such Lyapunov functions. For asiye @, we define
Furthermore VA(8,,,) is bounded, by Lemma 1. Using

Tm+1 = Tm + ’anh(Trn) + em.

also part c) of this lemma, the result follows. m em(®) = ¢(rmi1) = ¢(rm) = YmVd(rm) - hrm)
Lemma 3: There exists a constaft (which is random but where for any two vectors, b, we usez - b to denote their inner
finite with probability 1) such that product.

Lemma 4:If ¢ € ®, then the serie_, €,,(¢) converges

with probability 1.
and the serie§_ e, converges with probability 1. Proof: Consider a sample path of the random sequence

Proof: Recall thatg; (6.,) and \,, are bounded with {7 }. Using part 3) of Lemma 2, and after discarding a set of
probability 1 [Assumption 2 and Lemma 2c)]. Thus, fogero probability, there exists somesuch that-,, € D. for all
n=tm, ..., tme1 — 1, we haves; (6, 5\)| < Oltmgr —tm), M- We use the Taylor expansion ¢fr) atr,,, and obtain
for some constanC'. Using this bound in the definition of em(®) = $(rmat) = B(Tm) = 1V b(rm) - hlrm)
Fn (B, M), We see that for aimost all sample paths, we have ~™ mtl m) = Tm ” ”

S Vd)(Trn) : (Trn-f—l - Trn) + MHTrn-I—l - Trn||2

‘ Frn, (9771,’ S\rn,) ‘ S C(trn,—l—l - trn,)Q — ’yan(/)(Trn) . h(Trn)
_ . . .12
for some new constant. Using Lemma 2a), the conditional =Vo(rm) - em + Mllrppr — 7|

variance ofFyy,(6m, Am), given F,,, is bounded. Similar ar- \ynerens is a constant related to the bound on the second deriva-

guments also apply to the last componenttdf,(r,.). SINCe (ives ofg(-) on the seD,. A symmetric argument also yields
em = Ym(Hm(rm) — E[Hpm(rm) | Fm]), the first statement

fO”OWS. V(f)(Trn) E€m — MHTrn,—l—l - Trn,||2 S Ern,(d))-
Fix a positive integee and consider the sequence

E[||5m||2 | Fm] < O’YrQn vm

Using the boundedness ®fp on the setD.., the same mar-

min{M(c),n} tingale argument as in the proof of Lemma 3 shows that the se-
wy, = Z Em riesy ,, Vo(rn) - €n, converges with probability 1. Note that
m=1 |7mt1 = Tml| = [|¥mh(rm) + €ml|, which yields

i 1 i 2 2

\1/_vrr]1ereM(c) |stt2e_f|rstt|m_em such _thalE[||sm|| | Fonl > i, st — roll? < 292 (o)1 + 2llem|12-
e sequence is a martingale with bounded second moment,

and therefore converges with probability 1. This is true for evefihe sequencé(r,,) is bounded (Lemma 2) ang, is sum-
positive integek. For (almost) every sample path, there exist®able (Assumption 4). Furthermore, it is an easy consequence
somecsuchthatM(c) = oo. After discarding a countable unionof Lemma 3 that,,, is also square summable. We conclude that
of sets of measure zero (for eaghthe set of sample paths for||r,,+1 — || iS Square summable, and the result followsm
which w¢, does not converge), it follows that for (almost) every From now on, we will concentrate on a single sample path
sample path} " e, converges. m for which the sequences, ande,,,(¢) (for the Lyapunov func-
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tions to be considered) are summable. Accordingly, we will be Lemma 7: Consider the same functighas in Lemma 6, and
omitting the “with probability 1” qualification. the same constarit. Let o be some positive scalar smaller than

The next lemma shows that if the errby, — A(6,,) inesti- n/4L2. Suppose that for some integeraindn’, with n’ > n,
mating the average reward is positive but small, then it tendswe have
decrease. The proof usgs- A\(#) as a Lyapunov function.

Lemma 5: Let L be such tha G(6)|| < L for all 4, and let ‘)\(9n) — M| e, ‘A(@u) —Av| L a
- - and
Y=¢(6, 1) = X — A6). .
é(r) d)( ) ) ‘A(Hm) Xom <% m=n+1,...,n —1.
We havep € ®. Furthermore, i < A — A(A) < n/L?, then "
en,
Vo(r)-h(r) <0. -
Proof: The fact thatp € ® is a consequence of Lemma 1. Ay 2 A — 20((L2ar/n) + 1) + Z Em ()
We now have m=n
V() - h(r) = —n (5\ _ )\(9)) Eo[T] Proof: Using Lemma 6, we have
- ||V/\(9)||2E9[T] Vd)(Trn) : h(Trn) z 07 m=mn,..., 7’L/ - L
+ ()‘ B )‘(9)) VA®) - G(6). Therefore, form = n, ..., n' — 1, we have

Using the inequalitya - b < |lal|* + ||b]|?, to bound the last
term, and the facEy[T] > 1, we obtain

(/)(7’771-1-1) = (/)(7’771) + 'Ymvd)(Tm) . h(Tm) + Em((/))

2 Z (7)(7)771,) + Enl(d))a
Yoh(r) < —n (3— 9))+L2(5\—)\(9))
V(r) - h(r) < —n (A= X o
which is nonpositive as long @< X — A(6) < /L2 ] n'—1
In the next two lemmas, we establish thatXf,, — \(6,,,)| Prn) Z $lra) + Y em(d). (26)
remains small during a certain time interval, thign cannot m=n
decrease by much. We first introduce a Lyapunov function thl%te thatl(r )_5\ | < (L2a?/n) + , and| () — 1 | <
captures the behawor of the algorithm whiers A(6). (L?a?/n) + «. Using these inequalities in (26), we obtain the
Lemma 6: As in Lemma 5, letZ be such thaf G(8)|| < L. :
Let al desired result. R [ |
etaiso Lemma 8: We havdim inf,, .. |A(6s) — Am| = 0.
3 )2 Proof: Suppose that the result is not true, and we will de-
Y=¢ (0, A) = X0) — (L2/n) (A6) — A) . PP
#(r) d)( ’ ) 0) =« /77)( ) ) rive a contradiction. SiNC&(6,,41) — AM(6,,,) andA,, 11 — A,

converge to zero, there exists a scalas 0 and an integen,
such that eitheA(6,,) — Ap > ¢, OF A(Bn) — A < —¢, for
Vé(r) - h(r) > 0. all m > n. Without loss of generality, let us consider the first
possibility.
w hProof: The factthatp € ¢ is a consequence of Lemma 1. Recall that the update equation fois of the form
e have

Voo (9, x) - (1 — (212 /) ()\(9) - )\)) VAO),

We havep € ®. Furthermore, ifA(f) — A| < n/4L2, then

S\rn,—l—l = 5\rn, + U’anEO.m [T] ()\(enw) - S\rn,) + 6771,

and whereé,, is the last component of the vectgy,, which is sum-
Vi (9, 5\) =(2L%/n) ()\(9) - f\) ) mable by Lemma 3. Given tha{#,.,) — A,,, stays above, the
sequenceyy,, (A(fm) — ) sums to infinity. Asé,, is sum-
Therefore, assuming thgk(6) — };| < n/4L?, and using the mable, we conclude that,, converges to infinity, which con-
Schwartz inequality, we obtain tradicts the fact that it is bounded. ~ u
The next lemma shows that the conditiatf,,) > A, is
¢(r) - hr) satisfied, in the limit. i
_ (1 — (2L%/n) ( () — 5\)) Lemma 9: We haveliminf,,, _.(A(6,) — Am) 2> 0.
R Proof: Suppose the contrary. Then, there exists seme
X (||V)\ YW2Eo[T] + ()\(9) . )\) G(6) - w(e)) 0 such that the inequality
212 ()\(9) - X) Ee[T] An = A(B) > €
> 5 IVA@)II® - ‘)\ )\‘ LIIVA@®) || holds infinitely often. Let3 = min{e, n/L*}, whereL is the

) . constant of Lemma 5. Using Lemma 8, we conclude hat-
+2L ()\(9) - A) > 0. B )\(6,,) crosses infinitely often from a value smaller thaj3
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to a value Iarger thaﬁ/3/3 In particular, there exist infinitely ~ We describe the stages of such a cycle more precisely. A typ-

many pairse, n/, with n’ > n, such that ical cycle starts at some tinf€é with |A(fy) — An| < a. Letn”
R R be the first time after timéV thatA(6,,~) —)W, > A. Letn' be
0 <An— A(6p) < 83, A = Mbnr) > 23 the last time before”” such that\(6,,) — A,y < A/2. Let also
and n be the last time before’ such that\(6,,) — A\, < . Finally,
1 1 H 1
13 <X, — \6,) <283 _ 1 o1 letn _ be the_flrst time after” such that\(6,,) — A\, | <a.
3= (Om) = 35, m=ntd...,n The timen’” is the end of the cycle and marks the beginning of
We use the Lyapunov function a new cycle. .
Recall that the changes &, and A,,, converge to zero. For
N 3 this reason, by takingv to be large enough, we can assume
VY=¢ (0, A) = — A6 < . .
pr)=¢ ( ’ ) ) thatA(6,,) — A,, > 0. To summarize our construction, we have

/ 12 1t
and note that N <n<n <n <n”, and

¢(rnr) 2 P(rn) + § (27) ‘)‘(91\’) —An|<a,  0<ABn) — Ay < o,
— Y — 1 _
Form =n,..., 1 we haVeO < )\ )\(9) /3 S ‘)‘(ern) )‘rn ? m N’ L 17
n/L?. Lemma5 app"es and shows tha(ry,,) - h(ri) < 0. M) — A < 4 AOpr) = A > A
Therefore, n n 5 n n
(1) =)+ 3 (o Tblrm) hrm) ) @ SNn) = A S A, m=ntl a1
(/) T'n! :d) 7o) + ’Ymvd) Tm) - h(rm) + €m (/) -
m=n é <Alm) — Am < A, =n'+1, " _1q
- a < )\(ern) - 5\rna m = n”, ey n" — 1.

< p(rn) + Z em(¢)-

m=n

Our argument will use the Lyapunov functions

By Lemma 4,  e.,(¢) converges, which implies that
S ~! ¢,.(¢) becomes arbitrarily small. This contradicts (27) o(r) = b (97 };) = \0) — (L2 /) ()\(9) _ };)2
and completes the proof. [ |

We now continue with the central step in the proof, Wh'CWhereL is as in Lemma 5 and 6, and
consists of showing thatim,,—.o(A(f;,) — )\m) =
Using Lemma 9, it suffices to show that we cannot have < <
limsup,, ...(A0m) — Am) > 0. The main idea is the fol- v =9¢ (9’ A) = A= 6).
Iowmg Wheneveri(6,,) becomes significantly larger than

X, then X, is bound to increase significantly. On the otheYVe have
hand by Lemma 7, whenev(d,, ) is approximately equal to

Am, then,,, cannot decrease by much. Sinkg is bounded, em(®) = ¢(rms1) — ¢(rm) — YmVP(rm) - h(rm)
this will imply that A(6,,,) can become significantly larger than
A Only a finite number of times. and we define,,, () by a similar formula. By Lemma 4, the
Lemma 10: We havélim,,, . (/\(em) - XmEP =0. series) . en(¢) and)_ e, (1) converge. Also, let
Proof: We will assume the contrary and derive a contra- ~ ~ ~
diCtion. By Lemma 9, we haVe 6771, = )\rn,—l—l - )\rn, - nranEO.m [T] ()\(ern) - )\rn,) .
lim inf ()\(em) — S\m) > 0. We observe that,, is the last component af,, and therefore,

the series_, . 6., converges antim,, .. 6,, = 0. Finally, let

So if the desired result is not true, we must hav€ be a constant such thi+(r,,) - h(ry)| < C, for all m,
limsup,, ...(A6m) — Am) > 0, which we will assume Which exists becaus¢ € ¢ and because the sequenig¢s,,)

to be the case. In particular, there is sobe> 0 such that and,, are bounded.

M6,) — Am > A, infinitely often. Without loss of generality, ~Using the above observations, we see that if the beginning
we assume thatt < n/4L?, where L is the constant of time IV of a cycle is chosen large enough, then for &ny’
Lemmas 5 and 6. Letr > 0 be some small constant (withsuch thatV < & < %/, we have

a < A/2), to be specified later. Using Lemma 9, we have

A(0,,) — Am > —a for all large enoughn. In addition, by A K A2
Lemma 8, the conditiof\(6,,,) — A\n| < « holds infinitely wC < 32’ Z em(P)| < %60
often. Thus, the algorithm can be broken down into a sequence m=k
of cycles, where in the beginning and at the end of each cycle we 5 A K 42
have|\(6,,) — A | < «, while the condition\(6,,,) — X, > A Z em()| < =, Z Sm| < n—.

; ; : ; 32 8C
holds at some intermediate time in the cycle. m=k m=k
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Finally, we assume that has been chosen small enough so thaain only be a finite number of cycles, and a contradiction has

2

o+ (LPa?/m) < niss

Using the fact thah (8, +1) — A 41 = A/2, we have

)\(en’) - 5\n’ = )\(en’-l—l) — Apig1 + ’Yn’vr‘/)(Tn’)
“h(rw) + e ()

2

2|
S

Furthermore, we have

4 < (06 - ) = (M) - 1))

= () + ()

n’—1 n—1
= Z ’Ymvz/}(Tm) . h(Tm) - Z Em(z/})
n”_Tn’ m=n’
< D wmC+ %

which implies that

nl A A
5 ,an, 2 - .
2C 32C

m=n’

1 1
n—1 n—1

At = Ap + Z 77’YmE9m [T] ()‘(97") - 5\"’) + Z bm

zj\n'i_ Z MYm ()‘(ern)_j\rn>+ Z 6771

(A AN (A A A?

=TI 5 T 320 )\2 " 16)  "sC
. 42

> il

_)\n,+77240

been obtained. ) n
Lemma 11: The sequences,, andA(f,,,) converge.
Proof: Consider the functiong(r) = A(f) —

(L?/n)(A(B) — A)?, and the same constahtas in Lemma 6.
Let o be a scalar such that< « < n/(4L?). By the preceding
lemma and by Lemma 4, there exists somesuch that if
N < n < n/, we have

‘A(en) Al <a,
and
n —1
Y em(d)| e

Using Lemma 6,

7
n’ —

(/)(QTL’) > (/)(en) + Z 5m(¢) > (/)(QN) -,

N<n<n

or
NOw) = (22 ) (M@uw) = o)’
2 M) — (22/m) (M6 =) —
which implies
AOu) 2 X6) — (1202 /m) ~ a,
Therefore,

liminf A\(6,/) > \(6,,) — (L% /n) — «, N<n

n'—oo

and this implies that

liminf A(6,,) > limsup A(6,,) — (L?a?/n) — a.

m—oo m—oo

Since « can be chosen arbitrarily small, we have

We have shown so far that,, has a substantial increase beliminf,, ..o A(¢,,) > limsup,, .., A(f,), and since
tween timen andn’’. We now show tha#,,, can only have a the sequencg(f,,) is bounded, we conclude that it converges.
small decrease in the time betwe®randn. Indeed, by Lemma Using also Lemma 10, it follows that,, converges as wellm

7, we have
- - nl
An 2 AN — 2(06 + LQO&Q) + Z Em((/))'
m=N

By combining these two properties, we obtain

o 2 o AT A2
///> f—2 L - D -
Aprr 2 AN (o + L*a®) 77960+7724C

R 2

> AN _—

_)\1\+7748C

C. Convergence 0V A(6,,)

In the preceding subsection, we have shown #{4f,) and
A converge to a common limit. It now remains to show that
VA(6,,) converges to zero.

SinceA(6;, ) — A, converges to zero, the algorithm is of the
form

ern-f—l = ern + ’VrnEHm [T](V)\(ern) + Crn) +em

wheree,, converges to zero ang, is a summable sequence.
This is a gradient method with errors, similar to the methods

We have shown tpaim increases by a positive amount duringonsidered in [10] and [6]. However, [10] assumes the bound-
each cycle. Since,,, is bounded above, this proves that theredness of the sequence of iterates, and the results of [6] do not
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include the terne,,,. Thus, while the situation is very similar toin the two proofs. In addition, whenever routine arguments are
that considered in these references, a separate proof is needeskd, we will only provide an outline.

We will first show thatliminf,, .. ||[VA(#,)|| = 0. Sup- As in Appendix |, we letr;, = (6%, Xk). Note, however, the
pose the contrary. Then, there exists same 0 and someV  different meaning of the indeixwhich is now advanced at each
such thaf| VA(6,,)]| > e for all m > N.In addition, by taking time step, whereas in Appendix | it was advanced whenever the
N large enough, we can also assume tlat|| < ¢/2. Then, it state:* was visited. We also define an augmented state=
is easily checked that (UK, 28)-

We rewrite the update equations as

(V)

€
VAOr) - (VAln) +em) > —.
2 Tht1 = i + Bk, 78)
Let ¢(r) = A(@). Note thatp € &. We have

M) ZA0n) i B, [HTVAC ) Vs, (00) + (93, 00) = 2u) 7
(VAOm) + em) + em(d) R(ax, 1) = ' ' . (29)
y .
> X(B) + I+ m() (28) (9 (60) = )
Consider the sequence of statég, i, ---) visited during

the execution of the algorithm. As in Section I, we tgt be
the mth time that the recurrent staié is visited. Also, as in

where

Sincee,,(¢) is summable (Lemma 4), bQt,, v, = oo, we
conclude that\(8,,,) converges to infinity, which is a contradic-

tion. A dix | let
Next we show thafimsup,, ... [|[VA(#)]] = 0. Sup- ppendix{, we le
pose the contrary. Then, there exists some- 0 such that Fn = {00, Ao 05 s iv, }

[IVA(8,)|| > e for infinitely many indicesn. For any suchs,
letn’ be the first subsequent time tHETA(6,.,)|| < ¢/2. Then, stand for the history of the algorithm up to and including time

€ m:-
5 SIVAEI = [[VAG )]l The parametef;, keeps changing between visits to stéte
<[[VAB,) — VAG)|| which is a situation somewhat different than that considered in
B Lemma 2a). Nevertheless, using Assumption 5, a similar argu-
<C||rn — 1ol . M
ment applies and shows that for any positive integénere ex-
n —1 n'—1 .
ists a constanD, such that
=C Z ’anh(Trn) + Z Em
m=n m=n E[(th_l - t,n)s |f‘,n] S DS. (30)
n'—1 n'—1
We have
SCY L wlhemll+C | > el —_
Ttpir =Tty Yl wn, Tr)
for some constan’, as VZ\(6) is bounded (Lemma 1). Re- k=t.,
call that||(r,,)|| is bounded by some constaBt Furthermore, =7+ Amh(re,) +em (31)

whenn is Iarge enough, the summability of the sequeage
yields || X" _t e,,.]| < /4. This implies thaty " _! ~,, > where¥,, ande,, are given by

m=n

¢/4C B. By an argument very similar to the one that led to (28),

L . . b1 —1
it is easily shown that there exists soie- 0 such that A = Z Ve, (32)
Aln) > A6,)+ 3 k=t.,
tm41—1
which contradicts the convergence of the sequexiég,). e = Z e (R(xk, ) — hire ))
k=t,,
APPENDIX Il .
PROOE OEPROPOSITION4 andh is a scaled version of the functi@rin Appendix I, namely,
In this section, we prove the convergence of the on-line V@) + G(6) ()\(9) _ 5\)
method introduced in Section IV, which is described by hir) = h(r) _ Ey[T] (33)
- Ey[T] . )
Opr1 =0+ (Vgik(ek) + (gf,k (Or) — )\k) Zk) ] (/\(9) - )‘)
Net1 = M + 77 (gik (61) — Xk) ’ tWe note the following property of the various stepsize param-
L o eters.
0 Vi, (61) i = Lemma 12:
Rl = M, otherwise. 1) For any positive integer, we have
Pigigr (Br)
The proof has many common elements with the proof of Propo- E Z A2 (tmgs — tm)*| < oo

sition 3. For this reason, we will only discuss the differences

m=1



MARBACH AND TSITSIKLIS: SIMULATION-BASED OPTIMIZATION OF MARKOV REWARD PROCESSES 207

2) We have Markov chain with transition probabilities;;(6;, ). We also
o lettf . = min{k > ¢, |it = i*} be the first time aftet,,
Z Fm = 00, > Ak <o that:f is equal toi*, and
m=1 m=1 F F
27. =z + LZ : 9 )
with probability 1. M » ¢ "F“( te)
Proof: We start by breaking dows,, as follows:
1) From (30), and becausg , is F,,,-measurable, we have top1—1
s s Em = : Rx‘vT‘_hTm
E[’Yt%n(trn-l—l - trn) ] :E [’YtQmE[(trn-i—l - trn) |Fnl]] kgt:m Tk ( ( k k) ( ¢ ))
<Epe] 0. = o) oD oD 4o 4o
Hence, where
oo oo o1
E’YQ trn l_t'rnS SDS ’72<OO - ~
rgz:l [, (bt )’ kz_;l k 55,];) — Z (v, — W )h(re,)
k=t.,
and the result follows. oo
2) By Assumption 4, we have e .
) By p " e? =, Z [R(a:f, re ) — h(Ttm)}
k=t,,
Z ,an Z Yk = 0. trmi1—1
m=1 k=1 . ' ' (3) —ryt Z |:R(.’L’k, Ttm) — h(7’tm):|
Furthermore, since the sequengds nonincreasing (As- het.
sumption 5), we have tF -1
<Rttt “en D [RGl r) = h)
k=t
Using part a) of the lemma, we obtain thaf”_, 2, has o1 —1
finite expectation and is therefore finite with probability e —n, Z [R(zx, i) — R(zx, 0, )]
1. [ = "
Without loss of generality, we assume thag, < 1 for g1 —1
all k. Then, the update equation foy, implies that|\;| < el = Z (v — 7., ) R(2k, 7).
max{|Ao|, C}, whereC' is a bound onlg;(#)|. Thus,|A\x| is k=t,,

bounded by a deterministic constant, which implies that the )
magnitude ofi(r,,) is also bounded by a deterministic constant. e W'” show that each one of the serigs,, en’, n =

We now observe that (31) is of the same form as (25) thht - - - 9, converges with probability 1.
was studied in the preceding appendix, except that we now havéNe ‘make the following observations. The rafig,;, ., (6x)
7, in place ofr,,, 4, in place of+y,,, and h(” Y in place is bounded because of Assumption 3. This implies that between
of h(rm). By Lemma 12b), the new stepsizes satisfy the sarffé timest,, andi,,,;, that:* is visited, the magnitude of
conditions as those imposed by Assumption 4 on the stepsifegounded byC'(¢ m1 — tm) for some constartf) Similarly,
~m Of Appendix I. Also, in the next subsection, we show that tH&e magnitude o, is bounded byC(t,,,; — t). Using the
seriesy_ | e,,, converges. Once these properties are establishB@undedness of;, and h(r), together with the update equa-
the arguments in Appendix | remain valid and show tki@_) tions for 6, and Ak, we conclude that there exists a (deter-
converges, and tha& \(6,,,) converges to zero. FurthermoreMinistic) constant”, such that for everyn, we have fork €
we will see in the next subsection that the total changé;of {tmy - tmgr — 1},
between consecutive visits tb converges to zero. This implies

L)l < -
that A\(6:) converges and thaF A\(¢;) converges to zero, and 1Bz, Tl £ Cltmes = tm) ) (34)
Proposition 4 is established. Iri = re |l < Cye, (B — 8)° (35)
. . |1R(xx, 7t,,) — B(zp, m)ll < Cy,,, (g1 — tm)g (36)
A. Summability of; and Convergence of the Change#in
and fork € {tm, ..., t5_ , — 1}

This subsection is devoted to the proof that the séries ¢,,,
converges, and that the changegpbetween visits té* con- |R(zf, 1)l < C(tE 4y — tm). (37)
verge to zero.

We introduce some more notation. The evolution of the Lemma 13: The series, %’ converges with probability

augmented state;, = (i, 2) is affected by the fact that 1. R _

6, changes at each time step. Given a titpeat whichs* is Proof: Let B be a bound orj|A(ry)||. Then, using As-
visited, we define a “frozen” augmented statg = (i, /') Sumption 5, we have

which evolves the same way ag except that, is held fixed at topp1—1

6;,, until the next visit at*. More precisely, we letf =z, . Hgg,{)H <B Z (Ver. — M) < BAY] (tmg1 — tm)P.

Then, fork > ¢, +1, we Ietif evolve as a time-homogeneous bt
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Then, Lemma 12a) implies that ||s§,]§)|| has finite expecta-  Note that, if the evert,,, does not occur, thert> = 0. Thus,
tion, and is therefore finite W|th probability 1. [ |
Lemma 14:The seriesy e converges with probability E [ €

trna trn-l—l:| :P(grn | trna trn-l—l)

1.
trna trn-l—la grn:| .

Proof: When the parameter&; and \ are frozen to their xE H Eim
values at time,,,, the total updaté ~, ™ ’”“ -t R(zf, ry,,) coin-

cides with the updatél,,, (r,,,) of the algorlthm studied in Ap- Sinceh(ry,) is bounded, and using also the bounds (34)—(37),
pendix I. Using the discussion in the beginning of that appendi€e have

we havell[H,,.(r) | F] = h(re,,). Furthermore, observe that

eI <Y, Cl(tmgr — tm)? + (th 1 — tm)?)
th-1
E Z h(re N Fo | = h(re, VEs, [T] = h(re, ). for some new constarg. We conclude that
k=t,,
E |: £ trn; trn-l—lv gnl:|

Thus,E[sg,Ql) | Fin] = 0. Furthermore, using (34), we have < Y Ot — tm)?
|: + Ve, CE[( m+1 tm)Q |tms tmat1, Eml]-
E ||l

Using Lemma 12a), we obtain

2
Frn:| S C,YtQ.m (trn—l—l - trn)4-
Now, it is easily verified that

E[(trljz-kl - trn)2 | trnv m—+1, grn])
S 2E[(t7€;+1 rn—l—l) |trna m+1, grn] + 2( m+1 — t )2
S C(trn+l - trn)

E

< 0.

Lm=

Thus,>",, G martingale with bounded variance and, therder some new constar. By combining these inequalities, we
fore, converges. m obtain
Lemma 15: The seriesy sﬁ,,) converges with probability

1. E[ €

Proof: The proof is based on a coupling argument. Fg{q
k = tm, ..., tme1 — 1, the two processes; andazf can be
defined on the same probability space as follows. Suppose that
i, and<f are both equal to some particular statéVe parti-
tion the unitinterval intaV subintervals, each of length; (¢;), for some different constat. Using Lemma 12a)y",, [|e% ||
j=1,---, N. The next staté;, is obtained by generating ahas finite expectation, and is, therefore, finite with probability
uniform random variablé’ and selecting the stageassociated 1. u
with the particular subinterval into whidh belongs. The same Lemma 16: The series _,, ety converges with probability
random variabld’ is used to select], ,, except that we now 1.
have a partition into subintervals of lengily(65). The prob- Proof: Using (36), we have
ability thatUU causes 1 andi,ﬂr1 to be different is bounded
by N max; ; |pi;(0r) — pi; (0F)]. Using the assumption that the (4) 3
transition probabilities depend smoothly nas well as (35), H H S Z Oy (Bt = tm)
we obtain h=ton

= C’YtQ (trn-i—l - trn)4-

m

) trn-l—lv grn:| S O’th (trn-l—l - trn)Q

E[s

trna tn1,+1:| S BC’YEM (trn,—l—l - trn,)s

tymg1—1

Plijyy # g1 | ig = ix) < Bll6r — 6f ||

<B|rx — 7o || Using Lemma 12a)y", ||s,ff)|| has finite expectation, and is
- " therefore finite with probablhty 1. [ |
2
S By, (tmt1 = tm)” (38) Lemma 17: The serie$”, <% converges with probability
1.

for some constant® andC.

We define,, to be the event Proof: Using Assumption 5 and the bound (34) on

| R(zx, )], we have

Em = {zf # x1 forsomek =t ..., tmgs ). N
Using (38), we obtain S Cltmtr = tm) kz (e =)
=t 1,
tmp1—1 < AO’YEM (tm-l—l - tm)p+1-

P(grn, |trn,a trn,—l—l) S BC ’th (trn,—l—l - trn,)Q
k=t Using Lemma 12a)y° ||s(°)|| has finite expectation, and is,
BCwy;, (tmy1 —tm)>. therefore, finite with probab|I|ty 1. m
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