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We prove that several global properties (global convergence, global
asymptotic stability, mortality, and nilpotence) of particular classes of dis-
crete time dynamical systems are undecidable. Such results had been known
only for point-to-point properties. We prove these properties undecidable for
saturated linear dynamical systems, and for continuous piecewise affine
dynamical systems in dimension 3. We also describe some consequences of
our results on the possible dynamics of such systems. � 2001 Academic Press

Key Words: dynamical systems; saturated linear systems; piecewise affine
systems; hybrid systems; mortality; stability; decidability.

1. INTRODUCTION

This paper studies problems such as the following: given a discrete time dynami-
cal system of the form xt+1= f (xt), where f: Rn � Rn is a saturated linear function
or, more generally, a continuous piecewise affine function, decide whether all trajec-
tories converge to the origin.
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We show in our main theorem that this global convergence problem is
undecidable. The same is true for three related problems: stability (Is the dynamical
system globally asymptotically stable?), mortality (Do all trajectories go through
the origin?), and nilpotence (Does there exist an iterate f k of f such that f k#0?).

It is well known that various types of dynamical systems, such as hybrid systems,
piecewise affine systems, or saturated linear systems, can simulate Turing machines,
see, e.g., [2, 12, 15, 18, 19, 21]. In these simulations, a machine configuration is
encoded by a point in the state space of the dynamical system. It then follows that
point-to-point properties of such dynamical systems are undecidable. For example,
given a point in the state space, one cannot decide whether the trajectory starting
from this point eventually reaches the origin. The results described in this contribu-
tion are of a different nature since they deal with global properties of dynamical
systems.

Related undecidability results for such global properties have been obtained in
our earlier work [5], but for the case of discontinuous piecewise affine systems. The
additional requirement of continuity imposed in this paper is a severe restriction,
and makes undecidability much harder to establish. Surveys of decidability and
complexity results for dynamical systems are given in [1, 9, 15].

Our main result (Theorem 2.1) is a proof of Sontag's conjecture [8, 22] that
global asymptotic stability of saturated linear systems is not decidable. Saturated
linear systems are systems of the form xt+1=_(Axt), where xt evolves in the state
space Rn, A is a square matrix, and _ denotes componentwise application of the
saturated linear function _: R � [&1, 1] defined as follows: _(x)=x for |x|�1,
_(x)=1 for x�1, _(x)=&1 for x�&1. These dynamical systems are often used
as artificial neural network models [20, 21] or as models of simple hybrid systems
[2, 6, 23].

Theorem 2.1 is proved in three main steps. First, in Section 4, we prove that any
Turing machine can be simulated by a saturated linear dynamical system with a
strong notion of simulation. (Turing machines are defined in Section 3.) Then, in
Section 5, using a result of Hooper, we prove that there is no algorithm that can
decide whether a given continuous piecewise affine system has a trajectory con-
tained in a given hyperplane. Finally, we prove Theorem 2.1 in Section 6.

In light of our undecidability results, any decision algorithm for the stability of
saturated linear systems will be able to handle only special classes of systems. In
Section 6 we consider two such classes: systems of the form xt+1=_(Axt), where A
is a nilpotent matrix, or a symmetric matrix. We show that stability remains
undecidable for the first class, but is decidable for the second.

Saturated linear systems fall within the class of continuous piecewise affine
systems and so our undecidability results equally apply to the latter class of
systems. More precise statements for continuous piecewise affine systems are given
in Section 7. Finally, some suggestions for further work are made in Section 8.

2. DYNAMICAL SYSTEMS

In the following, X denotes a metric space and 0 some arbitrary point of X, to
be referred to as the origin. When X�Rn, we assume that 0 is the usual origin of
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Rn. A neighborhood of 0 is an open set that contains 0. Let f: X � X be a function
such that f (0)=0. We say that f is:

�� globally convergent if for every initial point x0 # X, the trajectory xt+1=
f (xt) converges to 0;

�� locally asymptotically stable if for any neighborhood U of 0, there is
another neighborhood V of 0 such that for every initial point x0 # V, the trajectory
xt+1= f (xt) converges to 0 without leaving U (i.e., x(t) # U for all t�0 and
limt � � xt=0);

�� globally asymptotically stable if f is globally convergent and locally
asymptotically stable;

�� mortal if for every initial point x0 # X, there exists t�0 with xt=0; the
function f is called immortal if it is not mortal;

�� nilpotent if there exists k�1 such that the k th iterate of f is identically
equal to 0 (i.e., f k(x)=0 for all x # X).

Nilpotence obviously implies mortality, which implies global convergence, and
global asymptotic stability also implies global convergence. In general, this is all
that can be said of the relations between these properties. Note, however, the
following simple lemma, which will be used repeatedly.

Lemma 2.1. Let X be a metric space with origin 0, and let f: X � X be a con-
tinuous function such that f (0)=0. If f is nilpotent, then it is globally asymptotically
stable. Moreover, if X is compact and if there exists a neighborhood O of 0 and an
integer j�1 such that f j (O)=[0], the four properties of nilpotence, mortality, global
asymptotic stability, and global convergence are equivalent.

Proof. Assume that f is nilpotent and let k be such that f k#0. Let U and V be
two neighborhoods of 0. A trajectory starting in V never leaves �k&1

i=0 f i (V). By
continuity, for any U one can choose V so that f i (V)�U for all i=0, ..., k&1.
A trajectory originating in such a V never leaves U. This shows that f is globally
asymptotically stable.

Next assume that X is compact and that f j (O)=[0] for some neighborhood O
of 0 and some integer j�1. It suffices to show that if f is globally convergent, then
it is nilpotent. If f is globally convergent, then X=�i�0 f &i (O). By compactness,
there exists p�0 such that X=� p

i=0 f &i (O). We conclude that f p+ j (X)=[0]. K

A function f: Rn � Rn$ is piecewise affine if Rn can be represented as the union of
a finite number of subsets Xi where each set Xi is defined by the intersection of
finitely many open or closed halfspaces of Rn, and the restriction of f to each Xi is
affine. Let _: R � R be the continuous piecewise affine function defined by _(x)=x
for |x|�1, _(x)=1 for x�1, _(x)=&1 for x� &1 (see Fig. 1). Extend _ to a
function _: Rn � Rn, by letting _(x1 , ..., xn)=(_(x1), ..., _(xn)). A saturated affine
function (_-function for short) f: Rn � Rn$ is a function of the form f (x)=_(Ax+b)
for some matrix A # Qn$_n and vector b # Qn$. Note that we are restricting the
entries of A and b to be rational numbers so that we can work within the Turing
model of digital computation. Using arbitrary real entries would give rise to
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FIG. 1. Graph of the function _.

systems whose computational power is related to nonuniform complexity classes:
see [13].

A saturated linear function (_0-function for short) is defined similarly except that
b=0. Note that the function _: Rn � Rn is piecewise affine and so is the linear func-
tion f (x)=Ax. It is easily seen that the composition of piecewise affine functions is
also piecewise affine and therefore _-functions are piecewise affine.

Our main result is the following theorem.

Theorem 2.1. The problems of determining whether a given saturated linear
function is

(i) globally convergent,

(ii) globally asymptotically stable,

(iii) mortal, or

(iv) nilpotent

are all undecidable.

Note that deciding the global asymptotic stability of a saturated linear system is
a priori no harder than deciding its global convergence, because the local
asymptotic stability of saturated linear systems is decidable. (Indeed, a system
xt+1=_(Axt) is locally asymptotically stable if and only if the system xt+1=Axt

is, since these systems are identical in a neighborhood of the origin. Furthermore,
the system xt+1=Axt is locally asymptotically stable if and only if the matrix A is
stable; i.e., all its eigenvalues have magnitude less than one. Matrix stability can be
decided by solving Lyapunov equations and is therefore decidable. For a stability
checking algorithm see, e.g., [24].) In fact, we conjecture that for saturated linear
systems, global convergence is equivalent to global asymptotic stability. This equiv-
alence is proved for symmetric matrices in Theorem 6.2. If this conjecture is true,
it is not hard to see that the equivalence of mortality and nilpotence also holds.

Theorem 2.1 has some ``purely mathematical'' consequences. For instance:

Corollary 2.1. For infinitely many integers n, there exists a nilpotent saturated
linear function f: Rn � Rn such that f 2n

�0.
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Proof. Assume that there exists an integer k such that for all n�k, a saturated
linear function f: Rn � Rn is nilpotent if and only if f 2n#0. The following algorithm
solves the nilpotence problem for saturated linear functions, which is in contradic-
tion with Theorem 2.1.

Let f: Rn � Rn be a saturated linear function. If n�k, declare f nilpotent if and
only if f 2n#0. If n<k, let g: Rk � Rk be the saturated linear function such that
gi (x1 , ..., xk)=f i (x1 , ..., xn) for i�n, and gi (x1 , ..., xk)=0 for n+1�i�k. This
transformation brings us back to the preceding case since the nilpotence of f is
equivalent to the nilpotence of g. K

Of course, in this corollary, 2n can be replaced by any recursive function of n. In
contrast, if f: Rn � Rn is a nilpotent linear function, then f n#0. As shown in
Theorem 2.2, this is not only a property of linear maps, but also of polynomial
maps. For the proof of this theorem we need some basic notions from semi-
algebraic geometry [3, 4]. In particular, we will use the fact that there is a well-
defined notion of dimension for semi-algebraic sets. Those are the subsets of Rn

defined by Boolean combinations of polynomial inequalities.

Lemma 2.2. Let f: Rn � Rm be a polynomial map and X= f (Rn). For any polyno-
mial map g: Rm � R, if dim X=dim X & [g=0] then g=0 on X.

Proof. Let Y= f &1(X & [g=0]). Assume for a moment that dim Y<n. Let
Z=[x # Rn; g b f (x){0] be the complement of Y. This set must be dense in Rn by
the assumption dim Y<n; f (Z)=X & [g{0] is therefore dense in X. For any non-
empty semi-algebraic set S, the closure S� of S satisfies dim S� "S<dim S [4,
Proposition 2.8.13]. Here we use the convention dim <=&�. Applying this
observation to S=X & [g{0], we obtain the contradiction that

dim X & [g=0]<dim X.

We conclude that in fact dim Y=n; i.e., Y has nonempty interior. The polynomial
function g b f is null on an open set, and is therefore null on Rn. K

Theorem 2.2. Let f: Rn � Rn be a nilpotent polynomial map. For any j�0, if
f j{0 then dim f j+1(Rn)<dim f j (Rn). As a consequence, f n=0.

Proof. Let k be the smallest integer such that f k=0. The fact that k�n follows
immediately from the first part of the theorem. Let us therefore fix an integer j<k,
and assume by contradiction that dim f j+1(Rn)=dim f j (Rn). Since f k& j&1 is null
on f j+1(Rn), by Lemma 2.2 f k& j&1 is also null on f j (Rn), i.e., f k&1=0. This is in
contradiction with the minimality of k. K

The statement of this theorem remains correct if we only assume that f is mortal.
Indeed, for polynomial maps mortality is equivalent to nilpotence by, e.g., the Baire
category theorem.

We conclude this section with two positive results: globally asymptotically stable
saturated linear systems are recursively enumerable and so are saturated linear
systems that have a nonzero periodic trajectory. The first observation is due to
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Eduardo Sontag, the second to Alexander Megretski. Combining these two obser-
vations with Theorem 2.1, we deduce that there exist saturated linear systems that
are not globally asymptotically stable and have no nonzero periodic trajectories.
We start with a lemma.

Lemma 2.3. Let X be a compact metric space with origin 0, and let f: X � X
be a continuous function such that f (0)=0. Then the following two properties are
equivalent:

(i) f is globally asymptotically stable.

(ii) For every neighborhood U of 0, there exists an integer k�1 such that
f k(X)�U.

Proof. If (ii) holds, it is clear that f is globally convergent. In order to show that
f is also locally asymptotically stable, take any neighborhood U of 0 and let k be
such that f k(X)�U. By continuity, there exists another neighborhood V of 0 such
that �k&1

j=0 f j (V)�U. A trajectory of f originating in V never leaves U.
Assume now that f is globally asymptotically stable, and let U be a neighborhood

of 0. By the definition of local asymptotic stability, there exists a neighborhood V
of 0 such that a trajectory of f originating in V never leaves U. By global con-
vergence, X=�i�0 f &i (V). By compactness, this implies the existence of an integer
k�1 such that X=�k

i=0 f &i (V). This integer satisfies f k(X)�U. K

Our recursive enumerability result relies on our definition of saturated linear
systems in terms of rational matrices A, which allows us to work within the Turing
model of computation. The same argument applies to matrices with real entries, if
we work in the real number model of computation [10, 11], and establishes that
the set of globally asymptotically stable saturated linear systems is a countable
union of semi-algebraic sets.

Theorem 2.3. The set of saturated linear systems that are globally asymptotically
stable is recursively enumerable.

Proof. Let f (x)=_(Ax). Consider the following algorithm:

1. Decide whether A is a stable matrix. If not, enter an infinite loop.
Otherwise, go to Step 2.

2. Compute the sets f k([&1, 1]n) for k=1, 2, 3, ... . Halt if an integer k such
that f k([&1, 1]n)�]&1, 1[n is found.

We claim that this algorithm halts if and only if f is globally asymptotically
stable.

Suppose that f is globally asymptotically stable. As pointed out earlier, A is a
stable matrix. Consequently, the algorithm does not enter the infinite loop of
Step 1. The algorithm must then halt at Step 2, according to Lemma 2.3.

Assume now that the algorithm halts. Since A must be a stable matrix, f is locally
asymptotically stable. It remains to show that f is globally convergent. For any
starting point x0 # [&1, 1]n, we have f j (x0) # ]&1, 1[ n for all j�k; i.e., the system
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never saturates after k steps, and f j (x0)=A j&k( f k(x0)). Since A is stable, we con-
clude that f j (x0) � 0 as j � �. K

Theorem 2.4. The set of saturated linear systems that have a nonzero periodic
trajectory is recursively enumerable.

Proof. Let f (x)=_(Ax). For any given positive integer k, it is straightforward
to check whether there exists some nonzero x0 such that f k(x0)=x0 , by solving a
number (exponential in k) of linear systems of equations. Thus, the set of saturated
linear systems that have a nonzero trajectory with period k is recursive. The set of
saturated linear systems that have a nonzero periodic trajectory is the countable
union of these recursive sets; hence the set if recursively enumerable. K

Corollary 2.2. There exist saturated linear systems that are not globally
asymptotically stable and have no nonzero periodic trajectory.

Proof. Assume by contradiction that the saturated linear systems that are not
globally asymptotically stable always have a nonzero periodic trajectory. Then, by
Theorem 2.4, these systems are recursively enumerable, but, by Theorem 2.3, the
complement of this set is also recursively enumerable and so this would make
global asymptotic stability a decidable property for saturated linear systems, a con-
tradiction to Theorem 2.1. K

3. TURING MACHINES

A Turing machine [17] is a deterministic model of computation. A given Turing
machine M has a finite set Q of internal states and operates on a doubly infinite
tape over some finite alphabet 7. The tape consists of squares indexed by an integer
i, &�<i<�. At any time, the Turing machine scans the square indexed by 0.
Depending upon its internal state and the scanned symbol, it can perform one or
more of the following operations: replace the scanned symbol with a new symbol,
focus attention on an adjacent square (by shifting the tape by one unit), and
transfer to a new state.

The instructions for the Turing machine are quintuples of the form

[qi , sj , sk , D, q l],

where qi and sj represent the present state and scanned symbol, respectively, sk is
the symbol to be printed in place of sj , D is the direction of motion (left-shift, right-
shift, or no-shift of the tape), and ql is the new internal state. For consistency, no
two quintuples can have the same first two entries. If the Turing machine enters a
state�symbol pair for which there is no corresponding quintuple, it is said to halt.

Without loss of generality, we can and will assume that 7=[0, 1, ..., n&1],
Q=[0, 1, ..., m&1], n, m # N, and that the Turing machine halts if and only if the
internal state q is equal to 0. We refer to q=0 as the halting state.

The tape contents can be described by two infinite words w1 , w2 # 7|, where 7|

stands for the set of infinite words over the alphabet 7: w1 consists of the scanned
symbol and the symbols to its right; w2 consists of the symbols to the left of the
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scanned symbol, excluding the latter. The tape contents (w1 , w2), together with an
internal state q # Q, constitute a configuration of the Turing machine. If a quintuple
applies to a configuration (that is, if q{0), the result is another configuration, a
successor of the original. Otherwise, if no quintuple applies (that is, if q=0), we
have a terminal configuration. We thus obtain a successor function |&: C � C,
where C=7|_7|_Q is the set of all configurations (the configuration space).
Note that |& is a partial function, as it is undefined when q=0. A configuration is
said to be mortal if repeated application of the function |& eventually leads to a ter-
minal configuration. Otherwise, the configuration is called immortal. We shall say
that a Turing machine M is mortal if all configurations are mortal, and that it is
nilpotent if there exists an integer k such that M halts in at most k steps starting
from any configuration.

Theorem 3.1. A Turing machine is mortal if and only if it is nilpotent.

Proof. A nilpotent Turing machine is mortal, by definition. The converse will
follow from Lemma 2.1. In order to apply that lemma, we endow the configuration
space of a Turing machine with a topology that makes its successor function con-
tinuous, and its configuration space compact.

This is a fairly standard construction: let M be a Turing machine, C its con-
figuration space, and |& its successor function. Since |& is not defined everywhere
on C, we shall work on the space X=C _ [0], where 0 denotes a new, ``final,'' con-
figuration. We extend |& to all of X by setting c |&0 for every terminal configura-
tion in C, and 0 |&0. Let d be a metric on X, defined by the following conditions:

(a) d(0, c)=1 for every c # C, and

(b) for any two distinct configurations c=(u, v, q) and c$=(u$, v$, q$), we
have d(c, c$)=1 if q{q$; otherwise, d(c, c$)=1�2k where k is the largest integer
such that u coincides with u$ on the first k letters, and v coincides with v$ on the
first k letters.

It is clear that |& is continuous with respect to the topology induced by d. One
can also check that (X, d ) is compact (for instance, one can use Ko� nig's lemma on
infinite trees to show that a convergent subsequence can be extracted from any
sequence of point of X). Moreover, |& is identically 0 in a neighborhood of 0 since
this point is isolated in X. We therefore conclude from Lemma 2.1 that if M is
mortal, then it must be nilpotent. K

This theorem states that for mortal Turing machines, there is a uniform upper
bound on the halting time of configurations. It follows from the next result that this
upper bound is not computable. This result is due to Hooper and will play a central
role in the sequel.

Theorem 3.2 [16]. The problem of determining whether a given Turing machine
is mortal is undecidable.

In other words, one cannot decide wether a given Turing machine halts for every
initial configuration. Equivalently, one cannot decide whether there exists an
immortal configuration.
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4. TURING MACHINE SIMULATION

It is well known that Turing machines can be simulated by piecewise affine
dynamical systems [18, 19, 21].

Lemma 4.1. Let M be a Turing machine and let C=7|_7|_Q be its con-
figuration space. There exists a piecewise affine function gM : R2 � R2 and an
encoding function &: C � [0, 1]2 such that the following diagram commutes:

C ww�
|& C

& &

R2 ww�
gM R2

(i.e., gM(&(c))=&(c$) for all configurations c, c$ # C with c |&c$).

Proof. We define &: C � [0, 1]2 as follows. Consider a configuration ( p1 , p2 , q)
of M, where pi=a0

i a1
i a2

i ..., and each a j
i is an element of 7. We encode pi in a real

number xi given by

xi= :
�

j=0

2a j
i

(2n) j+1 ,

and we finally let

&( p1 , p2 , q)=\ q
m

+
x1

m
, x2+ .

For any :, ; # 7, and q # Q, define the disjoint subsets B:, ;, q of R2 by

B:, ;, q=_ q
m

+
2:

2mn
,

q
m

+
2:+1
2mn &__2;

2n
,

2;+1
2n & .

By the definition of &, a configuration of the form (:p$1 , ;p$2 , q), with p$1 , p$2 # 7|,
q # Q, has an image under & that is a point in B:, ;, q . Therefore, the same quintuple
of the Turing machine M applies to all configurations that are mapped by & to same
subset B:, ;, q (assuming q{0; otherwise, no quintuple applies).

Such a quintuple has the effect of replacing the currently scanned symbol : by a
new symbol :$, of moving (or not) the tape to the right or to the left, and of chang-
ing the internal state q into a new internal state q$. Accordingly, we define the func-
tion gM on the subset B:, ;, q , q{0, by gM(q�m+x1 �m, x2)=(q$�m+x$1 �m, x$2),
where x$1=ax1+b, x$2=cx2+d, with:

v a=2n, b=&2:, c=1�(2n), d=(2:$)�(2n), if the tape is moved to the left;

v a=1�(2n), b=(2;)�(2n)+2(:$&:)�(2n)2, c=2n, d=&2;, if the tape is
moved to the right; and
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v a=1, b=2(:$&:)�(2n), c=1, d=0, if the tape is not moved.

We then have gM(&(c))=&(c$) for all configurations c, c$ # C with c |&c$. K

A closed box is a Cartesian product of closed intervals in R. A _*-function is a
function obtained by composing finitely many _-functions. For instance,

x [ _(_(x)+_(2_(x+1))) (1)

is a _*-function. In order to emphasize the structure of this function as a composi-
tion of three _-functions (from R to R2, from R2 to R2, and from R2 to R) we prefer
to write

x [ _(_(_(x))+_(2_(x+1)))

instead of (1).

Lemma 4.2. Let P be a finite union of disjoint closed boxes of R2. Let
f: P � [&1, 1]2 be a function that is affine on each of the boxes in P. Then there
exists a _-function g: R2 � R2 that is equal to f on P.

Proof. When = is a positive real number and a is a real number, observe that
the function h+

= (x, a)=_(1+2(x&a)�=) has value 1 for x�a, and value &1 for
x�a&=. Also the function h&

= (x, a)=h+
= (&x, &a) has value 1 for x�a, and value

&1 for x�a+=. Write P=�n
i=1 Bi with Bi=[a1

i , b1
i ]_[a2

i , b2
i ]. Let d be the

Euclidean distance between the closest two boxes. Consider the _*-function
�: R2 � R given by

�(x1 , x2)=h+
1 (h+

d�2(x1 , a1
i )+h&

d�2(x1 , b1
i )+h+

d�2(x2 , a2
i )+h&

d�2(x2 , b2
i ), 4)

and note that it takes the value 1 on Bi , and the value &1 on the Bj , j{i. Consider
also the function /i : R2 � R2 defined by /i (x1 , x2)=(�i (x1 , x2), �i (x1 , x2)), and
note that it is a _*-function. Define now the function g by

g(x1 , x2)=_ \n&1+ :
n

i=1

_(_(_( fi (x1 , x2)))+/ i (x1 , x2)&1)+ ,

where fi denotes the affine function that coincides with f on Bi . (In the above
formula, the terms ``1'' and ``n'' stand for the vectors (1, 1) and (n, n) in R2). K

Corollary 4.1. We can assume that the function gM of Lemma 4.1 is a _*-func-
tion.

Proof. The piecewise affine function gM built in the proof of Lemma 4.1 is affine
on a finite number of disjoint closed boxes in R2, namely, the sets B:, ;, q for q{0.
Furthermore, it can be checked that the image of each set B:, ;, q is contained in
[&1, 1]2. Therefore, by Lemma 4.2, it can be extended to a _*-function defined on
all of R2. K
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We now extend these results by proving that any Turing machine can be
simulated by a dynamical system in a stronger sense.

Lemma 4.3. Let M be a Turing machine and let C=7|_7|_Q be its con-
figuration space. Then there exists a _*-function gM : R2 � R2, a decoding function
&$: [0, 1]2 � C, and some subsets N�/N1/[0, 1]2, N1

cterm /N1 such that the
following conditions hold:

1. gM(N�)�N� and &$(N�)=C.

2. N1
cterm (respectively N1) is the Cartesian product of two finite unions of

closed intervals in R. N1
cterm is at a positive distance from the origin (0, 0) of R2.

3. For x # N1, the configuration &$(x) is nonterminal if and only if x # N1
cterm .

4. The following diagram commutes:

C ww�
|& C

&$ &$

N1
c term ww�

gM [0, 1]2

(i.e., &$(x) |&&$(gM(x)) for all x # N1
cterm).

Intuitively, &$ is an inverse of the encoding function & of Lemma 4.1, in the sense
that &$(&(c))=c holds for all configurations c. The set N� is the image of the func-
tion &, consisting of those points x # [0, 1]2 that are unambiguously associated with
valid configurations of the Turing machine. The set N1 consists of those points that
lie in some set B:, ;, q and therefore encode an internal state q, a scanned symbol :,
and a symbol ; to the left of the scanned one. (However, not all points in N1 are
images of valid configurations. Once it encounters a ``decoding failure'' our decod-
ing function &$ sets the corresponding tape square and all subsequent ones to the
zero symbol.) Finally, N1

cterm is the subset of N1 associated with the nonterminal
internal states q{0.

Proof. We use the notation and the functions & and gM introduced in the proof
of Lemma 4.1. Using Corollary 4.1, we can assume that gM is a _*-function.

We wish to define the function &$: [0, 1]2 � C in such a way that &$(&(c))=c
holds for all c # C. Toward this goal, we define pop: [0, 1]_N � 7 by

k if there exist l # N and k # 7

pop(x, j)={ with x&
l

(2n) j # _ (2k)
(2n) j+1 ,

(2k+1)
(2n) j+1&

0 otherwise.

Observe that if xi=��
j=0 (2a j

i )�(2n) j+1, then pop(xi , j)=a j
i , for all j # N. We

then define &$: [0, 1]2 � C by &$( y1 �m, y2)=( p1 , p2 , int( y1)), where pi=a0
i a1

i a2
i } } }

and the a j
i are defined by a j

i = pop( fract( yi), j). Here int and fract denote the
integer part and fractional part, respectively. We then have &$(&(c))=c for all c # C.
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Define N� as the union of the boxes B:, ;, q , for :, ; # 7, q # Q. Define N1
cterm

as the union of the boxes B:, ;, q for :, ; # 7 and for q # Q not equal to the halting
state 0 of M.

It can be verified that &$(x) |&&$(gM(x)) for all x # N1
cterm .

Now set N�=&(C). Since &$(&(c))=c, it follows that &$(N�)=C holds.
Furthermore, we have gM(N�)�N�. Finally, the origin (0, 0) does not belong to
N1

cterm , and hence is at a strictly positive distance from this set. K

Using Lemma 4.3 and Theorem 3.2, we can now prove the following:

Theorem 4.1. The problems of determining whether a given ( possibly discon-
tinuous) piecewise affine function in dimension 2 is

(i) globally convergent,

(ii) globally asymptotically stable,

(iii) mortal, or

(iv) quad nilpotent

are all undecidable.

The undecidability of the first three properties was first established in [5]. That
proof was based on an undecidability result for the mortality of counter machines,
instead of Turing machines.

Proof. We use a reduction from the Turing machine immortality problem
(Theorem 3.2). Suppose that a Turning machine M is given. Denote by g$M the dis-
continuous function that is equal to the function gM of Lemma 4.3 on N1

cterm , and
that is equal to 0 outside of N1

cterm .
Since 0 is at a positive distance from N1

cterm , we have a neighborhood O of 0
such that g$M(O)=[0]. By Lemma 1, all four properties in the statement of the
theorem are equivalent.

Assume first that M is mortal. By Theorem 3.1, there exists k such that M halts
on any configuration in at most k steps. We claim that g$M

k+1([0, 1]2)=[0].
Indeed, assume, in order to derive a contradiction, that there exists a trajectory
xt+1= g$M(xt) with xk+1 {0. Since g$M is zero outside N1

cterm , we have
xt # N1

cterm for t=0, ..., k. By the commutative diagram of Lemma 4.3, the
sequence ct=&$(xt)(t=0, ..., k+1) is a sequence of successive configurations of M.
This contradicts the hypothesis that M reaches a terminal configuration after at
most k steps. It follows that g$M satisfies properties (i) through (iv).

Conversely, suppose that M has an immortal configuration: there exists an
infinite sequence ct of nonterminal configurations with ct |&ct+1 for all t # N. By
condition 1 of Lemma 4.3, there exists x0 # N� with &$(x0)=c0 . We claim that the
trajectory xt+1= g$M(xt) is immortal: using condition 2 of Lemma 4.3, it suffices to
prove that xt # N1

cterm for all t. Indeed, we prove by induction on t that
xt # N1

cterm & N� and &$(xt)=ct for all t. Using condition 3 of Lemma 4.3, the
induction hypothesis is true for t=0. Assuming the induction hypothesis for t, con-
dition 1 of Lemma 4.3 shows that xt+1 # N�. Now the commutative diagram of
Lemma 4.3 shows that &$(xt+1)=ct+1 , and condition 3 of Lemma 4.3 shows that
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xt+1 # N1
cterm . This completes the induction. Hence, g$M is not mortal, and there-

fore does not satisfy any of the properties (i) through (iv). K

5. THE HYPERPLANE PROBLEM

We now reach the second step of our proof. Using the undecidability result of
Hooper for the mortality of Turing machines, we prove that it cannot be decided
whether a given piecewise affine system has a trajectory that stays forever in a given
hyperplane. We start with a lemma.

Lemma 5.1. Let P be a subset of R2 equal to the Cartesian product of two finite
unions of closed intervals of R. Then there exists a _*-function ZP : R2 � R that
satisfies

(i) ZP(x)=0 for all x # P,

(ii) ZP(x)>0 for all x � P.

Proof. As in Lemma 4.2, when = is a positive real number and a is a real
number, denote by h+

= (x, a) the function defined by h+
= (x, a)=_(1+2(x&a)�=),

and by h&
= (x, a) the function defined by h&

= (x, a)=h+
= (&x, &a).

Let I be an open interval of the form I=]a, b[. The function /I (x)=
&h+

(b&a)�2(x, b)&h&
(b&a)�2(x, a) is zero for x � I, and strictly positive for x # I. Let I

be an open interval of the form I=]a, �[. The function /I (x)=1+h+
1 (x, a+1) is

zero for x � I, and strictly positive for x # I. Let I be an open interval of type
I=]&�, a[. The function /I (x)=1+h&

1 (x, a&1) is zero for x � I, and strictly
positive for x # I.

When J=�n
i=1 Ii is a finite union of closed intervals of R, the complement J c of

J in R can be written as a finite union of open intervals: say J c=�n
i=1 Ii . Define

the function ZJ by ZJ (x)=�n
i=1 /Ii (x). This function is zero for x # J, and is

strictly positive for x � J. Finally, if P=J1_J2 , let ZP(x1 , x2)=_(ZJ1
(x1)+

ZJ2(x2)). K

Theorem 5.1. The following decision problem is undecidable:

v Instance: a _*-function f: R3 � R3.

v Question: Does there exist a trajectory xt+1= f (xt) that belongs to [0]_R2

for all t?

Proof. We reduce the Turing machine immortality problem (Theorem 3.2) to
this problem.

Suppose that a Turing Machine M is given. Consider the _*-function f: R3 � R3

defined by

f (x1 , x2 , x3)=\_(_(ZN
1
cterm

(x2 , x3)))
gM(x2 , x3) + ,

where the functions gM and ZN
1
cterm

are defined in Lemma 4.3 and Lemma 5.1, with
P=N1

cterm . Write (x1, ..., xd) for the components of a point x of Rd.
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We prove that f has a trajectory xt+1= f (xt) with x1
t =0 for all t, if and only if

Turing machine M has an immortal configuration.
Suppose that f has such a trajectory. Since ZN

1
cterm

, and hence _(_(ZN
1
cterm

)), is
strictly positive outside of N1

cterm , we must have (x2
t , x3

t ) # N1
cterm for all t�0. By

the commutative diagram of Lemma 4.3, the sequence &$(x2
t , x3

t ), t # N, is a
sequence of successive configurations of M. By condition 3 of Lemma 4.3, none of
these configurations is terminal; i.e., c0=&$(x2

0 , x3
0) is an immortal configuration

of M.
Conversely, assume that M has an immortal configuration; that is, there exists an

infinite sequence of nonterminal configurations with ct |&ct+1 . The argument here
is the same as in the proof of Theorem 6. By condition 1 of Lemma 4.3, there exists
a point (x2

0 , x3
0) # N� with &$(x2

0 , x3
0)=c0 . Consider the sequence defined by

(x2
t+1 , x3

t+1)=gM(x2
t , x3

t ) for all t. Since gM(N�)�N�, we have (x2
t , x3

t ) # N�

for all t�0. Using the assumption that configuration ct is nonterminal and condi-
tion 3 of Lemma 4.3, we deduce that (x2

t , x3
t ) # N1

cterm for all t�0, which means
precisely that the sequence xt=(0, x2

t , x3
t ), t # N, is a trajectory of f. K

6. PROOF OF THE MAIN THEOREM

We now reach the last step in the proof, which consists of reducing the problem
of Theorem 5.1 to the problems of Theorem 2.1.

Recall that a _-function is a function of the form f (x)=_(Ax+b) and a
_0 -function is a function of the form f (x)=_(Ax). A composition of finitely many
_0 -functions is called a _0*-function.

We start with some preliminary technical results.

Lemma 6.1 (Function Abs). There exists a _0* -function Abs: R2 � R that is zero
in some neighborhood of 0, and satisfies

1. Abs(1, u)�0 for all u # R;

2. Abs(1, u)=0 if and only if u=0;

3. Abs(z, u)�0 for all z # [0, 1], u # R.

Proof. Define Abs(z, u)=_(_(u&z)&_(u+z)+2_(z)). K

Lemma 6.2 (Function Sel). There exists a _0* -function Sel: R2 � R that is zero in
some neighborhood of 0, and satisfies

1. Sel(1, e)=e

2. Sel(0, e)=0

for all e # [&1, 1].

Proof. Define h(x)=_(2_(x)&_(2x)) (see Fig. 2) and Sel(z, u)=_(2h(3z�4+
u�4)&h(z)). K
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FIG. 2. Graph of the function h(x)=_(2_(x)&_(2x)).

The construction that follows is the key to reducing the undecidable problem of
Theorem 5.1 to the problems of Theorem 2.1.

Lemma 6.3. There exists a _0* -function Stab: R2 � R, null on some neighborhood
of 0, with the following property. For all z0 # R and for all functions e: N � R, the
sequence zt+1=Stab(zt , et) falls into one of the following three mutually exclusive
cases:

1. The sequence zt , t�1 is constant, always equal to 1. This case happens only
when _(z0)=1 and when et=0 for all t.

2. The sequence zt , t�1 is constant, always equal to &1. This case happens
only when _(z0)&1 and where et=0 for all t.

3. The sequence zt is eventually null: there exists t0 with zt=0 for all t�t0 .

Proof. Define Stab for all z, e by Stab(z, e)=h(_(_(z))&Abs(z, e)�2), where h
denotes the function h(x)=_(2_(x)&_(2x)) shown in Fig. 2.

Since Abs(z, e) always belongs to the interval [&1, 1], we have _(_(z))&
Abs(z, e)�2�&1�2 for z�0, and _(_(z))&Abs(z, e)�2�1�2 for z�0. We deduce
that 0�Stab(z, e) for 0�z, and Stab(z, e)�0 for z�0; hence the sign of zt is con-
stant. Assume without loss of generality that 0�zt for all t: if not, observing that
Stab(&z, &e)=&Stab(z, e), consider the sequences &zt and &et .

We now observe that 0�Stab(z, e)�h(z) for all e # R, z # [0, 1]: indeed h is a
nondecreasing function and we have Abs(z, e)�0 for all z # [0, 1], e # R, from
Lemma 6.1.

The function h has &1 and 1 as unstable fixed points, and 0 as a stable fixed
point. Moreover, every sequence of the form xt+1=h(xt) with _(x0) � [&1, 1]
eventually reaches the stable fixed point 0. It follows that if there exists some t with
0�zt<1, then the sequence zt eventually becomes zero. Now, if zt=1 for all t, and
since the function h has value 1 only for z�1, we must have _(_(zt))&
Abs(zt , et)�2�1 for all t, from which we deduce that Abs(1, et)=0, and et=0 for
all t. K
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Lemma 6.4. The problems of determining whether a given _0* -function R4 � R4 is

(i) globally convergent,

(ii) globally asymptotically stable,

(iii) mortal, or

(iv) nilpotent,

are all undecidable.

Proof. We first reduce the problem of Theorem 5.1 to the mortality problem for
_0*-functions.

Suppose that a _*-function f: R3 � R3 is given. Thus, f is of the form
f =fk b fk&1 b } } } b f1 for some _-functions f j=_(Ajx+bj). Define f $: R4 � R3 by
f $= f $k b f $k&1 b } } } b f $1 , where f $j (x, z)=_(Aj x+bjz) (x is a vector in R3 and z is
scalar) so that f (x)= f $(x, 1) holds for all x.

Consider the _0*-function f ": R4 � R4 defined for all x1, x2, x3, z # R, by

f "(x1, x2, x3, z)=\Sel(_(k)(z), f $(x2, x2, x3, z))
Stab(_(k&1)(z), _ (k&1)(x1)) + . (2)

Here, the function Sel is applied componentwise; that is, Sel(a, e1 , ..., e4)=
(Sel(a, e1), ..., Sel(a, e4)).

We claim that f " has an immortal trajectory x"t+1= f "(xt") (i.e., with xt" {0 for
all t) if and only if f has a trajectory xt+1= f (xt) with x1

t =0 for all t. Indeed, we
argue as follows.

Suppose that f has a trajectory xt+1= f (xt) with x1
t =0 for all t. Then

(x1
t , x2

t , x3
t , 1) is a trajectory of f ", since

f "(x1
t , x2

t , x3
t , 1)=(Sel(_(k)(1), f $(x1

t , x2
t , x3

t , 1)), Stab(_(k&1)(1), _(k&1)(x1
t )))

=(Sel(1, f $(x1
t , x2

t , x3
t , 1)), Stab(1, x1

t ))

=( f (x1
t , x2

t , x3
t ), 1)

=(x1
t+1 , x2

t+1 , x3
t+1 , 1).

This trajectory is immortal because its last component is constant and equal to 1.
Conversely, suppose that f " has an immortal trajectory x"t+1= f "(xt"). Denote

xt"=(xt"
1, xt"

2, xt"
3, xt"

4). By Lemma 6.3, the sequence xt"
4 is either constant with

value 1, or constant with value &1, or eventually null. The last case cannot happen
because if there exists a t with xt"

4=0, then

x"t+1 =(Sel(_(k)(0), f $(xt"
1, xt"

2, xt"
3, 0)), Stab(_(k&1)(0), _(k&1)(xt"

1)))

=(Sel(0, f $(xt"
1, xt"

2, xt"
3, 0)), Stab(0, _(k&1)(xt"

1)))

=(0, 0).

Therefore, the sequence xt"
4 is constant with value 1 or &1 and, by Lemma 6.3,

we must have xt"
1=0 for all t. We can assume without loss of generality that
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xt"
4=1 for all t (otherwise, consider the sequence &xt" instead of xt" , which is also

a trajectory of f " since every _0*-function, and hence f ", is odd). The sequence
xt=(x"1, x"2, x"3) is a trajectory of f with x1

t =0 for all t: indeed, xt+1=
Sel(_(k)(x"4), f $(x1

t , x2
t , x3

t , x"4))=Sel(1, f (x1
t , x2

t , x3
t ))=f (xt) and x1

t =x"1 is zero
for all t�0.

We have just shown that the mortality problem for _0*-functions is undecidable.
Since Sel and Stab are zero in a neighborhood of 0, the same is true of f ". It there-
fore follows from Lemma 2.1 that for f ", Properties (i)�(iv) are equivalent. These
four properties are therefore undecidable. K

We can now prove Theorem 2.1.

Proof (of Theorem 2.1). We reduce the problems in Lemma 6.4 to the problems
in Theorem 2.1.

Let f: R4 � R4 be a _0*-function, of the form f =fk b fk&1 b } } } b f1 for some
_0 -functions fj (x)=_(Ajx), where f j : Rdj&1 � Rdj with d0 , d1 , ..., dk # N, and d0=
dk=4.

Let d=d0+d1+ } } } +dk , and consider the saturated linear function f $: Rd � Rd

defined by f $(x)=_(Ax), where

0 0 } } } 0 Ak

A1 0 } } } 0 0

A=\ 0 A2 } } } 0 0 + .

b b 0 0

0 0 } } } Ak&1 0

Clearly, the iterates of this function simulate the iterates of the function f.
Suppose that f $ is mortal (respectively nilpotent, globally convergent, globally

asymptotically stable). Then the same is true for f: indeed, when xt+1= f (xt) is a
trajectory of f, the sequence (xt , f1(xt), ..., fk&1 b } } } b f1(xt)) is a subsequence of a
trajectory of f $.

Conversely, let x$t+1= f $(x$t) be a trajectory of f $. Write x$t=( y1
t , ..., yk

t ) with
each of the y j in Rdj&1. For every t0 # [0, ..., k&1] and j # [1, ..., k], the sequence
t [ y j

t0+kt
is a trajectory of f. This implies that the sequence y j

t , t # N is eventually
null (respectively, converges to 0) if f is mortal (respectively, globally convergent).
For the same reason, the global asymptotic stability of f implies that of f $, and if
f m#0 for some integer m, we have ( f $)km#0. K

We now prove that al four properties remain undecidable for saturated linear
systems of the form xt+1=_(Axt) when A is a nilpotent matrix.
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Lemma 6.5. A saturated linear system xt+1=_(Axt) is nilpotent if and only if it
is globally convergent and A is nilpotent.

Proof. Let f (x)=_(Ax), and assume that f m#0 for some m�1. For all x in a
suitably small neighborhood of 0, we have f m(x)=Amx. By linearity, this implies
that Amx=0 for all x # Rn.

Conversely, assume that f is globally convergent and that A is nilpotent. By
Lemma 2.1, f must be nilpotent. K

Theorem 6.1. For a saturated linear system xt+1=_(Axt) with A nilpotent, the
properties of global convergence, global asymptotic stability, mortality, and nilpotence
are all undecidable.

Proof. When A is nilpotent, Lemma 2.1 shows that these properties are in fact
equivalent. It is therefore sufficient to show that nilpotence is undecidable. Assume,
to derive a contradiction, that we have a decision algorithm A for this problem. By
the preceding lemma, we could then decide whether an arbitrary saturated linear
system xt+1=_(Axt) is nilpotent: if A is not nilpotent, output ``system not nilpo-
tent,'' otherwise call A. This contradicts Theorem 2.1. (For a more direct proof, we
can also check directly that the matrices constructed in the proof of that theorem
are nilpotent). K

Theorem 6.2. For a saturated linear system xt+1=_(Axt) with A symmetric,
mortality and nilpotence are both equivalent to the condition A=0. Moreover, the
properties of global convergence and global asymptotic stability are equivalent and
decidable.

Proof. For a nilpotent system, 0 is the only possible eigenvalue of A. If A is
symmetric, this is equivalent to A=0.

The decision algorithm for global asymptotic stability works as follows. We first
decide whether A is a stable matrix. If it isn't, then the system cannot be globally
asymptotically stable. If it is, then &Ax&�* &x&, where *<1 is the spectral radius
of A and & }& stands for the Euclidean norm. It follows that &_(Ax)&�&Ax&�
* &x&, which implies that the system is globally asymptotically stable.

Next we show that global convergence implies global asymptotic stability. We
shall use the existence of an ``energy function'' E: [&1, 1]n � R satisfying the
following property [14]: For any trajectory of the system, we have E(xt+1)<E(xt)
except if xt=xt+2 , in which case E(xt+1)=E(xt).

By compactness of [&1, 1]n, E achieves its minimum at some point a. This
implies by the above property that a is a periodic point. For the system to be
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globally convergent we must therefore have a=0 (and it is the only point where E
achieves its minimum). To complete the proof we need to use the specific form
of E:

E(xt)=&xT
t Axt+1+ :

n

i=1

[(xt)
2
i +(xt+1)2

i ]�2.

Let * be any eigenvalue of A and x0 an eigenvector associated to *. If x0 is of suf-
ficiently small norm we have x1=*x0 so that E(x0)= 1&*2

2 |x0 |2. Since E achieves
its minimum only in 0 and E(0)=0 we conclude that |*|<1. As we have seen pre-
viously, this implies that the system is globally asymptotically stable.

The proof that mortality implies A=0 is now easy. As we have just shown, for
a mortal system any eigenvalue * of A must satisfy |*|<1. If *{0, a trajectory
starting at an eigenvector x0 {0 is therefore not mortal. We conclude that 0 is the
only eigenvalue of A, whence A=0. K

7. CONTINUOUS PIECEWISE AFFINE SYSTEMS

We proved in Theorem 4.1 that it cannot be decided whether a given discon-
tinuous piecewise affine system of dimension 2 is globally convergent, globally
asymptotically stable, mortal, or nilpotent. We do not know whether these
problems remain undecidable when the systems are of dimension 1.

For continuous systems, we can prove the following

Theorem 7.1. For continuous piecewise affine systems in dimension 3, the four
properties of global convergence, global asymptotic stability, mortality, and nilpotence
are undecidable.

Proof. The system built in the proof of Lemma 6.4 is of dimension 4. However,
if in the right-hand side of Eq. (2), we replace x1 by _(_(ZN

1
cterm

(x2 , x3))) and x2, x3

by gM(x2, x3), then, from Theorem 5.1 and Lemma 6.4, we obtain a function in
dimension 3, which gives a direct reduction from the problem of Theorem 3.2 to the
problems of Lemma 6.4. K

The following proposition is proved in [5].

Theorem 7.2. For continuous piecewise affine systems in dimension 1, the proper-
ties of global convergence, global asymptotic stability, and mortality are decidable.

We can also show that nilpotence is decidable for continuous piecewise affine
systems in dimension 1. Thus, all properties are decidable for continuous piecewise
affine systems in dimension 1, and are undecidable in dimension 3. The situation in
dimension 2 has not been settled:

Global properties of f: Rn � Rn n=1 n=2 n=3
Piecewise affine ? Undecidable Undecidable
Continuous piecewise affine Decidable ? Undecidable
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8. FINAL REMARKS

In addition to the two question marks in the table of the previous section, several
question that have arisen in the course of this work still await an answer:

1. Does there exist some fixed dimension n such that nilpotence (or mortality,
global asymptotic stability, and global convergence) of saturated linear systems of
dimension n is undecidable?

2. It would be interesting to study the decidability of these four properties for
other special classes of saturated linear systems, as we have already done for nilpo-
tent and symmetric matrices. For instance, is global convergence or global
asymptotic stability decidable for systems with invertible matrices? (Note that such
a system cannot be nilpotent or mortal.) Are some of the global properties
decidable for matrices with entries in [&1, 0, 1]?

3. For saturated linear systems, is mortality equivalent to nilpotence? Is
global convergence equivalent to global asymptotic stability? (This last equivalence
is conjectured in Section 2.) We have seen in Theorem 6.2 that these equivalences
hold for systems with symmetric matrices.

4. For a polynomial map f: Rn � Rn mortality is equivalent to nilpotence;
these properties are equivalent to the condition f n#0 and hence decidable (here f n

denotes the n th iterate of f, as in the rest of the paper). It is however not clear
whether the properties of global asymptotic stability and global convergence are
equivalent, or decidable.

5. Does there exist a dimension n such that for any integer k there exists a
nilpotent saturated linear system f: Rn � Rn such that f k�0? Note that this ques-
tion (and some of the other questions) still makes sense if we allow matrices with
arbitrary real (instead of rational) entries.
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