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Abstract

We study a linear stochastic approximation algorithm that arises in the context of reinforcement learning. The algorithm
employs a decreasing step-size, and is driven by Markov noise with time-varying statistics. We show that under suitable
conditions, the algorithm can track the changes in the statistics of the Markov noise, as long as these changes are slower
than the rate at which the step-size of the algorithm goes to zero.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Stochastic approximation; Adaptive algorithms; Reinforcement learning

0. Introduction

The convergence of stochastic approximation algo-
rithms driven by ergodic noise sequences has been ex-
tensively studied in the literature [1,5,9,10]. Typical
convergence results show that the iterates converge to
a stationary point of the vector <eld obtained by aver-
aging the update direction with respect to the statistics
of the driving noise.
In some applications, the statistics of the driving

noise change with time. In such cases, the point to
which the algorithm would converge if the noise were
held stationary, also changes with time. In this con-
text, a meaningful objective is to have the stochastic
approximation algorithm “track” this changing point
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closely, after an initial transient period. Algo-
rithms of this type are often called “adaptive”, as
they adapt themselves to the changing environment
(for a textbook account of adaptive algorithms,
see [1]).
The tracking ability of adaptive algorithms has been

analyzed in several contexts [6,14]. For example, it is
known that the usual constant step-size stochastic ap-
proximation algorithms can “adapt” to changes in the
statistics of the driving noise that are “slow” relative to
the step-size of the algorithm. However, the tracking
ability of decreasing step-size stochastic approxima-
tion algorithms has not been studied before, because of
the nature of the assumptions that would be required:
for the changes in the statistics of the driving noise
to remain slow relative to the decreasing step-size,
these changes should become progressively slower.
Such an assumption would be too restrictive and un-
natural in applications where the noise is exogenously
generated.
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In some contexts, however, the statistics of the
driving noise depend only on a parameter that is delib-
erately changed by the user at a rate which is slower
than the natural time scale of the stochastic approxi-
mation algorithm. In such cases, it becomes meaning-
ful to study the tracking ability of decreasing step-size
stochastic approximation. In this paper, we focus on
linear iterations and establish that when the update di-
rection and the statistics of the noise in the update di-
rection depend on a “slowly” changing parameter, the
algorithm can track such changes in a strong sense to
be explained later. To the best of our knowledge, this
is the <rst result on the tracking ability of “adaptive”
algorithms with decreasing step-sizes. Similar results
are possible for methods involving nonlinear itera-
tions under certain stability conditions (see, e.g. [4]
for stability conditions in a single time scale setting
with a simpler noise model), but this direction is not
pursued here.
The rest of the paper is organized as follows. In

Section 1, we motivate the linear algorithms consid-
ered within the context of reinforcement learning. In
Section 2, we state the main result of this paper. The
last three sections are devoted to the proof of this
result.

1. Motivation

The motivation for the analysis of the linear
iterations considered in this paper comes from
simulation-based (“reinforcement learning”) methods
for Markov decision problems [2,13], such as Tem-
poral DiGerence (TD) learning [12], that are used to
approximate the value function under a given 5xed
policy.
More precisely, consider an ergodic <nite-state

Markov chain {Xk}, with transition probabilities
p(y | x). Let g(x) be a one-stage reward function,
and let � be its steady-state expectation. TD learning
methods consider value functions that are linear in a
prescribed set of basis functions �i(x),

V̂ (x; r) =
∑
i

ri�i(x)

and adjust the vector r of free parameters ri, to obtain
a sequence of approximations to the solution V (·) of

the Poisson equation

V (x) = g(x)− �+
∑
y

p(y | x)V (y):

The parameters �k and rk , which denote the estimate of
average reward and the parameters of the approximate
value function, are updated recursively as

�k+1 = �k + 
k(g(Xk)− �k);

rk+1 = rk

+
k(g(Xk)− �k + r′k�(Xk+1)− r′k�(Xk))Zk ;

where

Zk =
k∑
l=0

�k−l�(Xl)

is a so-called eligibility trace, and � is a constant with
06 �¡ 1.
Observe that the update equation for the vector

(�k ; rk) is of the form

rk+1 = rk + 
k(h(Yk+1)− G(Yk+1)rk);

where Yk+1 = (Xk; Xk+1; Zk) is a Markov chain whose
transition probabilities are not aGected by the param-
eters being updated. However, in the context of opti-
mization over a parametric family of Markov chains,
both the basis functions and the transition probabil-
ities of the Markov chain {Xk} depend on a policy
parameter � that is constantly changing. Therefore, in
this context, the update takes the form

rk+1 = rk + 
k(h�k (Yk+1)− G�k (Yk+1)rk);

where �k denotes the value of � at time k, and where
Yk+1 is generated from Yk using the transition proba-
bilities corresponding to �k . If �k is held constant at �,
the algorithm would generally converge to some Mr(�).
Wewould like to prove that even if �k moves “slowly”,
then rk tracks Mr(�k), in the sense that |rk − Mr(�k)| goes
to zero. A result of this type, as developed in the next
section, is necessary for analyzing the convergence
properties of “actor-critic” algorithms, which combine
temporal diGerence learning and slowly changing poli-
cies [7,8].

2. Main result

Consider a stochastic process {Yk} taking values
in a Polish (complete, separable, metric) space Y,
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endowed with its Borel �-<eld. Let {P�(y; d My);
�∈Rn} be a parameterized family of transition ker-
nels on Y. Consider the following update equations
for a vector r ∈Rm and a parameter �∈Rn:
rk+1 = rk+
k(h�k (Yk+1)−G�k (Yk+1)rk)+
k�k+1rk ;

�k+1 = �k+�kHk+1: (1)

In the above iteration, {h�(·); G�(·): �∈Rn} is
a parameterized family of m-vector valued and
m × m-matrix valued measurable functions on Y.
Also, Hk is a random process that drives the changes
in the parameter �k , which in turn aGects the lin-
ear stochastic approximation updates of rk . We now
continue with our assumptions.

Assumption 1. The step-size sequence {
k} is deter-
ministic, non-increasing, and satis<es∑
k


k =∞;
∑
k


2k ¡∞:

Let Fk be the �-<eld generated by {Yl; Hl;
rl; �l: l6 k}.

Assumption 2. For every measurable set A ⊂ Y,

P(Yk+1 ∈A|Fk) = P(Yk+1 ∈A|Yk ; �k) = P�k (Yk ; A):

For any measurable functionf onY, let P�f denote
the measurable function y 
→ ∫

P�(y; d My)f( My). Also,
for any vector r, let |r| denote its Euclidean norm.

Assumption 3 (Existence and properties of solutions
to the Poisson equation): For each �, there exist func-
tions Mh(�)∈Rm, MG(�)∈Rm×m, ĥ� : Y → Rm, and
Ĝ� : Y→ Rm×m that satisfy the following:

1. For each y∈Y,

ĥ�(y) = h�(y)− Mh(�) + (P�ĥ�)(y);

Ĝ�(y) = G�(y)− MG(�) + (P�Ĝ�)(y):

2. For some constant C and for all �, we have

max(| Mh(�)|; | MG(�)|)6C:

3. For any d¿ 0, there exists Cd¿ 0 such that

sup
k

E[|f�k (Yk)|d]6Cd;

where f�(·) represents any of the functions
ĥ�(·); h�(·); Ĝ�(·); G�(·).

4. For some constant C¿ 0, and for all �; M�∈Rn,
max(| Mh(�)− Mh( M�)|; | MG(�)− MG( M�)|)6C|�− M�|:

5. There exists a positive measurable function C(·)
on Y such that for each d¿ 0,

sup
k

E[C(Yk)d]¡∞;

and

|(P�f�)(y)− (P M�f M�)(y)|6C(y)|�− M�|;
where f�(·) is any of the functions ĥ�(·) and Ĝ�(·).

Assumption 4 (Slowly changing environment): The
random process {Hk} satis<es

sup
k

E[|Hk |d]¡∞

for all d¿ 0. Furthermore, the sequence {�k} is
deterministic and satis<es

∑
k

(
�k

k

)d
¡∞;

for some d¿ 0.

Assumption 5. The sequence {�k} is a m×m-matrix
valued Fk -martingale diGerence, with bounded
moments i.e.,

E[�k+1|Fk ] = 0; sup
k

E[|�k |d]¡∞ ∀d¿ 0:

Assumption 6 (Uniformpositivede<niteness). There
exists some a¿ 0 such that for all r ∈Rm and �∈Rn:
r′ MG(�)r¿ a|r|2:

Our main result is the following.

Theorem 7. If Assumptions 1–6 are satis5ed, then

lim
k

|rk − MG(�k)−1 Mh(�k)|= 0:

When �k is held <xed at some value � ∗, for all k,
our result states that rk converges to MG(� ∗)−1 Mh(� ∗),
which is a special case of Theorem 17 in p. 239 of
[1]. In fact Assumptions 1 and 2 are the counterparts



98 V.R. Konda, J.N. Tsitsiklis / Systems & Control Letters 50 (2003) 95–102

of Assumptions A.1 and A.2 of [1], and Assumption
3 is the counterpart of Assumptions A.3 and A.4 in
[1]. Several suPcient conditions for this assumption
are presented in [1] when the state space Y of the
process Yk is a subset of a Euclidean space. When Y
is Polish, these conditions can be generalized using
the techniques of [11].
There are two diGerences between our assumptions

and those in [1]. A minor diGerence is that [1] consid-
ers vector-valued processes Yk , whereas we consider
more general processes Yk . Accordingly, the bounds
in [1] are stated in terms of |Yk |, whereas our bounds
are stated in terms of some positive functions of Yk .
The second diGerence, which is the more signi<cant
one, is that �k is changing, albeit slowly. For this rea-
son, we need to use a diGerent proof technique. Our
proof combines various techniques used in [1,3,4]. In
the next section, we present an overview of the proof
and the intuition behind it.

3. Overview of the proof

We note that the sequence $̂k = MG(�k)rk − Mh(�k)
satis<es the iteration:

$̂k+1 = $̂k − 
k MG(�k+1)$̂k + 
k%
(1)
k+1 + 
k%

(2)
k+1;

where

%(1)k+1 = MG(�k+1)(h�k (Yk+1)− Mh(�k))

− MG(�k+1)(G�k (Yk+1)− MG(�k))rk

+ MG(�k+1)�k+1rk ;

%(2)k+1 =
1

k
(( MG(�k+1)− MG(�k))rk

− ( Mh(�k+1)− Mh(�k)))

as can be veri<ed by some simple algebra.
Assumption 3 implies that the vector h�(Yk+1) and

the matrix G�(Yk+1) have expected values Mh(�) and
MG(�) respectively under the steady-state distribution
of the time-homogeneous Markov chain Yk with tran-
sition kernel P�. Therefore, we expect that the eGect of
the error term %(1)k+1 can be “averaged out” in the long
term. Similarly, since �k is changing very slowly with
respect to the step-size 
k , we expect that %(2)k+1 goes
to zero. The proof consists of showing that the terms

%(i)k+1; i= 1; 2; are inconsequential in the limit, and by
observing that the sequence {$̂k} converges to zero
when these terms are absent.
We formalize this intuition in the next two sections.

Note that the error terms are aPne in rk , and there-
fore can be very large if rk is large. A key step in the
proof is to show boundedness of the iterates rk , and
this is the subject of the next section. The main re-
sult is then proved in the last section. The approach
and techniques used here are inspired by more general
techniques developed in [1,4].

4. Proof of boundedness

Note that the diGerence between two successive it-
erates at time k is of the order 
k , which goes to zero
as k goes to in<nity. Therefore, to study the asymp-
totic behavior of the sequence {rk}, we need to fo-
cus on a subsequence {rkj}, where the sequence of
non-negative integers {kj} is de<ned by

k0 = 0; kj+1 = min


k ¿kj

∣∣∣∣∣∣
k−1∑
l=kj


k ¿T


 :

Here, T is a positive constant that will be held <xed
throughout the rest of the paper. The sequence {kj} is
chosen so that any two successive elements are suP-
ciently apart, resulting in a non-trivial diGerence be-
tween rkj+1 and rkj . To obtain a relation between rkj+1

and rkj , we de<ne a sequence {r̂jk} by

r̂jk = rk=max(1; |rkj |) for k¿ kj:

Note that |r̂jk |6 1 for all j. Furthermore, r̂jk is
Fk -adapted and satis<es

r̂jk+1 = r̂jk + 
k

( Mh(�k)
max(1; |rkj |)

− MG(�k)r̂
j
k

)
+ 
k %̂

j
k+1;

k¿ kj;

where for k¿ kj, the term

%̂jk+1 =

(
h�k (Yk+1)− Mh(�k)

max(1; |rkj |)

−(G�k (Yk+1)− MG(�k))r̂
j
k

)
+ �k+1r̂

j
k ;
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can be viewed as perturbation noise. Similarly, for
each j, de<ne a sequence {rjk} as follows:

rjkj = r̂jkj ;

rjk+1 = rjk + 
k

( Mh(�k)
max(1; |rkj |)

− MG(�k)r
j
k

)
; k¿ kj:

Note that the iteration satis<ed by rjk is the same as
that of r̂jk , except that the perturbation noise is not
present in it. We will show that the perturbation noise
is negligible, and that r̂jk tracks r

j
k , in the sense that

lim
j

max
kj6k6kj+1

|r̂jk − rjk |= 0; w:p:1:

The next lemma provides bounds on the perturbation
noise. It involves the stopping times )(1)j (C), which
are de<ned as follows: given some constant C¿1, let

)(1)j (C) = min{k¿ kj: |r̂jk |¿C}:

The stopping time )(1)j (C) is the <rst time the (ran-

dom) sequence {r̂jk} exits a ball of radius C. (We will
often use the simpler notation )(1)j , if the value of C
is clear from the context.) The following lemma de-
rives bounds on the “eGect” of the perturbation noise
%̂jk before time )(1)j .

Lemma 8. For any given C¿ 0, there exists a
constant C1¿ 0 such that for all j, we have

E


 max
kj¡k6)

(1)
j ∧kj+1

∣∣∣∣∣∣
k∑

l=kj+1


l%̂
j
l+1

∣∣∣∣∣∣
2

6C1

kj+1∑
k=kj+1


2k :

Proof. We only outline the proof as this result is
similar to Proposition 7, in [1, pp. 228]. The main
diGerence is that this proposition considers the sum∑k−1

l=0 
l%̂
j
l+1, whereas we are interested in the sum∑k

l=kj+1 
l%̂
j
l+1. The diGerence in the initial limit of the

summation does not aGect the proof. However, the dif-
ference in the <nal limit of the summation could aGect
the proof, because r̂jk I{)(1)j =k} is not bounded. How-
ever, we note that the proof in [1] still goes through,
as long as r̂jk I{)(1)j =k} has bounded moments. To see

that r̂jk I{)(1)j = k} has bounded moments, we observe

that it is aPne in r̂jk−1I{)(1)j = k} (which is bounded),
with the coePcients having bounded moments.

The outline of the rest of the proof is as follows.
Consider a <xed j, and suppress the superscript j to
simplify notation. Note that the perturbation noise %̂l+1

is of the form

F�l(r̂l;Yl+1)− MF�l(r̂l) + �l+1r̂l;

where MF�(r) is the steady-state expectation of
F�(r; MY l), and where MY l is a Markov chain with tran-
sition kernel P�. Using Assumption 3, it is easy to
see that for each �; r there exists a solution F̂�(r;y)
to the Poisson equation:

F̂�(r;y) = F�(r;y)− MF�(r) + (P�F̂�)(r;y):

The perturbation noise can be expressed in terms of
F̂ as follows:

%̂l+1 = �l+1r̂l + F�l(r̂l;Yl+1)− MF�l(r̂l)

= �l+1r̂l + (F̂�l(r̂l;Yl+1)− (P�l F̂�l)(r̂l;Yl+1)

= (�l+1r̂l + F̂�l(r̂l;Yl+1)− (P�l F̂�l)(r̂l;Yl))

+((P�l−1 F̂�l−1 )(r̂l−1;Yl)−(P�l F̂�l)(r̂l;Yl+1))

+((P�l F̂�l)(r̂l;Yl)− (P�l F̂�l)(r̂l−1;Yl))

+((P�l F̂�l)(r̂l−1;Yl)−(P�l−1 F̂�l−1 )(r̂l−1;Yl)):

To prove the lemma, it is suPcient to show that the
desired inequality holds when %̂jl is replaced by each
of the terms on the right-hand side of the above equa-
tion. Indeed, the <rst term is a martingale diGerence
with bounded second moment and the second term
is the summand in a telescoping series. The last two
terms are of the order O(|r̂l − r̂l−1|) and O(|�l+1 −
�l|), respectively. Using these observations, it is eas-
ily shown that each of these terms satis<es the desired
inequality.

Lemma 8 indicates that as long as r̂k is bounded,
the perturbation noise remains negligible. In the next
lemma, we prove that the sequence {r̂jk} closely ap-
proximates rjk .

Lemma 9. Limj maxkj6k6kj+1 |r̂jk − rjk |= 0, w.p.1.

Proof. Since MG(·) is bounded, there exists a constant
D such that

|r̂jk+1 − rjk+1|6D
k∑

l=kj


l|r̂jl − rjl |+
∣∣∣∣∣∣
k∑

l=kj


l%̂l+1

∣∣∣∣∣∣
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for every k¿ kj. Using the discrete Gronwall inequal-
ity, 1 it is easy to see that

max
kj6k6kj+1∧)(1)j

|r̂jk+1 − rjk+1|

6 eDT
′

max
kj6k6kj+1∧)(1)j

∣∣∣∣∣∣
k∑

l=kj


l%̂l+1

∣∣∣∣∣∣ ;
where T ′ = T + 
kj+1. Therefore, Lemma 8 and the
Chebyshev inequality imply that

P

(
max

kj6k6kj+1∧)(1)j
|r̂jk+1 − rjk+1|¿ -

)
6
C1

-2

kj+1−1∑
l=kj


2l

for some C1¿ 0 that depends on the constant C in the
de<nition of the stopping time )(1)j (C). Consider the
stopping time )(2)j (-) de<ned by

)(2)j (-) = min{k¿ kj: |r̂jk − rjk |¿ -};

which is the <rst time that the sequence {r̂jk} exits
from a tube of radius - around the sequence {rjk}. To
prove the lemma, we need bounds on P()(2)j 6 kj+1),
whereas we only have bounds on P()(2)j 6 kj+1∧)(1)j ).
Therefore, we need to relate the stopping times )(1)j
and )(2)j . To do this, note that

sup
j

max
kj6k

|rjk |6C

for some constant C¿ 1, because Mh(·) and MG(·) are
bounded, and the function MG(·) satis<es Assumption
6. At time k = )(1)j (C + -), we have |r̂jk |¿C + - and

|rjk |6C, which implies that |r̂jk − rjk |¿ -, i.e.,

)(2)j (-)6 )(1)j (C + -):

1 For a non-negative sequence {
k} and a constant B ¿ 0, let
{bk} be a sequence satisfying b0 = 0 and

bk+16
k∑
l=0

bk
k + B ∀k:
Then, for every k, we have

bk+16B exp
(

k∑
l=0


l

)
:

Therefore,

P
(

max
kj6k6kj+1

|r̂jk+1 − rjk+1|¿ -
)

=P()(2)j (-)6 kj+1)

=P()(2)j (-)6 kj+1 ∧ )(1)j (C + -))

6
C1

-2

kj+1−1∑
l=kj


2l :

The result follows from the summability of the series∑
k 


2
k and the Borel–Cantelli lemma.

Now we are ready to prove boundedness, using the
following simple results.

Lemma 10. Suppose that 06 �¡ 1 and that
{ak}, {-k} are non-negative sequences that satisfy
ak+16 �ak + -k .

(1) If supk -k ¡∞, then supk ak ¡∞.
(2) If -k → 0, then ak → 0.

Lemma 11. If an m× m matrix G satis5es

r′Gr¿ -|r|2 ∀r ∈Rm;

then for su:ciently small 
¿ 0,

|(I − 
G)r|6 (1− 1
2
-)|r|:

Lemma 12. supk |rk |¡∞, w.p.1.

Proof. Since Mh(·) is bounded, Assumption 6 and
Lemma 11 imply the following. There exists a con-
stant C such that, for j suPciently large, and k¿ kj,

|rjk+1|6
(
1− 1

2 
ka
) |rjk |+ 
k

C
max(1; |rkj |)

:

Using the inequality 1− x6 e−x, we have

|rjk+1|6 e
−
(
1
2 a
∑k

l=kj

l
)
|rjkj |

+


 k∑
l=kj


l


 C

max(1; |rkj |)
: (2)
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This, along with Lemma 9, implies
|rkj+1 |

max(1; |rkj |)
6 e−aT=2

|rkj |
max(1; |rkj |)

+T
C

max(1; |rkj |)
+ -j;

where -j → 0, w.p.1. Multiplying both sides by
max(1; |rkj |) and using the fact that it is less than
1 + |rkj |, we have
|rkj+1 |6 (e−aT=2 + -j)|rkj |+ CT + -j:

Since e−aT ¡ 1 and -j → 0, w.p.1, it follows from
Lemma 10(a) that

sup
j

|rkj |¡∞; w:p:1:

Recall that rjkj = r̂jkj is bounded. Then, using Eq. (2)
it follows that

sup
j; k¿kj

|rjk |¡∞ w:p:1:

The boundedness of |rk | now follows from the obser-
vation:

sup
k

|rk | = sup
j

(max(1; |rkj |) · max
kj6k6kj+1

|r̂jk |)

6 sup
j

{(1 + |rkj |)(maxkj6k6kj+1 |rjk |

+ max
kj6k6kj+1

|rjk − r̂jk |)};

the boundedness of rjk and rkj , and Lemma 9.

5. Proof of Theorem 7

To prove Theorem 7, we consider the sequence $̂k=
MG(�k)rk − Mh(�k). As noted in Section 3, this sequence
evolves according to the iteration:

$̂k+1 = $̂k − 
k MG(�k+1)$̂k + 
k%
(1)
k+1 + 
k%

(2)
k+1;

where

%(1)k+1 = MG(�k+1)(h�k (Yk+1)− Mh(�k))− MG(�k+1)

×(G�k (Yk+1)− MG(�k))rk + MG(�k+1)�k+1rk ;

%(2)k+1 =
1

k
(( MG(�k+1)− MG(�k))rk

−( Mh(�k+1)− Mh(�k))):

Lemma 13.
∑

k 
k%
(1)
k+1 converges w.p.1.

Proof. The proof relies on Assumptions 1, 3, and 5,
and is omitted because it is very similar to the proof
of Lemma 2 in [2, pp. 224].

Lemma 14. limk %
(2)
k = 0, w.p.1.

Proof. Using Assumption 3(4) and the update equa-
tion for �k , we have

|%(2)k+1|6
C

k

|�k+1 − �k |(|rk |+ 1)

= C
�k

k

|Hk |(|rk |+ 1):

Since {Hk} has bounded moments, the second part of
Assumption (4) yields

E

[∑
k

(
�k

k

)d
|Hk |d

]
¡∞

for some d¿ 0. Therefore, (�k=
k)Hk converges to
zero, w.p.1. The result follows from the boundedness
of {rk}.

Recall the notation kj from the previous section. For
each j, de<ne $jk , for k¿ kj as follows:

$jk+1 = (I − 
k MG(�k))$
j
k ; $jkj = $̂kj :

Lemma 15. limj maxkj6k6kj+1 |$̂k − $jk |= 0, w.p.1.

Proof. Since MG(�k) is bounded, there exists some C
such that for every j and k¿ kj,

|$̂k−$jk |6C
k−1∑
l=kj


l|$̂l−$jl|+
∣∣∣∣∣∣
k−1∑
l=kj


l(%
(1)
l+1 + %(2)l+1)

∣∣∣∣∣∣ :
Using the discrete Gronwall inequality, it can be seen
that

max
kj6k6kj+1

|$̂k − $jk |

6 eCT max
kj6k6kj+1

∣∣∣∣∣∣
k−1∑
l=kj


l(%
(1)
l+1 + %(2)l+1)

∣∣∣∣∣∣
6 eCT sup

k¿kj

∣∣∣∣∣∣
k−1∑
l=kj


l%
(1)
l+1

∣∣∣∣∣∣+ eCTT sup
k¿kj

|%(2)k+1|:
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The result follows from the previous two lem-
mas.
We are now ready to complete the proof of Theorem

7. Using Assumption 6 and Lemma 11, we have

|$jkj+1
|6 e−aT=2|$jkj |:

Therefore Lemma 15 implies that

|$̂kj+1 |6 e−aT=2|$̂kj |+ -j;

where -j → 0 w.p.1. Using Lemma 10(b), it follows
that | MG(�kj)rkj − Mh(�kj)|= |$̂kj | converges to zero. Us-
ing arguments similar to the closing arguments in the
proof of Lemma 12, we <nally conclude that

lim
k

| MG(�k)rk − Mh(�k)|= 0; w:p:1:
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