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Regression Methods for Pricing Complex
American-Style Options

John N. Tsitsiklis Fellow, IEEE,and Benjamin Van Roy

Abstract—We introduce and analyze a simulation-based = Many complex contracts involve contingencies on multiple
approximate dynamic programming method for pricing complex  sources of uncertainty, each represented as a state variable. The
American-style options, with a possibly high-dimensional under-  j70 of the state space grows exponentially in the number of
lying state space. We work within a finitely parameterized family . . . .
of approximate value functions, and introduce a variant of value Varlable§ involved, and consequently, storagfa anq manlpu_latlon
iteration, adapted to this parametric setting. We also introduce Of functions over the state space—as entailed in value itera-
a related method which uses a single (parameterized) value tion—becomes intractable. This phenomenon—known as the
function, which is a function of the time-state pair, as opposed to curse of dimensiona“ty_creates a need for parsimonious ap-
using a separate (independently parameterized) value function for proximation schemes.

each time. Our methods involve the evaluation of value functions One simple approximation method—dating all the way back
at a finite set, consisting of “representative” elements of the state - . ) ) = .
space. We show that with an arbitrary choice of this set, the t0 1959 [3]—is approximate value iteration. Similar to value it-
approximation error can grow exponentially with the time horizon  eration, this approximation algorithm proceeds recursively, be-
(time to expiration). On the other hand, if representative states ginning with a value function at expiration and recursively com-
are chosen by simulating the state process using the underlying , ;iing value functions for preceding time periods. However, in-
risk-neutral probability distribution, then the approximation - - .
error remains bounded. stead of computing and storing each value funct_lon at every
state, values are computed only at a representative sample of
states and a linear combination of basis functions is fit to the
data via least-squares regression, in order to approximate the
N important problem in financial intermediation is thatalue function over the entire state space.
of pricing and hedging American-style options—i.e., op- In earlier work [20], we studied versions of approximate value
tions with flexible exercise features. Such contracts—rangiitgration for infinite horizon optimal stopping problems, where
from American equity and fixed income options to convertibléhe recursive procedure is iterated with the hope of converging to
bonds—arise in virtually all major financial markets. Their analan approximate value function for the infinite horizon problem
ysis typically entails solving problems of optimal stopping. Fafe.g., a perpetual option). As established earlier for related al-
simple contracts, including “vanilla options” such as Americagorithms [19], approximate value iteration can diverge. How-
puts and calls, the relevant optimal stopping problems can &gr, we were able to develop special variants of approximate
solved efficiently by traditional numerical methods. Howevegalue iteration that make use of simulated trajectories from the
the computational requirements associated with such methogiglerlying Markov chain and are guaranteed to converge to an
become prohibitive as the number of uncertainties influencirgproximation of the desired value function.
the value of a contract grows. In this paper, we bring the line of analysis developed in [20]
A simple approach to solving optimal stopping probto bear on finite horizon problems, which are more relevant to
lems—and therefore pricing and hedging contracts witleal-world financial contracts (such contracts almost exclusively
flexible exercise features—involves “backward induction,prescribe finite expiration times). A key observation in this con-
i.e., the dynamic programming value iteration algorithm. Th@xt is that errors in approximate value iteration can grow expo-
process starts by computing a value function at the expiratigsntially in the problem horizon (i.e., time to expiration). This
date, and then recursively works backward, computing valpaenomenon closely relates to the fact that value iteration can
functions for preceding time periods. Each value function mag#/erge when applied to infinite-horizon problems, as observed
states to expected future payoffs, where the expectation is take{R0]. However, using simulated trajectories in a spirit similar
with respect to “risk-neutral probabilities.” Optimal stoppingo algorithms from [20], one can design versions of approximate
decisions (i.e., exercising decisions) can be made by companague iteration for which the error is uniformly bounded over all
the payoff for stopping (i.e., the intrinsic value of a contractiorizons.
against the expected future payoff. Let us note that other researchers have independently devel-
oped a similar algorithm that benefits from the same property.
. . . _In particular, Longstaff and Schwartz [14] have also proposed
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rect value function as the number of basis functions and trajexptimal exercising strategy, where the expectation is taken with
tories used by the algorithm grow. In addition to assymptotiespect to a risk-neutral distribution. Hence, the price is given
results of this kind, the theory we provide in this paper offefsy
theoretical support for the apparent effectiveness of such algo- .
rithms when using a limited number of basis functions. TSE?JPT] Ele™ g(xr)]
An additional contribution of this paper is a version of ap- ’
proximate value iteration that uses basis functions that genwehere
alize over both the state space and time. In particular, as an alterffz; € ®4]0 <t < 7} risk-neutral state process, assumed

native to generating a new approximation to the value function to be Markov;

at each time period, we consider a single approximation made’ risk-free interest rate, assumed to be

up of basis functions each taking as arguments both state and a known constant;

time. Such approximations tend to be far more parsimonious,g(z) intrinsic value of the option when

since the number of parameters computed and stored need not the state isr;

grow linearly with the number of time periods. T expiration time, and the supremum
Other versions of approximate value iteration have also been is taken over stopping times that as-

proposed in the options pricing literature. Some involve parti- sume values if0, 7.

tioning the state space and computing one value per partitiyaturally, we consider stopping times with respect to the fil-
[18], [2]. This can be viewed as a version of approximate valdeation {#; |0 < ¢t < 7}, whereF; is the o-field generated
iteration involving piece-wise constant approximations, whiddy {z; |0 < s < t}. We will assume for simplicity that the
tend to be somewhat restrictive. Another notable approadhk-neutral process is time-homogeneous, as is true for most
involves “stochastic mesh” methods [1], [7]-[9], [16]. Thes@roblems solved in practice.
methods can be thought of as variants of Rust’s algorithmltis sometimes convenient to consider discrete-time versions
[17], specialized to the context of optimal stopping. Values afé the aforementioned optimal stopping problem. This modifi-
approximated at points in a finite mesh over the state spaceciiion can be thought of as a requirement that the option be ex-
a spirit similar to traditional grid techniques. The differencegrcised at certain prespecified intervals—in other words, the op-
however, is that the mesh includes a tractable collection &®n is treated as a Bermudan. The restriction on exercise times
randomly sampled states, rather than the intractable grid théminishes the value of the option, but under mild technical con-
would arise in standard state space discretization. Though us#igons, the difference in value is small and vanishes as the dif-
a stochastic mesh can curtail computational requirementsf@ience between allowable exercise times goes to zero.
significant ways, such algorithms generally require a numberWithout loss of generality, let us assume that the expiration
of samples that grows exponentially in the dimension of tHéne 7 is equal to an intege¥, and that the allowable exercise
state space, except for some cases that satisfy unrealistictillyes are separated by a time interval of unit length. The price
restrictive assumptions such as those presented in [17].  of the resulting Bermudan option is then

This paper is organized as follows. In Section Il, we introduce
the optimal stopping problem associated with the option pricing
problem, and the corresponding value iteration (dynamic pro-

gramming) algorithm. In Section Ill, we introduce a few variVherea = ¢, and wherer ranges over the set of stopping

ants of value iteration that work within a parameterized familZ‘""‘"lS (with respect t47, |0 < ¢ < N}) that take values in

of value functions, and carry out computations at a finite s&f: 1:---» &V}. In this discrete-time and Markovian formulation,

of “representative” elements of the state space. In Section [J& dynamics of the risk-neutral process can be described by a
we show by means of examples, that such methods can hi@gsition operator”, defined by

a large approximation error (exponential in t.he time honz.on (PI)(x) = E[J(2p41) | 20 = 2.

of the problem). In Section V, we show that if representative

states are chosen by simulating the state process using theNwte that the above expression does not depend since the
derlying risk-neutral probability distribution, then the approxprocess is assumed time-homogeneous.

imation error remains bounded. In Section VI, we introduce a A primary motivation for this discretization is that it facil-
related method which uses a single (parameterized) value fuiates exposition of computational procedures, which typically
tion, which is a function of the time-state pair, as opposed #ntail discretization. The value iteration algorithm, for example,
using a separate (independently parameterized) value functwovides a means for options pricing when time is discrete.

sup Ela’ g(x)]

for each time. Finally, Section VII contains some brief conclurhis algorithm generates a sequedge Jy 1, - - , Jo of value
sions. functions, whereJ,, () is the price of the option at time, if z,,
is equal tox. The value functions are generated iteratively ac-
cording to

Il. PRICING VIA VALUE ITERATION

The problem of pricing an American-style option amounts to I =

one of optimal stopping. A reward equal to the intrinsic value ¢f,g
the option, discounted at the risk-free rate, is received at termi-
nation. The price of the option is the expected reward under an J,, = max(g, «PJ, 1), n=N-1,N-2....0
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where the maximum is taken pointwise. The initial price of the In this paper, we will restrict attention to linearly parameter-
option is thenJy (zo). ized architectures, of the form

In principle, value iteration can be used to price any
Bermudan option. However, the algorithm suffers from the -
“curse of dimensionality"—that is, the computation time grows Ja,r) = Z (k) ()
exponentially in the numbef of state variables. This difficulty =t
arises because computations involve discretization of the stage, the value function is approximated by a linear combina-
space, and such discretization leads to a grid whose size graiwa of features. The simplicity of this architecture makes it
exponentially in dimension. Since one value is computed aa¢henable to analysis, and we will discuss theoretical results per-
stored for each point in the grid, the computation time exhibitaining to approximate value iteration in this context. To em-
exponential growth. For complex American options such g@hasize the linear dependence on parameters and as shorthand
those involving path dependencies (e.g., Asian options) wotation, we define an operatdr (that maps vectors iR to
multi-factor interest rate models, the number of state variablesal-valued functions of the state) by
can be substantial and the computational requirements of value

iteration become prohibitive. K

(@r)(w) = Y r(k)du(x).

I1l. A PPROXIMATIONS k=1

Unless the dimension of the state space is small, the pricing¥@ny standard function approximators can be thought of as
problem becomes intractable and calls for approximation of tHaear feature-based parameterizations. Among these are radial

value functions. The first step is to introduce a parameteriz8§Sis function networks, wavelet networks, polynomials, and
value function/ : R¢ x RX — R, which assigns value&(z,) More generally all approximators thatinvolve a fixed set of basis

to statesc, wherer € R¥ is a vector of free parameters. Thdunctions.

objective then becomes to choose, for eacaparameter vector 1 ne architecture, as described pycould also be a nonlinear
r, S0 that mapping such as a feedforward neural network (multilayer per-

ceptron) with weights. The feature extraction mappiggould
J(@, ) = T (). be either entirely absent or it could be included to facilitate
the job of the neural network. Such approximation architectures
For this to be possible, a suitably rich parameterization hasgay offer gains in practical performance. Unfortunately, there
be chosen, so that the “approximation architecture” has the ¢anot much that can be said analytically in this context, and we

pability of closely approximating the functions of interest. Thigi|| not study such architectures in this paper.
choice typically requires some practical experience or theoret-

ical analysis that provides rough information about the shape Approximate Value Iteration
of the function to be approximated. Furthermore, we need al-
gorithms for computing appropriate parameter values. We will
present variants of value iteration designed to accommodate
latter need.

Given a choice of parameterizatioh the computation of
gropriate parameters calls for a numerical algorithm. In
this paper, we study versions of approximate value iteration,

which generate a sequence of parametgrs;, 7y 2, - - -, 7o,
A. Features and Approximation Architectures leading to approximationd (-, 7x—1),...,J(-,7o) to the true
value functions/y_1, ..., Jg.

Inchoosing a parameterization to approximate the value functhg simplest form of approximate value iteration involves a
tion for a particular problem, it is useful to consider the notiogmg|e projection matrixl (acting on the space of value func-
of afeature Let us define deatureas a function mapping the tions) that projects onto the spand, . . . , ¢z, with respect to
state spac&® to R. Given a problem, one may wish to definey weighted quadratic norifV||., defined by
several features:, . .., ¢x. Then, to each state € R¢, we as- ’
sociate the feature vectg(z) = (¢1(x), ..., ¢r(x)). Such a 1/2
feature vector is meant to represent the most salient properties 1l = </ J? (x)W(d$)>
of a given state. veRe

In a feature-based parameterizatiof{r,r) depends on:  wherer is a probability measure oR“. In other words, the
only throughg(z). Hence, for some functiofi : R x R —  projection operator is characterized by
R, we haveJ(z,r) = f(¢(x),r). In problems of interest, the
value functions can be complicated, and a feature-based param- I1J = argmin||J — ®7||.
eterization attempts to break their complexity into less compli- Pr
cated mappingg and¢. There is usually a trade-off between The algorithm generates iterates satisfying
the complexity off and¢, and different choices lead to dras-
tically different structures. As a general principle, the feature J(-,rx_1) = IImax(g, aPg)
extraction functionp is usually hand crafted and relies on what-
ever human experience or intelligence is available. The functigid
f represents the choice of anchitectureused for approxima-
tion. j(, rn) = llmax(g, an(-, Tntl))s n=N-2,...,0.
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Note that the range of the projection is the same as thataofd For each sampley;, and any function./, evaluating
therefore, for any functiod with ||J||» < oo, there is aweight max(g(y;), «(PJ)(y;)) entails the computation of an expec-

vectorr € RE such that tation (PJ)(y;) = E[J(zk+1) |z = y;]. This expectation is
. over a potentially high-dimensional spaké and can therefore
IL] = &r = J(- 7). pose a computational challenge. Monte Carlo simulation offers

L . . _one way to address this task. In particular, for each sample
Clearly, the approximation algorithm generates value functions . .
RATI . . . o .4;, We can simulate independent sampigs. . ., z; from the

by mimicking value iteration, while sacrificing exactness i o o - .
T . I fransition distribution, conditioned on the current state being
order to maintain functions within the range of the approxi-

mator (the span of the features). ¥:, and then define an approximate expectation operatoy

A more sophisticated version of the algorithm involves pro- X l
jections that are dependent on the time period. In particular, one (PI)(y:) = Z J(25)-
j=1
Then, a modified version of approximate value iteration is given

~|

can define a sequence of probability measurgs, .., mn_1
as well as projection operatark, . . ., II5_; that project with
respect to the norm- ||x,,. .-, || - [|x~_., respectively. Then,
the approximate value iteration algorithm would generate itet?y

ates according to J

(-,rv-1) = [lmax(g, aPg)

J(-,ry_1) = IIy_1 max(g, aPg) J(-,rn) = Hmax(g, aPJ (-, 7 41))

n=N-2,...,0.
and

- - Though this approachiis viable, there is an alternative that makes
J(-,rn) = Iy max(g, aPJ (-, 7n41)), n=~N-=2...,0 implementation even more convenient. This alternative, which

we describe next, relies on single-sample estimates of the de-
C. Sample-Based Projection ari@+Values sired expectations.

The approximation algorithm that we have described oﬁeﬁ UsingQ-values and single-sample estimates
advantages over value iteration because it uses a parsimonious }
representation. Onlk numerical values need to be stored at Define foreact =0,..., N —1, a@-function
each stage. However, we have not discussed the computation of 0, = aPJ
these parameters, which can turn out to be time-intensive. In this n = L

section, we address this issue and offer an alternative versiomgfe that(, () represents the expected discounted payoff at
approximate value iteration that facilitates projection. time n conditioned on a decision not to exercise. A version of

Exact computation of a projection is not generally viablgs|ye jteration can be used to produ@evalues directly
However, one can approximate a projectidneffectively by

sampling a collection of states, ..., € R¢ according to Qn_1 = aPg,

the probability measure, and then defining an approximate Qn = aPmax(g, Quy1), n=12...N-1.
projection operator

Furthermore, given a parameterizati@f, ) = ®r and a pro-

m

ILJ = argminZ(J(yi) — (@) (y))>. jection operatofl, a version of approximate value iteration is
or = defined by
Asm grows, this approximation becomes close to exact, in the Q(.7 rn_1) = allPg
sense thafllJ — I1J||~ converges to zero with probability 1. O, ) = allP max(g, O, rns1))

Given the above approximate projection operatpone can
define a modified version of approximate value iteration, gen-
erating parameters according to

n=N-2,...,0. 1)

Once again, we sample states in order to approximate the pro-
J(-,ry—1) = [Imax(g, aPg) jection and expectation. For the projection, as before, we sample
acollection of stateg , . . ., y, distributed according te. The
and approximate projection operator is then given by

m

I1J = argmin _(J(y;) — (or)(w:))*-

Or i1

J(-,rn) = Hmax(g, aPJ (-, rry1)), n=N-2,...,0.

As opposed to the original version of the algorithm, in which

projections posed a computational burden, this new variant in4ye will now base our approximation of the expectation on
volves the solution of alinear least squares problem, Wifree  only a single sample. In particular, for eaghwe generate one

parameters, and admits efficient computation of projections, &sccessor state by simulation. Then, the approximate expec-
long as the number of samplesis reasonable. However, thergation operator is defined by

is an additional obstacle that we must overcome, as we now dis- X
cuss. (P)Y(y:) = J ().
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The resulting version of approximate value iteration is of the IV. THE ACCUMULATION OF ERROR

form There is an appealing simplicity to the approximate value iter-

N ation algorithms defined in the previous section. Unfortunately,

Q('LTN_l) = allPg ) such algorithms often lead to errors that grow exponentially
Q(-,mn) = allPmax(g, Q(-, 7n+1)) in the problem horizon. In this section, we provide examples
n=N-2,...,0. (2) demonstrating this phenomenon. A remedy to this undesirable

state of affairs is offered in Sections V and VI.
In full detail, a typical iteration of the algorithm proceeds We focus in this section on the version of approximate value
as follows. Given the parameter vecigy, ;, and the resulting iteration that involves)-functions and exact computation of ex-
approximationQ(-, 7, 1) of Q. 41, defined by pectations and projections. In other words, we consider the al-

gorithm in (1)
K

Q(-Tv Tnt1) = Z Trt1(k)dr(z) Q(, 7’N—1) = aollPg,
=t Q(7 Tn) =ollP max(g, Q(7 7)n+1))7
we selectm independent random samples of the state, n=N-2...,0.
Y1,...,Ym, according to the probability measure and for
eachy;, we simulate a successor stafeThen, the vector, is Our observations, however, apply to other forms of approximate
found by minimizing value iteration, including those that make use of sample esti-
mates, as well as those that are based on value functiens,).
m K
> <a max {g(zi)v 27’n+1(k)¢k(zi)} A. A Simple Example
= X kle Consider a vanilla American put with strike price 1, aNd
periods until expiration. The intrinsic value given a current stock
- Z (k) dr(yi) i i
price x is
k=1
with respect to+(1), ..., r(K). g(z) = max(0,1 — ).

Given a sample statg, the expected value (with respect to ) ) ) ) )
the random next state) of (ﬁi‘])(yi) is just(P.J)(y;), for any We consider risk-neutral price dynamics given by
function J. For this reasonyl1P max(g, Q(-,7,)) is an unbi- wry, W.P.p
ased estimate ofllP max(g, Q(-,7)). This was made pos- Tnt1 = {dxn w.p.1l—p
sible becausd” enters linearly and effectively allows for the
noise (in the next statg) to be averaged out. Such unbiasedwith v > 1 > d.
ness would not be possible with the original version of approxi- Consider using a single basis functi¢z) = g(z), which
mate value iteration that produced iterafés r,, ), because the is identical to the intrinsic value of the put. Hence, we will gen-
dependence of was nonlinear. erate for each a scalar,, such that,¢(x) represents an ap-
Of course, there is no need for employing the same proproximation to the present value of the option when the time is
ability measurer at each iterationn. In a more general » and the current stock price is
version of the algorithm, we introduce probability measures For the purposes of approximate value iteration, we define a
7o, ..., Tn_1. FOr each time:, we generaten random states distributions over the state space. To keep our computations as
Ynl, - - Ynm, Sampled independently accordingitg, leading Simple as possible, we will choose a trivial distribution, which
to an approximate projection operaidy,, and the algorithm  assigns all probability to a single state- A, for some small
positive scalaA. Hence, the corresponding projection operator
Q(.7 1) = af[N_lﬁg’ (3) Il ensures that there is an exact fit at the stateA, that is

Q(,r) = all, Pmax(g, Q(-, 7ny1)) - )
n=N-2..,0. 4) L)1 -A)=J(1-4)

for any function.J.
In studying the behavior o_f th(_a algorithms considered here, | ot us now study how the parametetsevolve as approxi-
we need to address two distinct issues. mate value iteration progresses. Recall that the iteration under

1) We need to study the approximation error of an ideatonsideration is
ized algorithm such as (1).

2) We need to determine whether the use of an appro&(-,r,) = allP max(g, Q(-, 7ny1)). n=N-2,...,0
imate projection and a single-sample estimate of the
expectation [as in (2)] leads to a significant differenc€or anyr > 0, we have
from the results of the idealized algorithm.

The second issue is not hard to resolve using laws of large num- (Pmax(g,r¢))(1 — A)
bers. The first one is more subtle and constitutes our main focus.

(Pmax(g,7¢))(1)

2
21 =p—dr
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Given the simple form of the projection, we have

= 16001

(HPIHELX(g, Q(77nj—l)))(1 - A)

= (Pmax(g,Q(-,7ny1)))(1 — A) 1400}
=1 -p)A-drng.

It follows that
Ary, 2 ol — p) (1 — dyrpyq

600 -

and dividing both sides of the inequality @y, we have

Magnitude of Approximate Value Function

400 -

n > (1= p)(1 = d)rpgr.

A
200
Hence, forA < (1 —p)(1 — d), the sequence, grows at an
exponential rate, as progresses fronV to 0. Furthermore, the % 5 0 15 a0 2 30 » a0 35 =

Time to Expiration {N}

growth rate can be made arbitrarily large by reducing

. Fig. 1. Exponential growth of the error in the example of Section IV-B.
B. A Numerical Example

Let us now consider somewhat more realistic computationsitialized with Q(-,7y_1) = oIlPg. Plotted in Fig. 1 are the
again involving the same American put. As before, we take ”ﬁ?agnitudes“(}(-, 7o)||» Of approximations@(-, 7o) generated
strike price to be 1 and consider the same binomial model fgy the algorithm, for various horizon¥. The magnitudes ap-

stock price movements parently grow exponentially withV. Note that the present value
_ fur, W.P.p of the put with/V periods until expiration is bounded above by
Tntl = { dr, WwW.p.l—p aN. Hence, the exponential growth of the norm, as depicted in

with > 1 > d. Particular values of the variables empone&:ig' L, impli_es exponentigl growth in the error between the true
in our computations are provided in the table below and approximated-functions, as measured by the nogA|

V. THE USE OFTRAJECTORYDISTRIBUTIONS

strike T 1 In this section, we show that if the sample states used in the
high return u 3/2 approximate projection are obtained by simulating trajectories
low return d 2/3 of the process,,, then the approximation error grows no faster
probability of high return | p | 0.4121 thanv/Ne (instead of growing exponentially i), wheree is
discount factor & 0.99 the best possible approximation error under the chosen approx-
imation architecture.
We will approximate the value function using a quadratic. | et 70,71, ., mx be the probability measures @ that
For each, the weights are given by a three-dimensional vectggscribe the probability distribution af), z1,. ...z, respec-
r, € %%, and the approximation is defined by tively, under the risk-neutral dynamics of the process. We take

xo to be known, so that, is concentrated on that single point.
We make the following assumption.

In the previous section, to keep computations as simple agAssumption 1:

Q(z,rn) = (1) +rp(2)z + (322

possible, we employed a distributianthat assigned all proba- 1) For everyn, we have
bility to the single pointi — A. Let us now consider a situation ) )
more likely to arise in a practical implementation. Let the dis- lgllz, = Elg”(zs)] < oc.

tribution 7 assign probabilities uniformly to points in a discrete
grid spread over a segment of the state space. In particular, we
consider the set

2) For everyn and evenyk, the features,, satisfies

loxllz, = Elbi(za)] < oc.

3) (Linear independence of the features.) For eveand
and focus on approximating values at these points. Hence, the ~ everyr # 0, the random variable’¢(x,,) is nonzero

S =1{0.1,02,0.3,...,18,1.9,2.0}

projection is with respect to the norm defined by with positive probability. Equivalently, the matrix
12 E[¢(z,)¢'(x,)] is positive definite.
1 ) LetII,, be the projection operator with the respect to the norm
1Qll= = <% Z Q ($)> Il - ||, - As a consequence of Assumption 1, and for any func-
zCS tion J (with ||.J||, < o0), the projectioriL,J is of the form

As before, the iteration under consideration is IL,J = &7, for a unique choice of, given by

Q) = allPmax(g, Q(mnt1)),  n=N—-2,...,0 7= (Elp(@n)d (@0)]) 7 Elplan)J (n)].
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We start by comparing the exact algorithm To verify the second property, we argue as in [19], [21]. We
have, using the definition aP and Jensen’s inequality
Qn =aP max(g, Qn-l—l)
. o . . . 1PJ|7, = E((PT)(zn))"]
with the idealized algorithm (1) (which does not involve any E[E[J(2ns1) | 2n]’]
state sampling) given by L) 1
. . E[E[J*(@n+1) | 24]]
Q('7 Tn) = aHanax(g, Q(7 Tn-l—l))' [ (xn-l—l)]
The two algorithms are initialized with - ” ]”7‘ Sl

~ Using the above noted properties, we obtain
Qn-1 = aPg, Q(,ry-1) = aPy_19. g prop

Let 1QC ) = Qul2,

. ~ = OéQH max(g, Q(7 7’n+1))

Cp = ||Q(77n) - Qn Tn — HlELX(g7 Qn—l—l) 72'fn+1 + (C:)Q
which is the approximation error of the idealized algorithm, and < &|Q( rnt1) — Qupr 72rn+1 +(e))?
let = 0426721+1 + (62)2'

= min 1QC.7) = Qullx, = M.Qn — Qullx, This establishes the main part of the theorem. The other two
_ _ ~inequalities are straightforward corrollaries. Q.ED.

which the best possible error under the chosen approximationt now remains to study the additional error introduced by
architecture. random sampling of the state space, as opposed to the exact cal-

Our first and main result states that if the approximation agulation of expectations and projections in the idealized algo-

chitecture is capable of delivering a close approximation (i.e..rithm. Let us first provide a self-contained and precise descrip-
the e;, are small), then the algorithm will succeed (i&,,will  tion of the algorithm to be discussed.

be small). Starting from the given initial state,, we simulaten inde-
Theorem 1:We havecy_; = e, and pendent trajectories of the process. Let =7, be the sample
of z,, obtained during theth simulated trajectory. Thus, the
&2 <&, +(er)? n=0,1 N -2 ; i : o
n = nt1 n) IRIREEE . random variables,, fori = 1,...,m, are i.i.d., drawn from

the distributionr,,. The algorithm produces an approximation

In particular, ife};, < e for everyn, then Q(-,fn) — ®#, of Q,, where#, is defined by

én < ; m ) )
Vavi=a o = ArgMINY (@ max(g(w),4.), 741 H(%s))
and Z‘/:1 7 \\2
—r(ry))”
& < VNe. o _ . .
The approximation error for this algorithm [g(-,7,,) —
Proof: Note that Qn||x,, » which is bounded by
en-1 = [|odlPg = Qn—ilmy_, 1QC70) = QCr)llw, + Q¢ 7m) = Qull,
= MOy —1 = Qnallrny = ehmas wherer,, are the parameters in the idealized algorithm. An upper
Using the Pythagorean theorem, we have bound for the second term above is provided by Theorem 1.
We can therefore concentrate on the first term, which can be
1QC, ) — Qnl? bounded as follows:
= |Q(: n _Hn n 2 Hn n — Wn 2 3 o
at 7H) R Qnllz, + M@n = Qulr, 1QC7) = QCra)lle, = 180G — ),
< o ||y P(max(g, (- rnt1)) <1 = 7nll - | @, < CllFn — 72l

— max(g, Qns1))|2, + (e5)?. . , |
whereC is an absolute constart; || is the standard Euclidean
Note that for any functiory, we have the following properties norm, and

(as long as the norms involved are finite):

[[7l=
®||r, = max
1T [, <[]l | =t I~
(this isa genera| property of projections)' and We have the fO”OWing result, in which we choose our notation
in a way that emphasizes the dependence of the sample-based
NPTz, < s algorithm on the sample size.




TSITSIKLIS AND VAN ROY: REGRESSION METHODS FOR PRICING 701

Theorem 2:Let #,,(m) (a random variable) be the vector ofthat 3,.(mn) converges (almost surely) to zero for any fixed
timen parameters, obtained on the basigro$imulated trajec- Q.E.D.
tories. Asm — oo, the sequencg, (m) converges (with prob-
ability 1) to the parameter vectey, obtained by the idealized VI. GENERALIZING OVER TIME
algorithm.

) . Until now, we have been using a separate parameter vector
Proof: Let.J : R¢ — R be the function defined by(z) = " oW, W ’ using P P v

r,, for eachn, in order to approximaté),,. In other words, we

max(g(x), @, 7n+1)). Then have aimed at approximatiny separate functions, each with
1 = a( E[¢(2n) (2)]) "L El(n) I (2 s1)] domaméR_ . WhenN is Iar_ge (e_.g., |f_the_t|m_e to explrafuon is
substantial and/or a fine time discretization is used), this results
and we also define in alarge number of parameters to be computed. Note, however,
. that the functions),, and@Q,+1 are often “close.” In this sec-
_ T tion, we exploit this fact to reduce the number of parameters. In
m)=a <Z Hn)¢ (x")> Z & o) particular, we consider generating, as an approximation, a single

function over the domain
We use the inequality

[Pn(m) = rull < [[Fn(m) = Fn(m)|| + [[7n(m) — . . . . :
This function is meant to approximate simultaneously every el-
Let 6,,(m) = ||7.(m) — r,]|, which is seen to converge toement in the sequencgy, Q1, ..., Qn_1 of Q-functions.
zero, almost surely, by the strong law of large numbers. To enable a concise description of the algorithm, let us first
Next, we consider the terify,,(m) — 7, (m)||. We define define some abstract notation. For any functionR* — %, we
. —_— define the operataF’ by FJ = aP max(g, J). (As in previous
J(z) = max(g(z), @z, Pny1(m))) sections P is the transition operator.) As before, we hdye =
FQpi1,n =0,1,....N — 1, with the conventiorQ y =
This relation can be rewritten as

S=R"x{0,1,...,N—1}.

and note that

m -1
m=a(Sohie) 3 et (@@ @y 1) = (F Qi F Q)
= = or, more abstractly, as
Thus
. . Q=HQ
Fr(m) —7p(m) = « <Z ¢(a:jl)</)’(a:;)> where@ = (Qo,@1,...,QNx_1), andH is an operator acting
i=1 on functions defined o

PR ; As before, letr,, be the probability measure describing the
Z d)(xn)(‘](xnﬂ) - J($n+1))' () distribution of the random variable,, and consider the norm

=1 |/]lx, = E[J*(z,)], where the expectation is with respect to
Let B, (m) = ||fn(m) — r,]|. Forn < N — 2, and anyr, we 7. Let us define a new norm, on the set of functions with do-
have main.s. For any functiorQ : S = R, we let
ja:—.]a::max Q(x, 7
— max(g ( ) Qz, n+1))|

< Q@ Pns1(m)) — Q@) or, in probabilistic terms

< NI - g (m) = s L

= Bagr(m)lp()]|. ol = 5 Z E[Q(wn,n)].

Using this inequality and (5), we obtain
The operatoH is a contraction with respect to this norm. To
|7 (m) — Fr(m)]| < An(m)Bni1(m) see this, note that

where A,,(m) are random variables that remain bounded #$/Q — HQ||* = ||H(Q0, e Qno1) — H(Q, ., Qn )P

m — OQ. N-1
To summarize, for < N — 2, we have = Z |1 FQnir — FQn+1 2
Bn(m) < 6n(m) + An(m)Bnir(m). N
Forn = N — 1, a simpler argument shows thék _;(m) =N Z 1Qnss = Qo 7‘”“
converges to zero. (Compare the formulas #fgrand 7 _1, N 1
when bothJ and.J are equal tg;.) Asm — oo, the sequence Z 1Qn —
= N n n 71'71

o, (m) goes to zero, whilel,,(rm) remains bounded. It follows
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=a||Q - Q| approximate? function of the formQ,, (z, r) = 7.¢(x,n), and
calculates a new parameter vectpy; according to
We have used here the property (established in Section \Fthat ) =)
is a contraction, as well as the conventi@r = g = Q. e ,
The approximation architecture to be employed usefea- '+ = > Elp(an, n)¢ (w0, )]
ture functionspy, : S — R and approximaté)-functions of the =0

N-—1
form
: Z E[p(xn,n) max(g(zn41), 75P(Ent1,7))].
- =0
Qn(z,7) =7'¢p(z,n), n=0,1,...,N—1 (6)
wherer € R¥ is a vector of free parameters. Animplementable version of this iteration is obtained by sim-
We now define an operatal that corresponds to the projec-ulating a number of trajectories. Let;,,i = 1,...,m, be the

tion (with respect to the norm- ||) onto the set of functions that Sample value of,, obtained during théth simulated trajectory.
can be represented by our approximation architecture. In parii®t 7, be the parameter vector afteiiterations. We then gen-
ular, given a functio) = (Qo, Q1,...,Qn_1), its projection €rate a new parameter vectqr.; according to the formula

is of the formr’¢(-, -), wherer is chosen to minimize

N—-1 m -1
N—1 Pr1 = <Z Z (/)(37:” 71)(/)/(37:“ n))

> Bl (zn,n) — Qu(=))?]. V=
n=0 i i . i
: Z Z (/)(xnv 7’L) 1nax(g(xn+1), T;c(/)(xn-l—lv n))
The minimizingr is given by the closed-form formula n=0 i=1 @)
N-1
- Z El¢(en, )¢ (e, n)] | L In effect, we are replacing the expectation (with respect to the
—= " " underlying probability measure) by an expectation with the re-
N1 spect to the empirical measure provided by the simulations.
. Z E[p(xn, n)Qn(x,)]- Starting with the same parameter vectoi.e., if rg = 7q, the

strong law of large numbers implies that, as the samplersize
increases, the vectéy, produced by théth iteration of the sim-

An exact solution to the pricing problem corresponds to comtation-based algorithm (7) approaches the vectgoroduced
puting the function?* (defined ons) which is the unique so- py the exact algorithm (6).
lution of the equationH@Q* = Q*. Given the approximation e note that there are two variants of the above described
architecture, the closest possible approximatioftas given  algorithm.

by I1Q*. However, it is difficult to compute this function since 1) During each iteration, simulate and usenew set

n=0

Q" itself is unknown. We will therefore settle for the solution to of trajectories. In that case, the parameter veejor
the fixed point equatioy = I1H Q. This equation has a unique evolves as a time-homogeneous Markov process.
solution becausé is a contraction (as shown earlier), ads Eventually, this Markov process reaches steady-state,
a nonexpansion (this is a generic property of projection opera- but the variance of, remains positive, ang}, does not
tors). One desirable characteristic of this fixed point is that its converge to a constant. Let, be a random variable
associated approximation error is within a constant factor from distributed according to the steady-state distribution
the best possible approximation erfdtQ” — Q*||, as we now of this Markov process. Also, let* be the parameter
establish. _ vector associated with the fixed pointdf{ . We con-
H;fhﬁg:%nbi: t';]it Snki)(;uteh:xce?jn:)r:iﬁ?zr];;cﬁre?\f the operator jecture that as the number of simulated trajectories
grows to infinity, the random variable., converges

1 to »*, in probability. We do not pursue this issue any
\/17_—%2”11(2 - Q7. further, because the variant we discuss next is more
natural and economical.
2) We simulate a number of trajectories once and for
all. Thesesametrajectories are used at each iteration of
the algorithm (7). Then, the sequengeis guaranteed

1Q -l <

Proof: We have, using the Pythagorean theorem

* (12 * (12 * * (12
1€ = @7F = [|Q - HQ™]" + [[1Q" — &7 to converge. The reason is that the algorithm (7) is iden-
= |MHQ — THQ*||* + Q" — Q*||? tical to the deterministic algorithi := ILHQ applied
< KQ — QF|I* + I11Q* — Q|2 to a new problem in which the probability measure as-
sociated with the process, is replaced by the em-
and the desired conclusion follows. Q.ED. pirical measure provided by the simulation. The con-
The fixed point of[IH can be obtained, in principle, by car- traction property of1 H remains true, and, therefore
rying out the iteration := IIHQ. In more detail, a typical converges. The limit of the sequengg denoted by

iteration uses an available parameter veejgrresulting in an o0, IS Of course a random variable, since it is affected
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by the randomly simulated trajectories. Asgrows to  [17] J. Rust, “Using randomization to break the curse of dimensionality,”
infinity, the empirical measure “converges” to the true ___ Econometricavol. 65, no. 3, pp. 487-516, 1996.

hich e . [18] J. A. Tilley, “Valuing American options in a path simulation model,”
measure, which suggests thigt, converges to”, in Trans. Soc. Actuarievol. 45, pp. 83-104, 1993.

probability. [19] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference
learning with function approximationJEEE Trans. Automat. Contr.
vol. 42, pp. 674-690, 1997.

[20] —, “Optimal stopping of Markov processes: Hilbert space theory, ap-

. L - proximation algorithms, and an application to pricing high-dimensional
We have introduced certain simulation-based methods, of the financial derivatives,|IEEE Trans. Automat. Conjwol. 44, no. 10, pp.

value iteration type, for pricing complex American-style op- 1840-1851, Oct. 1999.

tions. We have provided convergence results and error boundll B. Van Roy, “Learning and Value Function Approximation in Complex
that establish that such methods are viable, as long as state sam- ggﬁ;ﬂﬁgg':ofgggés’ Ph.D. dissertation, Massachusetts Inst. Technol.,
pling is carried out by simulating the natural distribution of the

underlying state process. This provides theoretical support for

the apparent effectiveness of this particular form of state sam-

pling.

VII. CONCLUSION
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