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Abstract

In this paper we study problems such as: given a discrete time dynamical system of the form
x(t + 1) = f(x(t)) where f : Rn →Rn is a piecewise a(ne function, decide whether all trajecto-
ries converge to 0. We show in our main theorem that this Attractivity Problem is undecidable
as soon as n¿2. The same is true of two related problems: Stability (is the dynamical sys-
tem globally asymptotically stable?) and Mortality (do all trajectories go through 0?). We then
show that Attractivity and Stability become decidable in dimension 1 for continuous functions.
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1. Introduction

In this paper we study problems such as: given a discrete time dynamical system of
the form x(t + 1) = f(x(t)) where f : Rn →Rn is a (possibly discontinuous) piecewise
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a(ne function, decide whether all trajectories converge to 0. We show in our main
theorem (Theorem 2) that this Attractivity Problem is undecidable as soon as n¿2.
The same is true of two related problems: Stability (is the dynamical system globally
asymptotically stable?) and Mortality (decide whether all trajectories go through 0).
In Section 4, we show that Attractivity and Stability become decidable in dimension
one for continuous functions, and these two notions become in fact equivalent. One
can show with similar techniques that Mortality is also decidable for piecewise a(ne
continuous functions of one variable.

It is well known that Turing machines can be simulated by various types of dy-
namical systems, including hybrid systems and the piecewise a(ne dynamical systems
studied in this paper. As an immediate corollary, one obtains the undecidability of
problems such as the following: “given a particular initial state, does the resulting tra-
jectory of the dynamical system ever reach (or converge to) the origin?” In a typical
proof that such a simulation is possible, one usually associates a machine conLguration
to an element of the dynamical system’s state space. The conLgurations of the Turing
machine are mapped to a countable (and typically, nondense) subset of the state space.
A correct simulation is obtained provided that the dynamics of the dynamical system
are properly deLned on this subset.

We now compare with the problems considered and the results obtained in this
paper. We deal with global stability-like questions such as “do all trajectories
converge to the origin?”. This is similar in spirit to the question “does a Turing
machine halt for every initial conLguration?”. The latter problem is known to be
undecidable [8], and the proof is signiLcantly more involved than the proof of un-
decidability of the halting problem. This suggests that establishing undecidability of
stability problems is qualitatively di6erent, and possibly much harder, than the usual
simulation results. An additional complication is the following: unlike the problem
of simulating a Turing machine with a dynamical system, it now becomes impor-
tant to deLne the dynamics of the dynamical system on the entire state space, while
ensuring certain desired properties. To this e6ect, we introduce an encoding that as-
sociates a legitimate machine conLguration to all points in the state space
(Lemma 1).

We Lnally note that while our main result could be established by using the un-
decidability [8] of a corresponding Turing machine problem, we take a parallel route,
based on 2-counter-machines. The advantages are that the paper becomes self-contained
(the rather di(cult proof in [8] is replaced by a much simpler argument, provided
in Theorem 1, which establishes the undecidability of the corresponding problem for
counter-machines), and that the simulation is easier to describe.

This work was motivated by a question of Sontag [18]: is global asymptotic stabil-
ity decidable for saturated linear systems? These are dynamical systems of the form
x(t + 1) = �(Ax(t) + b) where x(t) lives in the state space Rn and � denotes compo-
nentwise application of the saturated linear function � : R→ [−1; 1] deLned as follows:
�(x) = x for |x|61, �(x) = 1 for x¿1, �(x) = − 1 for x6− 1. Saturated linear system
therefore fall within the class of piecewise a(ne systems studied in this paper. They
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are however much more restricted. Note in particular that the corresponding transition
function f : Rn →Rn is continuous since � is continuous. Undecidability results for
this particular class of systems appear in [3]. Note that discontinuous piecewise a(ne
functions occur naturally as models of simple hybrid systems; see [19,4] for discrete
time examples and [2] for an example in continuous time. Surveys of decidability and
complexity results available for hybrid and nonlinear systems are given in [1,5,7,18].

2. Basic de�nitions

In the sequel X denotes a metric space and 0 some arbitrary point of X which is
chosen as origin (when X ⊆Rn, we assume that 0 is the usual origin of Rn).

De�nition 1. Let f : X →X be an arbitrary map on a metric space X .
f is globally convergent if for every initial point x0 ∈X the trajectory xt+1 = f(xt)

converges to 0.
f is mortal if for every initial point x0 ∈X there exists t¿0 such that ft(x0) = 0.
f is locally asymptotically stable if for any neighborhood U of 0 there is another

neighborhood V of 0 such that for every initial point x0 ∈V the trajectory xt+1 = f(xt)
converges to 0 without leaving U (i.e., xt ∈U for all t¿0 and limt → +∞ xt = 0).

f is globally asymptotically stable if f is globally convergent and locally asymp-
totically stable.

A map f : X →X which is not mortal is called immortal. Asymptotic stability is dis-
cussed for instance in [17], where in particular dynamical systems with inputs (“control
systems”) are studied.

Next, we deLne what we mean by a piecewise a(ne function. DeLne the sign
function by

sgn(x) =
{

1 when x¿0;
0 when x¡0

and consider the natural extension of this function to Rm by applying the function
componentwise. Let n; m¿1 and consider �⊆Rn and {0; 1}m = {e1; e2; : : : ; e2m}. Let
C ∈Qm×n and d∈Qm. For any given ei the set Hi = {x∈�: sgn(Cx + d) = ei} is
a subset of � deLned by an intersection of Lnitely many halfspaces. The sets Hi

(i = 1; : : : ; 2m) form a partition of �, i.e., � =
⋃2m

i=1 Hi and Hi ∩Hj = ∅ whenever i 
= j.
A piecewise aCne function on � is a function given by

f : � → � : x �→ Aix + bi when x ∈ Hi

for some Ai ∈Qn and bi ∈Qn.
Observe that the composition of two piecewise a(ne functions is still a piecewise

a(ne function.
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3. Stability and mortality for discontinuous piecewise a�ne functions

In this section, we prove that mortality, attractivity and stability for discontinuous
piecewise a(ne functions are undecidable. The proof consists in Lrst showing that
mortality for 2-counters-machines is undecidable, then in proving that piecewise a(ne
functions are able to simulate 2-counters-machine in a sense strong enough to deduce
the undecidability of all three properties for piecewise a(ne functions.

3.1. The mortality problem for 2-counter-machines

We consider counter-machines: an n-counter-machine is an abstract, synchronous,
deterministic computing machine with a Lnite number of internal states Q = {0; 1; 2; : : : ;
m − 1}. It operates on a Lnite number of nonnegative integer registers R1; : : : ; Rn.
Depending upon its internal state and whether the registers are equal to 0 it can perform
one of the following operations: leave the registers unchanged, increase some register
Rj by 1, or decrease some register Rj by 1 (assuming Rj 
= 0).

The instructions for the counter-machines are tuples

[i; b1; : : : ; bn; j; D; k];

where i∈Q represents the present state, bj ∈{true; false} represents whether register
Rj is null, j the register which is modiLed by the instruction, D∈{Increment, Decre-
ment, No Change} the operation, and k ∈Q the new internal state. For consistency,
no two tuples begin with the same n+1 symbols. This deLnition of a counter-machine
is slightly di6erent from that given in [9] but is easily seen equivalent in terms of
computational power.

The value of the registers with the internal state of the machine constitutes a con-
*guration of the machine. If a conLguration has a corresponding instruction, the result
of applying it is another conLguration, a successor of the original. A conLguration for
which there is no tuple is said to be a halting con*guration.

There is no loss of generality to assume that the only halting conLguration is the
one where the internal state is 0 and where the registers have value 0.

Extending the relation of successor to its transitive completion, each conLguration
with a halting successor can be termed mortal, the others that do not lead to halting
conLgurations but rather run for ever are termed immortal.

The conLguration space of n-counters-machines P can be considered as C =Nn ×Q.
n-counters-machines are special cases of dynamical systems over C: P = (C;fP) where
fP : C →C is the function that maps non-halting conLgurations to their successors,
and the halting conLguration (0; 0) to itself.

We will use the following result, which is an analog of the result proved in [8]
for Turing machines. Let us note that our result here is not a corollary of the result
in [8]: the fact that counter-machines can simulate Turing machines does not read-
ily imply that the immortality problem for counter-machines is as hard as for Turing
machines.
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Theorem 1. The problem of determining if a given n-counters-machine halts on all
possible conLgurations (the machine is then said to be mortal) is undecidable. This
assertion remains true when n = 2.

Proof. The proof is by reduction from the classical halting problem for counter-
machines; see [9]. Consider a counter-machine M with m internal states labeled q1; q2;
: : : ; qm, n registers R1; : : : ; Rn and let s = (r1; r2; : : : ; rn; ql) be a given conLguration of
M . Instructions of M have the form [qi; b1; b2; : : : ; bn; j; D; qk ].

To establish the Lrst part of the result we describe how to construct e6ectively a
counter-machine M ′ on n+2 registers R1; : : : ; Rn; V;W such that M ′ halts on all possible
conLgurations if and only if M halts on s.

The machine M ′ has a special state denoted q0. Each time that M ′ enters state q0,
it executes a sequence of instructions whose e6ect is to store ri in Ri, 2 max(1; V ) in
W and 0 in V . After having done this, it moves into state ql.

Then the machine starts a simulation of the machine M . The simulation is such
that, before performing any of the instructions of M , the machine Lrst increases the
register’s content of V by 1, decreases that of W by 1 and performs the instruction of
the machine M only if W is not equal to 0. If W = 0 it returns to the special state q0.

Thus, the instructions of the machine M

[qi; b1; b2; : : : ; bn; j; D; qk ]

are all changed into sixteen instructions for M ′;

[qi; b1; b2; : : : ; bn; b∗n+1; b
∗
n+2; n + 1; Increment; q′i];

[q′i ; b1; b2; : : : ; bn; b∗n+1; b
∗
n+2; n + 2; Decrement; q′′i ];

[q′′i ; b1; b2; : : : ; bn; b∗n+1; True; n + 2; No Change; q0];

[q′′i ; b1; b2; : : : ; bn; b∗n+1; False; j; D; qk ];

where b∗n+1 and b∗n+2 range over all four possible combinations b∗n+1; b
∗
n+2 ∈

{True; False}.
We claim that M ′ halts on all possible conLgurations if and only if M halts on s.
One of the implications is clear. If M ′ halts on all possible conLgurations, it must

halt on the conLguration (r1; : : : ; rn; v; 0; q0) for all possible v¿0. When started on
(r1; : : : ; rn; v; 0; q0), the machine M ′ simulates 2 max(1; V ) steps of M in starting state
ql before returning to state q0. Thus, if M ′ halts on all possible conLgurations, M must
halt on (r1; : : : ; rn; ql).

Assume now that M halts on (r1; r2; : : : ; rn; ql) and let k be the number of steps
after which it halts. We need to show that M ′ halts on all possible conLgurations. Let
s′ = (r1; : : : ; rn; v; w; qr) be an arbitrary conLguration of M ′. The register W is regularly
decremented when executing instructions of M ′. It is therefore clear that, whatever w,
the machine M ′ will halt on s′ or W will reach 0 after Lnitely many steps. In the latter
case, the machine will restart a simulation of M with an increased register content for
W . After su(ciently many returns to q0, the register W will eventually contain a value
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larger than k + 1 and the machine M ′ will then halt since it will simulate k steps of
M on (r1; r2; : : : ; rn; ql).

It remains to show how to reduce the number or registers to two. Let M ′ be a
counter-machine on n registers R1; R2; : : : ; Rn. We construct a machine M ′′ on two
registers S and T such that M ′′ halts on all possible conLgurations if and only if M ′

does. The content of the registers Ri of M ′ are stored in the register S of M ′′ by the
classical prime number encoding. The nonnegative integers r1; r2; : : : ; rn are encoded
into the nonnegative integer s by s = 2r13r25r3 : : : �(n)rn where �(n) is the (n + 1)th
prime number. Incrementation (respectively decrementation) of the register Ri can then
be obtained by multiplying (respectively dividing) s by �(i). These incrementing and
decrementing operations can be performed on M ′′ with the help of the register T . The
register T can also be used to test divisibility of s by �(i) and hence equality to zero of
the registers Ri can be checked with the machine M ′′. Finally one can verify that this
construction preserves mortality of counter-machines and so mortality is undecidable
for 2-counter-machines.

3.2. Simulating a n-counters-machine by a piecewise aCne function

In traditional simulations of counter-machines or Turing machines by dynamical sys-
tems, a machine conLguration is encoded by a single point of the dynamical system’s
state space [11,16,12,14,10,6,2]. Since we are interested in this section in the global
behavior of dynamical systems on R2, we will instead assign the same machine con-
Lguration to all points in a subbox of a certain box N∗ ⊆R2.

Lemma 1. Given a 2-counter m-state machine P with transition function fP : C →C;
one can construct a piecewise aCne function gP : N∗ →N∗ and an encoding function
.′ : N∗ →C such that the following conditions hold:

(i) N∗ = [0; m[× [0; 1[ and .′(N∗) = C.
(ii) .′(x) is equal to the halting con*guration (0; 0; 0) of P if and only if x∈ [0; 1=2[2;

and in this case gP(x) = 0.
(iii) The following diagram commutes:

C
fP−−→ C

.′
�

� .′

N∗ gP−−→ N∗

i.e.; for all x∈N∗; fP(.′(x)) = .′(gP(x)).

Proof. We Lrst deLne .′. This encoding maps a point (x1; x2)∈N∗ to the unique
conLguration (w1; w2; q) such that x2 ∈ [1 − 1=2w2 ; 1 − 1=2w2+1[ and x1 − q∈ [1 − 1=2w1 ;
1 − 1=2w1+1[. Note that .′(N∗) = C as required, and x2 (respectively, x1) encodes an
empty counter if and only if x2 ∈ [0; 1=2[ (respectively, x1 − q∈ [0; 1=2[).

The piecewise a(ne function gP will be a(ne on each box B of the form [q + 1;
q+1+ 1=2[× [2; 2+ 1=2[ where q∈{0; : : : ; m−1} and 1; 2∈{0; 1=2}. By deLnition of
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.′ all points in this box encode a conLguration in state q and the emptiness status of
each counter is also uniquely deLned (by the values of 1 and 2). The next state q′ and
the operations to be applied to the counters are therefore the same for all conLgurations
in .′(B).

In the box [0; 1=2[2 corresponding to the halting conLguration (0; 0; 0) of P we
set gP(x1; x2) = (0; 0). In other boxes we proceed as follows. For (x1; x2)∈B, we take
gP(x1; x2) = (x′1; x

′
2) where 1 − x′2 = a(1 − x2) and 1 − (x′1 − q′) = b(1 − (x1 − q)). Each

constant a and b is set to 2 if the corresponding counter is decremented, to 1=2 if it
is incremented, or to 1 if it is unchanged. It is clear that the map gP : N∗ →N∗ thus
deLned makes the diagram commutative.

3.3. Undecidability in two dimensions

Theorem 2. The three problems below are all undecidable.
Let a piecewise aCne function g : R2 →R2 be given.

1. Mortality problem: is g mortal?
2. Attractivity problem: is g globally convergent?
3. Stability problem: is g globally asymptotically stable?

Proof. We Lrst show that problem 1 is undecidable by a reduction from the immortality
problem for 2-counter-machines. Assume a 2-counter-machine P is given. Let g′P be
the extension to R2 of map gP of Lemma 1 obtained by setting g′P(x) = 0 for x =∈N∗.
We shall prove that P has an immortal conLguration i6 g′P has an immortal trajectory:
i.e., i6 there exists some sequence xt+1 = g′P(xt) with xt 
= 0 for all t¿0.

Assume Lrst that such an immortal trajectory exists. Since g′P is zero outside N∗,
xt ∈N∗ for all t¿0. From the commutative diagram of Lemma 1, we see that the
sequence ct = .′(xt) is a sequence of successive conLgurations of P. From condition (ii)
in the same lemma, ct 
= (0; 0; 0) for all t¿0. ConLguration c0 is therefore immortal.

Conversely, assume P to be immortal: there exists an inLnite sequence of conLgu-
rations ct with ct+1 = fP(ct), ct 
= (0; 0; 0). By condition (i) of Lemma 1, there exists
x0 ∈N∗ such that .′(x0) = c0. We claim that the trajectory xt+1 = gP(xt) is immortal.
Indeed, by the commutative diagram we have .′(xt) = ct 
= 0 for all t¿0, hence xt 
= 0
by condition (ii) of Lemma 1.

The undecidability of problems 2 and 3 now follows from a simple observation. On
the one hand, an immortal trajectory of g′P does not converge to the origin since it
remains in N∗\[0; 1=2[2. On the other hand, any mortal trajectory of g′P satisLes xt = 0
for t large enough since 0 is a Lxed point of g′P . That is, for g′P mortality is equivalent
to global convergence and to global stability.

Remarks. 1. It is easily seen that these three problems remain undecidable for piece-
wise a(ne functions g : Rn →Rn whenever n¿2.

2. We do not know if these problems remain undecidable for a Lxed number of
partitions.
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3. A related problem is the point-to-Lxed-point problem, i.e., the problem of deter-
mining, for a given piecewise a(ne function g : Rn →Rn and initial point x0 ∈Rn, if
the iterates xt+1 = g(xt) eventually reach a Lxed point. This problem is known to be
undecidable for n = 2 and for less than 800 partitions; see [11]. The decidability of the
case n = 1 was proposed as an open problem in [11], and it seems to be open to this
date. In fact, we are not aware of a decision algorithm for the case n = 1 even when
there are only two partitions.

4. Decidability in one dimension

Theorem 3. Let f : R→R be a continuous map such that f(0) = 0. Then; the fol-
lowing properties are equivalent:
(a) f is globally convergent.
(b) For every x¿0 we have f(x)¡x and f2(x)¡x; and for every x¡0 we have

x¡f(x) and x¡f2(x).
(c) f is globally asymptotically stable.

Proof. We Lrst prove that (a) implies (b). Suppose that f is globally convergent.
Furthermore, suppose, in order to derive a contradiction, that there exists some x¿0
such that f(x)¿x. If we have f(y)¿y for all y¿0, then the sequence fk(x) is
nondecreasing, which contradicts global convergence. Therefore, there exists some y¿0
such that f(y)¡y. Using continuity, there exists some z¿0 such that f(z) = z, which
again contradicts global convergence. This shows that f(x)¡x for all x¿0. Since f is
globally convergent, it is clear that f2 is also globally convergent, and the preceding
argument also establishes that f2(x)¡x for all x¿0. The conditions for the case where
x¡0 are established by a symmetrical argument.

We now assume that the conditions in (b) hold, and proceed to establish property (c).
For x¿0, we deLne F−(x) = min06z6x f(z). Since f(0) = 0, it follows that F−(x)60
for any x¿0. We claim that f maps the interval I = [F−(x); x] into [F−(x); x). In-
deed, for any positive z ∈ I , we have F−(x)6f(z)¡z6x. If z ∈ I is negative, then
F−(x)6z¡f(z). Also, using the continuity of f and the deLnition of F−(x), a nega-
tive z ∈ I must be the image f(y) of some y∈ [0; x]. Therefore, f(z) = f2(y)¡y6x,
which completes the proof of the claim.

The property established in the preceding paragraph implies that if fk(x)¿0, then
fk+l(x)¡fk(x), for all l¿1. Thus, the subsequence of {fk(x)} obtained by restricting
to k for which fk(x) is positive, is monotonically decreasing. It must therefore con-
verge, and the only possible limit is zero, due to the continuity of f. By an entirely
symmetrical argument, we also conclude that the subsequence obtained by restricting
to k for which fk(x) is negative is monotonically increasing. Hence, fk(x) must con-
verge to zero. Furthermore, since the positive and negative subsequences of {fk(x)}
are monotonic, for every initial x, it is easily seen that there exist arbitrarily small
invariant neighborhoods of 0. This establishes global asymptotic stability as well.

The fact that (c) implies (a) is an immediate consequence of the deLnitions.
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A decision algorithm follows immediately from Theorem 3. For this algorithmic ap-
plication we assume that our piecewise a(ne function f is deLned by equations with
rational coe(cients (i.e., the endpoints of intervals where f is a(ne and the corre-
sponding slopes are rational numbers). A generalization to a larger class of “Lnitely
representable” coe(cients (e.g., algebraic numbers) is straightforward (and arbitrary
real coe(cients can be allowed if we work with an algebraic model of computation).
Generalizing to a larger class than piecewise a(ne functions (e.g., to piecewise poly-
nomial functions) is also straightforward.

Corollary 1. Let f : E→E be a piecewise aCne continuous function; where E is
either R or a compact interval in R that contains 0. There is an algorithm for
deciding the global asymptotic stability of f.

Proof. For the case where E =R, it su(ces to test conditions (b) in Theorem 3, which
is straightforward. For the case where E is an interval of the form [a; b], we note that
Theorem 3 remains valid, and the same decision procedure applies. Alternatively, we
could extend the function f to outside [a; b] (e.g. by f(x) = f(b) for x¿b and f(x) = a
for x¡a), and note that f and its extension share the same stability and convergence
properties.

Without a continuity assumption the situation is quite di6erent. For instance, the
map f : [0; 1]→ [0; 1] deLned by: f(x) = 2x for 06x61=2, f(x) = 0 for 1=2¡x61
is globally convergent but it is not globally asymptotically stable. We leave it as an
open problem whether there is a decision algorithm for discontinuous piecewise a(ne
functions.
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