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Abstract

We consider a finite-state Markov decision problem and establish the convergence of a spe-
cial case of optimistic policy iteration that involves Monte Carlo estimation of Q-values, in
conjunction with greedy policy selection. We provide convergence results for a number of
algorithmic variations, including one that involves temporal difference learning (bootstrap-
ping) instead of Monte Carlo estimation. We also indicate some extensions that either fail
or are unlikely to go through.
Keywords: Markov Decision Problem, Dynamic Programming, Reinforcement Learning,
Monte Carlo, Stochastic Approximation, Temporal Differences.

1. Introduction

This paper deals with simulation-based methods for controlling stochastic systems or, in an
alternative interpretation, learning methods for optimizing the policy of an agent interact-
ing with its environment (Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998). Many such
methods aim at learning the optimal value function (the solution to the Bellman equation)
associated with the problem of interest. Some rely on a model of the problem at hand,
and some are model-free; some rely on a lookup table representation of the value func-
tion, and some employ parametric representations of the value function and value function
approximation to combat the curse of dimensionality.

Developing an understanding of the convergence properties of such methods can be chal-
lenging. For this reason, one often starts by considering the more tractable case of lookup
table representations (Watkins, 1989; Watkins & Dayan, 1992; Jaakkola, Jordan & Singh,
1994; Tsitsiklis, 1994). Even though the lookup table case is of limited practical impor-
tance, it sometimes serves as a stepping stone towards the understanding of the convergence
properties of methods that incorporate value function approximation.

Within the realm of lookup table methods, Q-learning and TD(0) are based on “boot-
strapping” and fall at one end of the spectrum of possible methods. At the other end of the
spectrum, one has “Monte Carlo” methods that do not employ bootstrapping. Temporal
difference methods, TD(λ), with 0 < λ < 1 fall in the middle. Possibly the simplest Monte
Carlo method is “Monte Carlo ES” (Sutton, 1999). In this method, one maintains and
updates Q-values (one variable per state-action pair). The update is not based on the stan-
dard Q-learning formula. Instead, one observes the costs of complete trajectories, starting
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from a particular state-action pair, and lets the corresponding Q-value be the average of
these costs. Sutton (1999) refers to the convergence of this method as an open problem.

In this paper, we deal exclusively with methods that make use of a lookup table repre-
sentation. We settle the above mentioned open problem, for the case of a discounted cost
criterion, under the assumption that every state-action pair is used to initialize the observed
trajectories with the same frequency. A similar result is obtained for bootstrapping meth-
ods, based on TD(λ) for general λ. We remark that convergence is not guaranteed if the
trajectory initializations are made in an arbitrary manner. We conclude with a brief discus-
sion indicating that the convergence results are quite fragile with respect to the assumptions
involved.

2. Preliminaries

We consider a Markov decision problem, with finite state and action sets. We are given a
finite set S = {1, . . . , n} of states, and a finite set U of possible actions. With each state i and
action u, we associate transition probabilities pij(u) and one-stage costs g(i, u). (We assume
that one-stage costs are deterministic functions of i and u; the case of random rewards is
discussed briefly in the last section.) We define a policy µ as a mapping µ : S 7→ U . Given
any policy µ, the state evolution becomes a well-defined Markov chain Xµ

t with transition
probabilities

P (Xµ
t+1 = j | Xµ

t = i) = pij(µ(i)).

The cost-to-go of policy µ starting from state i is defined as

Jµ(i) = E

[ ∞∑
t=0

αtg(Xµ
t , µ(Xµ

t )) | Xµ
0 = i

]
,

where α is a discount factor satisfying 0 < α < 1. The optimal cost-to-go function J∗ is
defined by

J∗(i) = min
µ
Jµ(i).

(The minimum is attained because the set of policies is finite.) The objective is to find
an optimal policy, that is, a policy µ that attains the minimum in the above definition,
simultaneously for all states i. Such an optimal policy is known to exist by standard results
in dynamic programming.

We introduce some shorthand notation, along the lines of (Bertsekas & Tsitsiklis, 1996).
Let Pµ be the n×n matrix of transition probabilities under policy µ. We will use the symbol
J to indicate vectors of dimension n, to be interpreted as cost-to-go functions. In particular
Jµ is the vector with components Jµ(i), and J∗ is the vector with components J∗(i). Let
gµ be the vector whose ith component is the one-stage cost g(i, µ(i)) incurred by policy
µ at state i. We finally introduce the dynamic programming operators T, Tµ : <n 7→ <n,
which are defined as follows. For any vector J ∈ <n, TµJ is also a vector in <n whose ith
component is given by

(TµJ)(i) = g(i, µ(i)) + α

n∑
j=1

pij(µ(i))J(j).
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Similarly, the ith component of TJ is given by

(TJ)(i) = min
u

g(i, u) + α
n∑
j=1

pij(u)J(j)

 .

In vector notation, we have
TµJ = gµ + αPµJ,

and
(TJ)(i) = min

µ
(TµJ)(i), ∀ i.

We use T k to denote the composition of k copies of T . The notation T kµ is interpreted
similarly.

As is well known, the vector Jµ is the unique solution to the linear equation

Jµ = TµJ
µ,

and also satisfies
Jµ = lim

k→∞
T kµJ, ∀ J.

Also, the vector J∗ is the unique solution to the Bellman equation

J∗ = TJ∗.

A greedy policy corresponding to J is a policy µ in which, for each i, µ(i) is chosen to be
a value of u that minimizes g(i, u) + α

∑n
j=1 pij(u)J(j). In vector notation, a greedy policy

corresponding to J satisfies
TµJ = TJ.

If J is equal to J∗, then a greedy policy corresponding to J is guaranteed to be optimal.
We note some useful properties of the dynamic programming operators that will be used

extensively. Let e ∈ <n be the vector with all components equal to 1. Then, for any scalar
c, we have

T (J + ce) = TJ + αce, Tµ(J + ce) = TµJ + αce.

Furthermore, the operators are monotone, in the sense that

J ≤ J =⇒ TJ ≤ TJ, TµJ ≤ TµJ.

Here and throughout the rest of the manuscript, a vector inequality such as J ≤ J is to be
interpreted componentwise, i.e., J(i) ≤ J(i) for all i.

The policy iteration method operates as follows. Given a policy µ, one evaluates the
vector Jµ (policy evaluation), and then chooses a new policy which is a greedy policy cor-
responding to Jµ (policy update). This iteration is repeated until the algorithm converges,
which is guaranteed to happen after a finite number of steps, at which point an optimal
policy is obtained. The computation of Jµ can take place by solving the system Jµ = TµJ

µ,
if Pµ and gµ are available, or it may involve a learning algorithm such as TD(λ). Optimistic
policy iteration is a variation of ordinary policy iteration in which policy updates are carried
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out without waiting for policy evaluation to converge to Jµ. Such a method maintains a
vector J , uses a greedy policy to generate a complete or partial trajectory, uses the results
of the trajectory to carry out one iteration of an iterative policy evaluation algorithm (re-
sulting in an update of J), and continues similarly. For example, if the partial trajectory
consists of a single transition, and if policy evaluation involves a single value iteration up-
date at the state before the transition, one obtains a form of asynchronous value iteration.
The method considered in the next section is a particular type of optimistic policy iteration
in which the policy evaluation method employed is Monte Carlo estimation.

3. Optimistic Policy Iteration Using Monte Carlo for Policy Evaluation

We start with a precise description of the algorithm to be analyzed. Let t be an iteration
index. At each iteration t, we have available a vector Jt, and we let µt be a corresponding
greedy policy, that is,

TµtJt = TJt.

For every state i, we simulate a trajectory that starts at state i and observe its cumulative
discounted cost. (Note that this is only a “conceptual algorithm” because the trajectory
will generally have to be of infinite length. Variations that correspond to implementable
algorithms are discussed briefly in the last section.)

Since the expected cost of this trajectory is Jµt(i), the observed cumulative cost is equal
to Jµt(i) + wt(i), where wt(i) is zero-mean noise. We then update the vector Jt according
to

Jt+1(i) = (1− γt)Jt(i) + γt(Jµt(i) + wt(i)), (1)

where γt is a (deterministic) scalar stepsize parameter.
In the special case where J0 = 0 and γt = 1/(t+1), it is easily verified that Jt(i) is equal

to the average of the observed cumulative costs of t independent trajectories that start at
i. If the policy µ were held forever fixed, Jt(i) would converge to Jµ(i). If a policy update
were to be carried out only after an infinite number of updates of the form (1), the method
would be identical to policy iteration. However, because the policy is continuously updated,
we are dealing with an optimistic variant. Finally, we note that the method described here
is synchronous, meaning that at each iteration we simultaneously observe n trajectories,
one for each possible starting state.

The analysis of the method considered here is not entirely straightforward because it does
not follow into the standard pattern of a contracting iteration perturbed by noise. Instead,
one has to exploit the monotonicity properties of the dynamic programming operators T
and Tµ.

Let Ft be the history of the algorithm up to and including the point where Jt has become
available, but before simulating the trajectories that will determine the next update. Thus,
wt is a function of the random variables contained in Ft+1, and

E[wt(i) | Ft] = 0.

Furthermore, the variance of wt(i) (conditioned on Ft) is only a function of the current policy
µt and the initial state. Since there are finitely many policies and states, the variance of
wt(i) is bounded by some constant.
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For the result that follows, as well as for all other results in this paper, we assume the
usual stepsize conditions

∞∑
t=0

γt =∞,
∞∑
t=0

γ2
t <∞.

Proposition 1 The sequence Jt generated by the synchronous optimistic policy iteration
algorithm (1), applied to a discounted problem, converges to J∗, with probability 1.

Proof We define a scalar sequence ct by letting

ct = max
i

((TJt)(i)− Jt(i)).

The performance Jµt of a policy µt can be “worse” than the vector Jt that was used to
produce that policy. The following lemma establishes a bound on the possible deterioration.

Lemma 2 For every t, we have

(a) Jµt ≤ Jt +
ct

1− α
e,

(b) Jµt ≤ TµtJt +
αct

1− α
e,

(c) T kµtJt ≤ Jt +
ct

1− α
e, for all k,

where e is the vector with all components equal to 1.

Proof From the definition of µt, we have TµtJt = TJt. Using also the definition of ct, we
have TµtJt ≤ Jt + cte. We apply Tµt to both sides of the latter inequality, to obtain

T 2
µtJt ≤ Tµt(Jt + cte) = TµtJt + αcte ≤ Jt + cte+ αcte.

Continuing inductively, we obtain

T kµtJt ≤ Jt + (1 + α+ · · ·+ αk−1)cte ≤ Jt +
ct

1− α
e, ∀ k,

which proves part (c). Since T kµtJt converges to Jµt , part (a) follows.
To prove part (b), we apply Tµt to both sides of the result of part (a) and use the fact

TµtJ
µt = Jµt .

If we had ct ≤ 0, we would obtain Jµt ≤ Jt, and in the absence of noise, Jt+1 ≤ Jt. In
the presence of such monotonicity, convergence is easy to establish. In the remainder of the
proof, we will use standard tools for analyzing stochastic iterations to show that the effects
of the noise are asymptotically negligible, and also that ct converges to zero or less, which
brings us to the easier case mentioned above.
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Recall that
TµtJ = gµt + αPµtJ, ∀ J.

Using this affine property of Tµt , we have

TJt+1 ≤ TµtJt+1

= Tµt((1− γt)Jt + γtJ
µt + γtwt)

= gµt + (1− γt)αPµtJt + γtαPµtJ
µt + γtαPµtwt

= (1− γt)TµtJt + γtTµtJ
µt + γtαPµtwt (2)

= (1− γt)TJt + γtJ
µt + γtwt + γtαPµtwt − γtwt

= (1− γt)Jt + (1− γt)(TJt − Jt) + γtJ
µt + γtwt + γtαPµtwt − γtwt

= Jt+1 + (1− γt)(TJt − Jt) + γtvt,

where vt = αPµtwt − wt. Note that E[vt | Ft] = 0 and

E[‖vt‖2 | Ft] ≤ CE[‖wt‖2 | Ft] ≤ CA,

for some constants A and C.
We have established so far that

TJt+1 − Jt+1 ≤ (1− γt)(TJt − Jt) + γtvt.

Let us define Xt = TJt − Jt and note that

Xt+1 ≤ (1− γt)Xt + γtvt.

We will compare Xt to the sequence of vectors Yt defined by Y0 = X0 and

Yt+1 = (1− γt)Yt + γtvt.

An easy inductive argument shows that Xt ≤ Yt for all t. Using standard results on
convergence of stochastic iterations, e.g., Example 4.3 in p. 143 of (Bertsekas & Tsitsiklis,
1996), Yt converges to zero, with probability 1. (The qualifier “with probability 1” will
be omitted in the sequel but should be understood to be apply whenever limits of random
variables are involved.) Consequently,

lim sup
t→∞

Xt ≤ 0.

Since ct = maxiXt(i), we conclude that for every ε > 0, there exists a time t(ε) such that

ct ≤ ε, ∀ t ≥ t(ε).

Using Lemma 2(b) and the fact TJt = TµtJt, we obtain

Jµt ≤ TJt +
αct

1− α
e ≤ TJt +

εα

1− α
e, ∀ t ≥ t(ε).
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Thus, for t ≥ t(ε), we have

Jt+1 = (1− γt)Jt + γtJ
µt + γtwt

≤ (1− γt)Jt + γtTJt + γt
εα

1− α
e+ γtwt.

Let us fix ε > 0. We will carry out a comparison of the sequence Jt with the sequence
Zt defined by Zt(ε) = Jt(ε) and

Zt+1 = (1− γt)Zt + γtTZt + γt
εα

1− α
e+ γtwt, ∀ t ≥ t(ε). (3)

An easy inductive argument shows that Jt ≤ Zt for all t ≥ t(ε).
We define a mapping Hδ : <n 7→ <n by letting

HδZ = TZ + δe.

Given that T is a contraction mapping with respect to the maximum norm, it follows that
the mapping Hδ is also a contraction mapping. Furthermore, the unique fixed point Z∗δ of
Hδ is equal to J∗ + δe/(1− α), because

Hδ

(
J∗ +

δe

1− α

)
= T

(
J∗ +

δe

1− α

)
+ δe = J∗ +

αδe

1− α
+ δe = J∗ +

δe

1− α
.

Note that the iteration (3) is of the form

Zt+1 = (1− γt)Zt + γt(HδZt + wt),

with δ = αε/(1 − α). Given that Hδ is a maximum-norm contraction and the noise wt is
zero mean and with bounded variance, Prop. 4.4 in p. 156 of (Bertsekas & Tsitsiklis, 1996)
shows that Zt must converge to Z∗δ . Recall that Jt ≤ Zt for all t ≥ t(ε). It follows that
lim supt→∞ Jt ≤ Z∗δ . Since ε can be chosen arbitrarily close to 0, the same is true for δ, and
we conclude that

lim sup
t→∞

Jt ≤ inf
δ>0

Z∗δ = J∗.

Finally, we use the relation Jµt ≥ J∗ to obtain

Jt+1 ≥ (1− γt)Jt + γtJ
∗ + γtwt.

We have Jt ≥ Vt, where Vt satisfies V0 = J0 and

Vt+1 = (1− γt)Vt + γtJ
∗ + γtwt.

The sequence Vt converges to J∗, we obtain lim inft→∞ Jt ≥ J∗, and the proof is complete.

We now discuss another variant for which convergence is similarly established. At each
iteration t, instead of generating a trajectory from every initial state, let us pick a single
state i, randomly, uniformly, and independently from everything else, and generate a single
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trajectory starting from i. We then update the cost-to-go function only at state i. If n is
the cardinality of the state space, we have at each iteration,

Jt+1(i) =
{

(1− γt)Jt(i) + γtJ
µt(i) + γtwt(i), with probability 1/n,

Jt(i), otherwise.

It is not hard to see that this algorithm can be described in the form

Jt+1(i) =
(

1− γt
n

)
Jt(i) +

γt
n

(
Jµt(i) + wt(i) + vt(i)

)
, (4)

where vt(i) is a noise term, reflecting the randomness in the choice of i. In particular,

vt(i) = (nχt(i)− 1)(− Jt(i) + Jµt(i) + wt(i)),

where the χt(i) are random variables such that χt(i) = 1 if state i is selected, and χt(i) = 0,
otherwise. Because a state is selected uniformly, the expected value of χt(i) is 1/n, which
implies that E[vt(i) | Ft] = 0. Furthermore, because there are finitely many possible policies
and states, Jµt(i) is bounded, which implies that

E[‖vt‖2 | Ft] ≤ A+B‖Jt‖2,

for some constants A and B. Using these observations, the proof of Prop. 1 goes through
with small modifications. The only difference is that the conditional variance of vt is not
bounded by a constant, but by a quadratic in ‖Jt‖. Even so, we are still within the setting
considered in Sections 4.2-4.3 of Bertsekas & Tsitsiklis (1996), and the various stochastic
approximation results quoted in the course of the proof of Prop. 1 remain applicable. (See
the proof of Prop. 3 in the next section, for the specifics of the technique used to handle
the absence of a bound on the conditional variance.)

An extension that does not seem possible, at least with this particular proof method,
concerns the case where the initial state of a trajectory is picked at random, as just discussed,
but according to a nonuniform distribution. Effectively, this replaces the scalar stepsize γt/n
in Eq. (4) by a component-dependent stepsize γtp(i), where p(i) is the probability that state
i is selected. Tracing back the proof of Prop. 1, the scalar stepsize γt has to be replaced by
a diagonal matrix Γt. We note that the equalities in Eq. (2) essentially rely on the property
Tµ((1 − γ)J + γJ) = (1 − γ)TµJ + γTµJ . However, this property fails to hold when γ is
replaced by a diagonal matrix Γ, because Γ and Pµ need not commute.

On the other hand, the following slight variation does lead to a convergent algorithm.
Allow the algorithm to select the initial state according to nonuniform probabilities p(i) but
instead of having a deterministic stepsize γt, use a component-dependent stepsize of the form
γt(i) = 1/nt(i), where nt(i) is the number of trajectories, out of the first t trajectories, for
which i was selected to be the initial state. In the long run, nt(i) will be equal to p(i)t, plus
O(
√
t) terms, so that γt(i) ∼ (1/p(i)t). Multiplying by the probability p(i) that state i is

selected and that J(i) is updated, we see that the expected change in J(i) is proportional
to p(i) · 1/(p(i)t) = 1/t. This is the same mathematical structure as in the proof of Prop. 1,
and the result remains valid.

In a last and interesting variant, a single initial state is chosen at random, but an update
of J(i) is carried out for every state i that is visited by the trajectory. This is possible,
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because the cost accumulated by the tail end of the trajectory, starting from the time that
i is visited, provides an unbiased estimate of Jµ(i). There are different implementations of
this variation, depending on whether multiple visits of a trajectory to the same state i lead
to multiple updates (“every visit” version) or to a single one (“first visit” version) (Singh &
Sutton, 1996). With either implementation, the probability that J(i) is updated during an
iteration is nonuniform and convergence is an open question, for the same reasons as those
in our earlier discussion of the nonuniform case.

Even though we are not able to settle the convergence problem for the case of nonuniform
choice of initial states, we do know that some form of statistical regularity is needed. If
one allows the selection of the initial state to be arbitrary (subject only to the condition
that every state is selected infinitely often), Example 5.12 in pp. 234-236 of Bertsekas &
Tsitsiklis (1996) provides a counterexample to convergence.

4. Optimistic Synchronous Policy Iteration based on TD(λ)

In this section, we extend the result of the preceding section, to cover a related method
that uses TD(λ) for policy evaluation, instead of Monte Carlo.

In temporal difference methods, one simulates a trajectory i0, i1, . . ., starting from an
initial state i = i0, using a policy µ, and records the temporal differences

dk = g(ik, µ(ik)) + αJ(ik+1)− J(ik).

Each temporal difference contributes an update increment to J(i). The total update is of
the form

J(i) := J(i) + γ
∞∑
k=0

αkλkdk, (5)

where λ ∈ [0, 1). An equivalent form of this update rule, obtained after some algebra, is

J(i) := (1− γ)J(i) + γ(1− λ)
∞∑
k=0

λk
(
g(i0) + αg(i1) + · · ·+ αkg(ik) + αk+1J(ik+1)

)
.

In vector notation, we have

J := (1− γ)J + γ(1− λ)
∞∑
k=0

λkT k+1
µ J + γw,

where w is a zero-mean noise vector reflecting the difference between the observed temporal
differences and their expected values. Note that if we set λ = 1 in Eq. (5), the update rule
becomes

J(i) := (1− γ)J(i) + γ
∞∑
k=0

αkg(ik),

and we recover the method of the preceding section.
If we let λ = 0, the update rule (5) becomes

J := (1− γ)J + γTµJ + w.
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If furthermore, µ is chosen to be a greedy policy corresponding to J , we obtain the update
rule

J := (1− γ)J + γTJ + w.

Since T is a maximum-norm contraction, general results apply (Prop. 4.4 in p. 156 of
Bertsekas & Tsitsiklis, 1996), and show that the method will converge to J∗, even if carried
out asynchronously (that is, even if initial states of trajectories are chosen in an unstructured
manner, as long as each state is selected infinitely often). When λ is close to zero, one expects
that the same convergence result will still go through, by a “continuity” argument. For
general values of λ, however, this proof technique does not seem adequate for establishing
asynchronous convergence. We will therefore restrict once more to a synchronous version.

Similar to the preceding section, at each iteration t, we have available a vector Jt, and
we let µt be a corresponding greedy policy, that is,

TµtJt = TJt.

For every state i, we simulate a trajectory that starts at state i, calculate temporal differ-
ences, and carry out the update prescribed by (5), which translates to

Jt+1 = (1− γt)Jt + γt(1− λ)
∞∑
k=0

λkT k+1
µt Jt + γtwt, (6)

where γt is a (deterministic) scalar stepsize parameter.
For some insight into the mathematical issues that arise with this algorithm, think of

the term T k+1
µt Jt as being of the form T k+1

µ(J)J , where µ(J) is a greedy policy associated with
J . For k = 0, we have Tµ(J)J = TJ , and the mapping J 7→ TJ is a contraction (hence our
earlier argument for the case λ = 0). However, for positive k, the mapping J 7→ T k+1

µ(J)J is
far from being a contraction, and is in fact discontinuous: small changes in J can result in
a different policy µ(J) and hence in large changes in the value of T k+1

µ(J)J . Thus, arguments
based on contraction properties are not applicable.

Proposition 3 The sequence Jt generated by the synchronous optimistic TD(λ) algorithm
(6), applied to a discounted problem, converges to J∗, with probability 1.

Proof Note that E[wt | Ft] = 0. Furthermore, since the update term in Eq. (5) depends
linearly on J , it is seen that

E[‖wt‖2 | Ft] ≤ A+B‖Jt‖2,

for some constants A and B.

Lemma 4 The sequence Jt is bounded, with probability 1.

Proof The update equation (6) is of the form

Jt+1 = (1− γt)Jt + γtHtJt + γtwt,
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where the mapping Ht has the property

‖HtJt‖∞ ≤ max
k≥0
‖T k+1

µt Jt‖∞ ≤ α‖Jt‖∞ +D,

for some constant D. (Here, we use the maximum norm ‖ · ‖∞ defined by ‖J‖∞ =
maxi |J(i)|.) The boundedness of the sequence Jt follows from Prop. 4.7 in p. 159 of Bert-
sekas & Tsitsiklis (1996).

We now continue in a manner that parallels the proof of Prop. 1, and using again the
notation ct = maxi ((TJt)(i) − Jt(i)). The chain of equalities in Eq. (2) is replaced by the
following calculation:

TJt+1 ≤ TµtJt+1

= Tµt

(
(1− γt)Jt + γt(1− λ)

∞∑
k=0

λkT k+1
µt Jt + γtwt

)
= gµt + (1− γt)αPµtJt + γtαPµt(1− λ)

∞∑
k=0

λkT k+1
µt Jt + γtαPµtwt

= (1− γt)TµtJt + γt(1− λ)Tµt
∞∑
k=0

λkT k+1
µt Jt + γtαPµtwt

≤ (1− γt)Jt + (1− γt)(TJt − Jt) + γt(1− λ)
∞∑
k=0

λkT k+1
µt (Jt + cte) + γtαPµtwt

= (1− γt)Jt + (1− γt)(TJt − Jt) + γt(1− λ)
∞∑
k=0

λk(T k+1
µt Jt + αk+1cte) + γtαPµtwt

= Jt+1 + (1− γt)(TJt − Jt) + γt(1− λ)
∞∑
k=0

λkαk+1cte+ γtαPµtwt − γtwt

≤ Jt+1 + (1− γt)(TJt − Jt) + γtαcte+ γtvt,

where vt = αPµtwt − wt.
We have established so far that

TJt+1 − Jt+1 ≤ (1− γt)(TJt − Jt) + γtαcte+ γtvt.

Let us define Xt = TJt − Jt and note that

Xt+1 ≤ (1− γt)Xt + γtαemax
i
Xt(i) + γtvt.

We will compare Xt to the sequence of vectors Yt defined by Y0 = X0 and

Yt+1 = (1− γt)Yt + γtαemax
i
Yt(i) + γtvt.

An easy inductive argument shows that Xt ≤ Yt for all t. We notice that the mapping
Y 7→ αemaxi Y (i) is a maximum norm contraction. Fix a positive integer l, and consider
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the stopped process vl(t) which coincides with vt as long as E[v2
t (i) | Ft] ≤ l, and is equal

to 0 thereafter. Consider the iteration

Y l
t+1 = (1− γt)Y l

t + γtαemax
i
Y l
t (i) + γtv

l
t.

Using results on convergence of stochastic iterations involving contraction mappings (see,
e.g., Prop. 4.4 in p. 156 of Bertsekas & Tsitsiklis, 1996), Y l

t converges to zero, for every l.
By Lemma 4, the sequence Jt is bounded, which implies that the the sequence E[v2

t (i) | Ft]
is also bounded. Therefore, with probability 1, there exists some l such that vlt = vt for all
t, and, consequently, Y l

t = Yt for all t. Hence, Yt also converges to zero, which implies that

lim sup
t→∞

Xt ≤ 0.

As in the proof of Prop. 1, we fix some ε > 0, and choose t(ε) such that

ct ≤ ε, ∀ t ≥ t(ε).

By Lemma 2(c), we have T kµtJt ≤ TµtJt + εe/(1− α), and Eq. (6) yields

Jt+1 ≤ (1− γt)Jt + γtTJt + γt
εα

1− α
e+ γtwt, t ≥ t(ε).

From here on, the rest of the proof is identical to the last part of the proof of Prop. 1.

5. The Model-Free Case

The algorithms of the preceding two sections require knowledge of the system model. This
is because gµ and Pµ are needed in order to generate a greedy policy µt corresponding to
the current vector Jt. But of course, if a model is available, learning methods with lookup
table representations are uninteresting, except to the extent that they provide insights into
more general settings.

However, even in the absence of a model, a related method based on Q-values is ap-
plicable. The method is as follows. (We only describe it for the Monte Carlo case. The
reader should have no difficulty extending this discussion to the case of general λ.) For
every state-action pair (i, u), we introduce a Q-value Q(i, u) which is an estimate of the
cost-to-go starting from state i, given that the first decision has been fixed to be u.

At each iteration t, we have available a vector Qt, with components Qt(i, u), and we
let µt be a corresponding greedy policy, that is, for every i we select µt(i) to be a value
of u that results in the smallest Qt(i, u). For every pair (i, u), we generate a trajectory
that starts at state i, chooses u as the first decision, and follows the policy µt thereafter.
Let Qµt(i, u) be the cumulative expected cost of such a trajectory. The observed cost is of
the form Qµt(i, u) + wt(i, u), where wt(i, u) is a zero-mean noise term. We then update Q
according to

Qt+1(i, u) = (1− γt)Qt(i, u) + γt(Qµt(i, u) + wt(i, u)), ∀ (i, u). (7)

where γt is a deterministic scalar stepsize parameter. The specific question raised by Sutton
(1999) is whether Qt converges to Q∗, where Q∗(i, u) = minµQµ(i, u), because when Q =
Q∗, a corresponding greedy policy is known to be optimal.
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Proposition 5 The sequence Qt, generated by the algorithm (7), applied to a discounted
problem, converges to Q∗, with probability 1.

Proof This is the special case of the result in Prop. 1, applied to a new problem in which
the state space consists of all “regular” states i in the original problem, together with all
state-action pairs (i, u). The dynamics in the new problem are as follows: when at a regular
state i, one selects a decision u and moves deterministically to the state (i, u). When at a
state of the form (i, u), there are no decisions to be made, the cost g(i, u) is incurred, and
the next state is j with probability pij(u). A cost-to-go vector for this new problem has
two kinds of components: those of the form J(i) for regular states i, and those of the form
Q(i, u) for the new states (i, u).

Let us now apply the algorithm of Section 3 to this new problem. At time t, we have
available vectors Jt and Qt. A greedy policy µt is determined, which prescribes the actions
to be taken at regular states i by considering the values of Qt(i, u) for various u. Trajectories
are simulated under µt starting from every regular state i and from every new state (i, u).
The results Qµt(i, u) + wt(i, u) (where wt(i, u) is the usual simulation noise term) of the
trajectories starting at new states are used to update Q according to Eq. (7), which takes
the form

Qt+1 = (1− γt)Qt + γtQ
µt + γtwt.

(The vector Jt is also updated, but this has no effect on the Qt or on the greedy policies.) By
Prop. 1, Qt converges to Q∗. We then recognize that the algorithm we have just analyzed
is mathematically identical (as far as the Q-values are concerned) to the one described by
Eq. (7).

6. Discussion and Conclusions

As a practical matter, the algorithms considered in earlier sections are not implementable
because each iteration requires the generation of infinitely long trajectories. This difficulty
can be bypassed in a few different ways. One possibility is to only generate trajectories
over a long enough horizon, say of duration T , where αT is very close to zero, so that the
cost accumulated during the finite trajectory is a very close approximation to the infinite
trajectory cost. Another possibility is to restrict to problems that have a zero-cost absorbing
state that is guaranteed to be reached eventually. In that case, we only need to generate
trajectories for a finite (though random) time, that is, until the absorbing state is reached. A
last possibility, which is always applicable, is to let the process terminate with probability α
at each stage, and to accumulate undiscounted costs. This is justified because the expected
undiscounted cost until termination is equal to the expected infinite horizon discounted
cost.

The formulation that we have used assumes that the cost per stage g(i, u) is a deter-
ministic function of i and u. In a slightly more general model, one can assume that the
one-stage cost is a random variable whose conditional expectation (given the past history
of the process) is equal to g(i, u), and whose conditional variance is bounded. Our results
have straightforward extensions to this case, because the “noise” in the one-stage costs can
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be incorporated into the zero-mean noise term wt in either of the update equations we have
considered (Eqs. 1, 6, or 7).

We have provided a number of results and have settled one of the open problems by
Sutton (1999), on the convergence of Monte Carlo based optimistic policy iteration. How-
ever, these results seem to be quite fragile. For example, unlike Q-learning with lookup
table representations, the methods considered here are known to be nonconvergent in the
presence of asynchronism. It is still an open question whether convergence can be estab-
lished if the various states are selected with some regularity (e.g., at random, but according
to a fixed – nonuniform – distribution), or if one considers the “every-visit” version (Singh
& Sutton) of the algorithm. Another open question (probably not as hard), is to extend
the results to undiscounted (stochastic shortest path) problems, under the assumption that
termination is inevitable. Finally, there is the more interesting question of what happens
in the presence of function approximation. Here, we do not see much ground for optimism.
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