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Abstract

Managing uncertainty is a major challenge in radiation therapy treatment
planning, including uncertainty induced by intrafraction motion, which is
particularly important for tumours in the thorax and abdomen. Common
methods to account for motion are to introduce a margin or to convolve the
static dose distribution with a motion probability density function. Unlike
previous work in this area, our development does not assume that the patient
breathes according to a fixed distribution, nor is the patient required to breathe
the same way throughout the treatment. Despite this generality, we create a
robust optimization framework starting from the convolution method that is
robust to fluctuations in breathing motion, yet spares healthy tissue better than
a margin solution. We describe how to generate the data for our model using
breathing motion data and we test our model on a computer phantom using
data from real patients. In our numerical results, the robust solution delivers
approximately 38% less dose to the healthy tissue than the margin solution,
while providing the same level of protection against breathing uncertainty.

1. Introduction

The classical approach to dealing with uncertainty in intensity modulated radiation therapy
(IMRT) has been to introduce a margin surrounding the tumour volume and incorporate it in
the treatment planning. Such an approach, while producing a treatment that is robust against
uncertainty, is over-conservative and necessarily increases the radiation exposure of healthy
tissue and organs-at-risk. At the other end of the spectrum, if the treatment plan ignores
uncertainty altogether, the result will typically be a non-uniform overall dose to the tumour
with substantial cold spots. The work presented in this paper strikes a middle-ground between
two conflicting objectives, ensuring the tumour receives the required dose, while exposing
healthy tissue to less dose than the corresponding margin-induced treatment.
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We will focus on intrafraction motion as our main source of uncertainty—breathing
motion in lung tumours, to be precise—which has been observed in many studies (Langen
and Jones 2001, Goitein 2004, Shimizu et al 2001, Shirato et al 2004, Seppenwoolde et al
2002). Accordingly, our concept of a margin will only pertain to intrafraction breathing
motion uncertainty, ignoring other sources of uncertainty such as systematic errors, which
need to be analysed separately. Our development is related to the idea of a ‘motion pdf’
(Trofimov et al 2005, Bortfeld et al 2002, Zhang et al 2004, Li and Xing 2000, Engelsman
et al 2005), which uses a probability density function to define what proportion of time the
tumour spends in each breathing phase (in reality, discretization leads to a probability mass
function or pmf). Similar pmf models exist for interfraction motion (Unkelbach and Oelfke
2004). To use this pmf approach, it is necessary that ‘the motion ... is reproducible and
stable during the treatment delivery’ (Trofimov et al 2005). In other words, using a pmf to
account for tumour motion produces acceptable dose distributions provided the motion does
not deviate significantly from what is expected. Our work here explores the consequences
of violating this ‘negligible deviation’ assumption. In particular, we develop a framework to
analyse uncertainty in the pmf that describes breathing motion, and show how to incorporate
it into the inverse planning optimization to produce a treatment plan that is robust to these
uncertainties. Throughout the paper, ‘robust’ will mean that no realizations of the uncertainty
will cause a constraint (e.g., the minimum dose requirement in the tumour) to be violated.
Our analysis focuses on the case where there is no uncertainty in the objective function. In
the appendix, we discuss how to extend our framework to include uncertainty in the objective
function.

In section 2, we introduce a model of data uncertainty which describes the possible
variations in the breathing pmf to be protected against. In section 3, we describe the process of
deriving a pmf from breathing motion data, and also show how to use multiple pmfs to produce
bounds on the uncertainty model. In section 4, we present a mathematical formulation which
represents the inverse planning problem at hand, with two distinctive features: first, it is a
robust formulation, capable of mitigating the breathing uncertainty and producing a plan that
satisfies our conflicting objectives of tumour coverage and healthy tissue sparing. Second, it
is a linear formulation, ensuring that the robust problem is negligibly more complex than our
original problem. In section 5, we illustrate results using our robust formulation and compare
it to the margin approach, as well as to the nominal (no uncertainty) approach. Finally, in
sections 6 and 7, we discuss some supplementary issues regarding our model and conclude
with a future outlook of robust optimization in radiotherapy treatment planning.

2. Model of uncertainty

If motion is ignored during the inverse planning process, but is present during treatment, the
resulting dose distribution will be averaged out (this is often referred to as ‘dose-blurring’
(Jiang et al 2003, Engelsman et a/ 2005, Goitein 2004, Bortfeld et al 2004)). In particular,
the resulting distribution will be the result of convolving the static dose distribution with the
motion pmf. To incorporate motion in the planning process, we can adjust the dose deposition
matrix before we optimize (i.e., solve a deconvolution problem), so that the resulting static
dose distribution convolved with the motion pmf matches the desired distribution. This process
of adjusting for motion relies heavily on the fact that the pmf used in the planning will be
the same as the one realized during treatment (and is known a priori), which has been the
standard assumption with the convolution-based approach so far (Trofimov et al 2005, Zhang
et al 2004, Unkelbach and Oelfke 2004, Li and Xing 2000, Engelsman et al 2005). However,
as motion can vary from day to day and within treatment sessions, we need an approach to
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error bars

Figure 1. A visualization of the model of uncertainty.

mitigate the uncertainty of realizing different pmfs during treatment. Accordingly, the goal in
this section is to introduce a model of uncertainty for the motion pmf. As opposed to assuming
a fixed distribution of motion, we present a framework that is distribution-free, where we give
bounds on the uncertainty, but make no assertion about the exact shape of the distribution.
In a sense, the uncertainty in the problem has been moved from uncertainty due to motion to
uncertainty in the motion.

The proposed uncertainty model consists of a ‘nominal’ pmf, p, surrounded by upper and
lower ‘error bars,” p + p and p — p, respectively. For a loose interpretation, one can think of
the nominal pmf as the mean of some random vector (random function in a continuous space)
describing tumour motion while the error bars describe the extent of the variability of each
component of this random vector. The assumption is that any realized pmf during treatment
will be wholly contained within these error bars. Hence, p and p bound the deviations of the
realized pmf above and below, respectively, the nominal pmf p. We define X (a finite set due
to the discretized nature of the problem) to be the domain of the nominal pmf and error bars,
and without loss of generality, we can take X to be just the subset of the domain where the pmf
or the error bars are non-zero (i.e., the union of the supports of the pmf and error bars). We
introduce an ‘uncertainty region’ U C X, which specifies the locations where the realized pmf
is allowed to deviate from the nominal one. Thus, on the set X\ U, we assume that the realized
pmf matches the nominal pmf. This model gives us the flexibility to address many scenarios.
If a patient’s breathing is highly irregular, then the nominal data are less useful, so we could
set U = X and push the error bars farther apart. On the other hand, if a patient’s breathing
is very regular, we could bring the error bars closer together, or, if the patient’s breathing is
regular at exhale and irregular at inhale, then we could set U equal to the part of the domain
representing inhale. Figure 1 illustrates the model.

Mathematically, we define the pmf uncertainty set Py as

Py = {ia e RN p(x) € [p(x) — p(x), p(x) + P(x)], Vx € U;

pO) > 0.¥x € X: ) plx) = L plx) = p(x). Vx € X\U}. M
xeX
In what follows, we will derive a formulation of the IMRT optimization problem whose
solution will remain feasible, for every realized p € Py. Before that, we discuss how to
obtain the nominal pmf and error bars from tumour motion data.

3. From patient data to a model of uncertainty

In this section, we describe the method we use to create data suitable to be included in the
optimization starting from tumour motion data. Note that the development of our framework is
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Figure 2. Generating a pmf from sinusoidal data.

independent of the data used, be it data collected with an external marker placed on the abdomen
during breathing or internal tumour motion data obtained from a fluoroscopic marker. Ideally,
in the optimization, a treatment planner would use data describing actual tumour motion
induced by breathing, or external data plus the appropriate parameters to correlate internal
motion to the external marker (Vedam et al 2003, Gierga et al 2005, Tsunashima et al 2004).
Our analysis focuses on one-dimensional motion (e.g., along the superior—inferior direction),
however, this approach can also be used as a basis for a similar analysis of motion in higher
dimensions.

Given a trace which represents tumour motion (e.g., a sinusoidal curve), we can create a
pmf by ‘horizontally aggregating’ the curve into a desired number of bins, that is, by simply
constructing, on the vertical axis, a histogram of the data points along the trace (see figure 2).
The generation of a pmf in this manner is quite standard (Lujan et al 1999, Trofimov et al
2005).

Next, we generate the error bars. Consider a family of pmfs, each created as described
in the previous paragraph. Let F be this family of pmfs, denoted fy, f1, ..., fi, where fj is
chosen to be the nominal pmf p. Overlay each of these pmfs on the same axes and consider
the upper and lower envelopes created by these functions. Recall that p +p and p — p denote
the upper and lower error bars, respectively. Thus, for each x where f;(x) > 0 for some
i =0,...,k, (this is the set X) we define p(x) and p(x) so that

p(x) +p(x) = max fi(x) 2

.....

and

p() = p(x) = min f,(x). 3

The intuition behind this construction is that we would like to be protected against any of
the f; from being realized during treatment and, in a sense, everything in between. So,
px) —px) < filx) < p(x)+p(x)forallx € Xandi =0, ..., k. Figure 3 illustrates the
upper and lower error bars resulting from the displayed pmfs.

Let us summarize the procedure we have described in this section and ground it with
examples of practical use. On a day prior to treatment, the planner will take reference 4D CT
scans and simultaneously acquire tumour motion data from an internal or external marker (or
both). Together, this information will be used to create a probability mass function to describe
the motion of the tumour during breathing. Then, absent additional data from the patient, data
from past patients will be used to create the error bars (more on this in section 6). The pmf
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Figure 3. Generating the upper and lower error bars (bold lines) using multiple pmfs.

obtained from the patient will serve as the nominal pmf and, along with the error bars, will be
fed as data into the optimization routine, which we describe next.

4. Robust formulation

In this section, we formulate the problem of IMRT optimization under uncertainty in the
probability mass function describing tumour motion. We use a linear formulation (linear
objective function and linear constraints—more examples in section 6) and some standard
mathematical techniques to derive a tractable ‘robust counterpart’, so that a solution of this
robust counterpart results in a dose distribution that is robust with respect to the uncertainty
in the problem. That is, the resulting dose distribution satisfies the problem constraints under
any realization of the uncertain pmf.

Linear programming is a powerful tool to solve optimization problems which arise in a
multitude of applications. The many benefits of using a linear optimization framework include
a guarantee of optimality at the termination of specialized algorithms, a beautiful theory of
duality which gives insight into the sensitivity of solutions, and in our case, robust counterparts
which are also linear and of only slightly larger problem size (thus, equally tractable). For a
comprehensive introduction to the subject, consult any suitable text (Bertsimas and Tsitsiklis
1997).

First, let us consider the IMRT optimization problem, formulated in terms of beamlet
optimization without motion. Let D, ; be the dose that voxel v receives per unit of intensity
of beamlet b, w;, be the weight or intensity of beamlet b and 6, be the desired or prescribed
dose that voxel v should receive. Let V be the set of all voxels under consideration (i.e., the
entire phantom), 7 be the set of voxels in the tumour and N be the set of voxels of the normal
(non-tumour) tissue. Let 3 be the set of beamlets. We formulate our basic problem as follows:

minimize E E D, pwyp
w

veV beB

subject to Z Dyywp 260, YveT @)
beB
wy =0 Vb eB.

The objective is to minimize the total (or integral or mean) dose delivered to the phantom,
while ensuring that all voxels in the tumour receive a specified level of dose. Typically, it is
required that the tumour receives a uniform dose, so, in that case, 6, = 0 forall v € 7.

To account for motion using a pmf, we first fix a nominal position for each voxel and
then consider voxel displacement relative to this nominal reference frame to create a matrix
A, where A, 5, is the dose to voxel v, if it is shifted by an amount x from its nominal position,
per unit intensity of beamlet b (note that A, , , = D, if x = 0). By defining a probability
mass function p(x), with domain X, that describes the fraction of time a voxel is displaced by
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X relative to its nominal position, we can use it to calculate the motion-averaged dose to voxel
v from beamlet b:

Z Av,x,bp(x)-

xeX

We can reformulate the basic problem to include motion as follows:

minimize Z Z Z Ay xpp(X)wp

vey beB xeX

subject to Z Z AprippX)wp >0, YveT @)
beB xeX
wp =0 Vb eB.

We will call this the nominal problem. This formulation is essentially the same as the basic
problem (4), except with a slightly modified (motion-compensated) D matrix. The above
formulation assumes rigid-body motion, but we can generalize the problem to non-rigid-body
motion by using a possibly different pmf, p, (x), for each voxel v (Li and Xing 2000).

Now, we introduce the model of uncertainty described in section 2. We would like our
formulation to generate solutions that remain feasible under any allowable realization, within
our model (1), of the uncertain pmf. That is, if the realized pmf lies in Py (within the error
bars p + p and p — p, and only differs from the nominal pmf p on the uncertainty region U),
then we wish to guarantee that every voxel in the tumour receives at least its prescribed dose.
This leads us to the following robust problem:

minimize Z Z Z Ay xpp(X)Wp

veV beB xeX

subject to Z Z ApxppX)wp =26, YveT, VpePy (6)
beB xeX
wp = 0 Vb e B.

The objective function states that we are minimizing the integral dose to the phantom, assuming
that the patient breathes according to p. Note that in the objective function we are ignoring
the uncertainty in the pmf, which is fine if our objective is to minimize integral dose. This
is discussed in further detail in section 6. So, in our problem, we focus on uncertainty in the
constraints. That is, we would like to be robust against any uncertainty that might prevent
voxels in the tumour from receiving at least their prescribed dose.

Formulation (6) involves infinitely many constraints (because the set Py has infinitely
many elements) but can be rewritten (Chan 2007) in the equivalent form

minirurjlize Z Z Z Ay xpp(X)Wy

veV beB xeX

subject to Z Z AprppXwp +By(w) =6, YveT (7
beB xeX
wy = 0 VbebB,

where

B (w) = min DO Avspwy

beB xeU
subject to Z px)=0 (3)

xeU

—p(x) < px) <plx) Vxel.
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We now interpret the reformulated problem (7), (8). For each voxel v in the tumour, the
constraint requires that the nominal dose plus S, (w) must be at least the prescribed dose. The
quantity B, (w) as defined in (8) represents the additional (typically negative) dose realized
by a worst-case variation, p, from the nominal pmf under our model of uncertainty. To see
this, fix some w and suppose that the nominal pmf p is changed to a realized pmf p + p.
The objective function in problem (8) that defines 8, (w) is the resulting change in the dose
actually delivered to voxel v. The constraints in problem (8) are equivalent to the constraint
p + p € Py, and therefore simply describe the allowed variations p. The optimization in (8)
is then used to identify the worst possible change (reduction) in the delivered dose to voxel v.

For some additional intuition, it is instructive to identify the structure of the worst-case
variation, p, as far as a particular voxel v is concerned, given a vector w of beamlet intensities.
In the absence of the equality constraint in (8), the minimum would be attained by setting p(x)
equal to —p(x) for all x. However, due to the equality constraint, a negative value of p(x) at
some x needs to be balanced by a positive value of p(x) at other choices of x. The objective
function in (8) is minimized by setting p(x) = —p(x) at those x for which Y, s A, \ pw is
above a certain threshold (the ‘high’ dose locations). This observation motivates the following
interpretation. Fix the static dose distribution generated by w and consider voxel v as it moves
to various locations within this distribution. If v is scheduled, according to the nominal p, to
spend a certain amount of time in the high dose locations, then we need to protect against the
situation where v spends less time there than nominally assumed, and this is precisely what
is accomplished by our formulation. By protecting against the scenario where v spends more
time in the low dose locations and less time in the high dose locations than the nominal pmf
dictates, we are prohibiting v from receiving less than the desired dose 6,.

Formulation (6), as written, is not a linear program due to the infinite number of constraints.
However, using the theory of linear programming duality, we can construct the following
equivalent, linear formulation:

minimize ) Y Y Auxpp@wy

veV beB xeX
subject to Z Z Ay pp (X)W, — Z Z Ay xpp(xX)wp

beB xeX beB xeU

+Z£(X)QU_ZVU,X>GU VUGT

xeU xeU 9)
(P + PGy — o < Y Ay (Px) + px)wy, YveT,VxeU
beB

q, free YveT
rv,x>0 VUGT,VXEU
wy =0 Vb eB.

This is the robust counterpart of the robust problem (6). We have introduced some new
variables and constraints, so indeed, the formulation has increased in size (relative to the
nominal formulation). This increase is on the order of the number of voxels in the tumour
multiplied by the number of voxels in the uncertainty region, but with a linear formulation
and the current capability to solve linear programs, this will not significantly increase the
computational overhead of solving this problem. We omit the proof of equivalence between
(6) and (9) since it will be covered elsewhere (Chan 2007). Also, interested readers should
consult other sources (Ben-Tal and Nemirovski 2000, 2002, Bertsimas and Sim 2004) for a
more advanced introduction to robust optimization.
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To summarize, we have used the model of data uncertainty described by the uncertainty
region U and error bars p+p and p — p to formulate the robust IMRT optimization problem as
a linear optimization problem. The optimal solution to (9) will minimize total dose delivered
to V, while ensuring that the tumour receives the desired dose, under all possible breathing
pmfs within our uncertainty set. Practically speaking, we have a formulation that can be
optimized by any standard linear programming solver and that produces a robust solution.

4.1. A continuum of robustness

For an intuitive, macroscopic understanding of our robust framework, consider the following.
If there is no uncertainty in the problem, then we would just use the nominal formulation (5).
However, with complete uncertainty (i.e., the amplitude of motion, or X, is bounded, but the
pmf can be any function between 0 and 1 on this set), a margin appears to be the best choice for
delivering a uniform dose to the tumour, since the corresponding static dose distribution is as
uniform as possible. In fact, our robust formulation can produce exactly these two scenarios.

Using the robust formulation, with no uncertainty in the problem, we would set U =
and optimize. The resulting static dose distribution would take advantage of the probability
mass function being known with certainty to minimize dose delivered while satisfying the
constraints. It is not difficult to see that by setting U = ¥, we have B,(w) = 0 and we
recover the nominal problem (5). On the other hand, with complete uncertainty, we would
want to make our uncertainty set, Py, as forgiving as possible. That is, we would set
U=X,px)=1- p(x)and p(x) = p(x) for all x € X. In other words, the lower error
bar would be 0 and the upper error bar would be 1 (in a continuous setting, the upper error
bar would be infinitely high since it would need to bound all delta functions over the set X).
We can prove mathematically (Chan 2007) that optimizing the robust formulation with these
parameters produces a margin-like dose distribution—the same dose distribution produced by
the solution of the following formulation:

minimize Z Z Z Ay xpp(X)wp

veV beB xeX
subject to Z D, pwp = 6, YveT
beB (10)
ZDu,bwb>Mv VveM
beB
wp =0 Vb e B.

This is the margin problem and M represents the voxels in the margin. The proof of
equivalence assumes the requirement of a uniform dose in the tumour and the margin (i.e.,
6, =6 forall v e 7, and u, = 6 for all v € M). Since we focus on ensuring the feasibility
of a solution, we defined our margin to be the smallest set of voxels that, in addition to the
nominal tumour voxels, would include the tumour under all feasible displacements allowed
by our model of uncertainty. Formally, this can be written as

M={weWT |v=0+xforsomed € T,x € X}. an

Thus, by setting U, p and p appropriately, the robust framework can recover both the
nominal and margin formulations, which are therefore special cases of our general robust
formulation. Of course, with ‘intermediate’ values of U, p and p, the robust formulation will
produce a solution that is neither strictly a nominal solution nor strictly a margin solution, but
some combination of the two. This shows that our robust formulation is a generalization of
current planning techniques. Furthermore, this implies that any information we can gather
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Figure 4. A visualization of the continuum of robustness.

about a patient to improve the error bars or uncertainty set from their most conservative values
will result in a solution that is an improvement (measured via our objective function) over a
margin.

We can visualize the flexibility of our robust framework as shown in figure 4. Imagine
the nominal and margin problems as two extremes in a ‘continuum of robustness’, with the
nominal representing ‘no uncertainty’, and the margin representing ‘complete uncertainty.’
A particular instance of the robust problem is, therefore, somewhere in the middle of this
continuum and offers advantages of both extremes. It has the same capacity to mitigate
uncertainty as the margin problem, but it also optimizes the resulting dose delivered to be
as small as possible. Hence, a dose distribution produced using the robust formulation will
be more robust to variations in the pmf than the nominal solution, but will also irradiate the
normal tissue less than the margin solution. This is illustrated computationally in the next
section.

5. Results

In this section, we motivate the use of robustness by considering what happens when the
nominal formulation is used, first in the absence of uncertainty, and then with a realized
pmf that is different from the planned one. Next, we show that while the margin solution is
robust to the uncertainty in the realized pmf, it significantly increases the dose to the normal
tissue. Finally, we show how the robust solution produces a dose distribution that, unlike the
nominal solution, can combat uncertainty, while delivering less dose than the margin solution.
Numerical results are shown at the end to supplement the illustrations.

For the illustrations below, we considered a one-dimensional phantom containing a 10 cm
tumour surrounded by 10 cm of normal tissue on either side, and one beam orthogonal to the
direction of motion. Voxels were 0.2 cm wide and beamlets were 0.5 cm wide, resulting in a
total of 151 voxels and 28 beamlets. As shown in figure 5, the tumour motion is on the order
of 2 cm peak to peak. The D, ; matrix was computed using error functions to model beamlet
dose profiles (Engelsman ef al 2005), and the mathematical formulations were optimized
using ILOG’s CPLEX 9.0 solver (ILOG, Inc., Gentilly, France) through a Matlab interface
(The MathWorks, Inc., Natick, Massachusetts). Each run took a few seconds on a 1.5 GHz
computer with 1 GB of memory. While the geometry of this example is one dimensional, the
illustrations below can be thought of as a slice of a two-dimensional phantom.

The pmfs and error bars were mined from actual patient data as described in section 3. In
our analysis, we gathered data using Varian’s (Varian Medical Systems, Inc., Palo Alto, CA)
real-time position management (RPM) system from four patients, totalling 95 traces. Each
trace was baselined to its median value (so the resulting pmf has a median value of 0), and for
simplicity, the average amplitudes of the RPM traces for the other three patients were scaled
to approximately the average amplitude of the first patient. Although somewhat artificial, this
was done to simulate the scenario where the population data are comparable in amplitude
to the patient at hand. We used the planning RPM trace from the first patient to create the
nominal pmf, the average of all 19 traces from the first patient to create the realized pmf and
all 95 traces (one pmf per trace) from the four patients to create the error bars. To create the
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Figure 5. The pmfs used in the nominal, margin and robust formulation illustrations.

pmfs, we used a bin size equal to the width of a voxel because we focused on shifts of voxels
by integer multiples of the voxel width. Since we used RPM data as a surrogate for tumour
motion data, the amplitudes were scaled to be representative of large tumour motion.

The reader should keep in mind the following situation as we examine the figures below.
If a patient breathes somewhat regularly, then we would expect to see the ‘bowl-shaped’ pmf in
figure 5 (Lujan et al 1999). However, after many treatment days, the overall pmf may start to
resemble a Gaussian distribution (George et a/ 2005, Engelsman et a/ 2005) due to differences
in breathing patterns from day to day (‘realized pmf’ in figure 5). Thus, the principle behind
applying the robust methodology in practice is as follows. If a patient breathes regularly
during the reference session and we design the treatment plan using that pmf (nominal pmf),
we will produce a plan with good tumour coverage and sharp dose gradients at the edge of
the tumour, even if the cumulative pmf (realized pmf) over the course of the treatment is
significantly different from the planned one. In the figures depicting the dose distributions of
the three formulations, the pmf used in the planning for each is the nominal pmf in figure 5,
while the pmf that is realized is either the nominal (part (a) of each figure) or the realized (part
(b)) pmf.

In figure 6(a), we see the dose distribution from the nominal problem, using the same
realized pmf as the nominal (planned) pmf. The tumour receives its prescribed dose in a
largely homogeneous fashion, and there is a sharp falloff of the dose into the surrounding
normal tissue. However, figure 6(b) shows severe hot and cold spots that result from the dose
distribution if the realized pmf is different from the nominal one.

Figures 7(a) and (b) show the corresponding figures when the margin approach is used.
As expected, the tumour receives a sufficient, homogeneous dose in both cases, but the tails
of the dose distribution are much broader and extend further into the normal tissue, indicating
a significant increase in the dose delivered there.

We now describe the results of the robust formulation. The uncertainty region was set
equal to X, and the error bars shown in figure 8 depict the range of pmfs over which the robust
solution is protecting. By comparing figures 9(a) and (b), we can see that the dose distribution
from the robust plan is almost unchanged when a completely different pmf from the nominal
pmf is realized. One interpretation of the robust dose distribution is that it is a combination
of a margin-like distribution in the tumour to deal with uncertainty, and ‘horns’ at the edge



A robust approach to IMRT optimization 2577

1.4 T T T T T 18 T T T T T
= = =Tumour = = =Tumour
—— Dose delivered 16 —— Dose delivered ||
12 B ’
141 4
ik
121 1
i Q
8 ol 3
o8 8 1t g
[ (3
= =
© © 0.8 1
ol 06 °
o o
0.6 b
04r
041 b
021
0.2 1
0 ! . " 0 L . u
-10 -5 0 5 10 15 20 -10 -5 0 5 10 15 20
Tumour reference frame position (cm) Tumour reference frame position (cm)
(a) (b)
Figure 6. Dose distribution of nominal solution using the pmfs from figure 5. (a) Nominal pmf.
(b) Realized pmf.
1.4 T T 14 T T
= = =Tumour = = =Tumour
—— Dose delivered —— Dose delivered
1.2 1 1.2 1
1 b 1+ b
(o} (o
g | 8ol 1
3 08 Sos
[ [
= =
© ©
° 0.6 1 ° 06 1
o o
0.4 1 0.4 1
0.2 1 0.2 1
) L . i 0 L . 1
-10 -5 0 5 10 15 20 -10 -5 0 5 10 15 20
Tumour reference frame position (cm) Tumour reference frame position (cm)
(a) (b)

Figure 7. Dose distribution of margin solution using the pmfs from figure 5. (a) Nominal pmf.
(b) Realized pmf.

of the tumour to produce a sharp dose gradient, combining the features of both the margin
and nominal solutions. As you can see in figure 10, the intensity map (beamlet weights)
corresponding to the robust solution is not overly complex.

Table 1 shows the numerical results corresponding to the previous figures. We can see
that the robust solution delivers 8.55% less total dose and 38.03% less dose to the normal
tissue than the corresponding margin solution. As expected, the nominal solution performs
the best in terms of dose delivered, but the tradeoff is that it has no capability to mitigate
uncertainty. There is a price to be paid to have protection from uncertainty, but the point is
that by using the robust solution, we can pay a substantially lower premium than the cost of
the margin solution, while achieving the same level of robustness to uncertainty.

6. Discussion

The mathematical framework introduced in this paper is based on the emerging field of
robust optimization and, as is characteristic of this methodology, does not fix an underlying
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Figure 8. The pmfs and error bars used in the robust formulation illustrations.
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Figure 9. Dose distribution of robust solution using the pmfs and error bars from figure 8.
(a) Nominal pmf. (b) Realized pmf.

Table 1. Comparing formulations on integral dose delivered to phantom and integral dose delivered
to normal tissue under the realized pmf. The relative amount of dose delivered (%) by the various
formulations is normalized to the margin formulation.

Nominal Robust  Margin

Dose to phantom 85.29 91.45 100.00
Dose to normal tissue ~ 31.41 61.97 100.00

distribution for the uncertain quantities. Previous work typically assumed that the breathing
motion during treatment was the same as during planning, and moreover, often assumed a
Gaussian distribution for various uncertain parameters. While our analysis indicated that the
cumulative breathing pmf may resemble a Gaussian after many fractions, we did not restrict
our attention to just one distribution. Rather, the error bars shown in figure 8 indicate a
range of distributions that are being protected against, including many distributions that are
approximately Gaussian and, of course, many that are not. The distribution-free nature of our
model is a key component of its flexibility.
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Directly incorporating robustness into treatment planning is an active topic of research
(Baum et al 2006). Our work is similar in spirit to another recent study on robust IMRT
(Chu et al 2005). The main difference is that our model of uncertainty is motivated by
and constructed systematically from motion data. Another difference is that our approach
ensures feasibility of the resulting solution under all realizations of uncertainty, as opposed
to having feasibility with high probability. Mathematically, this translates to a formulation
with lower complexity (a linear formulation) than the previous work (a second-order cone
formulation). Our model uses the fact that the robust formulation remains a linear program
to our advantage, to ensure that the computational overhead of solving the robust problem is
marginally more expensive than the nominal problem. Because of their simplicity and ease of
solution, linear formulations have been explored by many researchers (Bahr et al 1968, Hodes
1974, Sonderman and Abrahamson 1985, Langer and Leong 1987, Langer et al 1990, Morrill
et al 1990, Rosen et al 1991, Shepard et al 1999, Holder 2003, Romeijn et al 2003).

A large variety of objective functions can be modelled using a linear framework. For
parallel organs such as the lung (Niemierko 2000), it has been found that the mean dose is
a suitable metric to consider (Theuws ef al/ 1998). In this paper, we chose to minimize the
total dose to the phantom instead of the normal tissue because our simple, one-dimensional
phantom cannot represent all of the normal tissue surrounding the tumour (the tissue between
the beam source and the tumour). In general, however, a simple modification allows us to
minimize over A instead of V. While the standard quadratic objective cannot be cast in
a linear framework, we can approximate it with the absolute value function or a piecewise
linear objective (Romeijn et al 2003), both of which can be formulated in a linear fashion.
Furthermore, minimizing the maximum dose to any voxel in a particular structure, or the
weighted sum of any of the previous objectives can be modelled linearly. In fact, our current
objective function can be considered a weighted sum of total dose to the tumour and total dose
to the normal tissue. In the appendix, we show how to incorporate the objective of minimizing
the maximum dose in our robust formulation, thereby extending our framework to deal with
serial organs-at-risk such as the spinal cord (Niemierko 2006, Withers et al 1988, Wolbarst
et al 1982). However, including biologically motivated quantities such as tumour control
probability (TCP) or normal tissue complication probability (NTCP) (Niemierko 2006) in the
optimization may necessitate a departure from a linear programming framework, and needs to
be studied separately.
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In addition to objective function modifications, other constraints can be incorporated
into our formulation to model different requirements. We may include constraints on
the complexity of the intensity map by constraining the difference between the minimum
and maximum intensities, or by constraining the intensity difference between neighbouring
beamlets. In a similar fashion, we can constrain the complexity or smoothness of realizable
pmfs in our uncertainty set, which results in a less conservative robust solution. And of course,
we can constrain the weighted sum of total/min/max dose delivered to various structures of
interest. All of these requirements can be written linearly.

Regarding the data of the formulation, in principle, A, ., could be calculated for each
(v, x, b) triplet to most accurately represent the dose delivered under each possible voxel
displacement scenario (McShan et al 2002, McShan and Fraass 2004). However this is
unlikely to be practical given current computing capabilities. Instead, we can assume that we
are working in a static coordinate system in which the dose distribution is fixed (for a given w),
even though a given beamlet will pass through different densities of matter as structures move.
It has been shown that such an approximation does not affect the dose calculation significantly
(Bortfeld et al 2004, Engelsman et al 2001). Furthermore, we recognize that our problem is
much smaller than typical clinical cases, but our intent is to illustrate the potential advantages
of using a robust optimization approach and to be able to make effective comparisons with the
commonly studied nominal and margin formulations.

While the pmf convolution method assumes that the dose is delivered over an infinite
number of fractions, each witnessing an infinite number of breathing cycles, the error bars
in our robust framework are general enough to partially mitigate this fractionation effect.
Fractionation and a finite sampling of the breathing pmf implies that a pmf different from the
nominal one should be realized in each treatment session. The error bars take into account this
variation around the nominal pmf. This motivates the further study of our robust methodology
in order to combat other types of uncertainty.

Regarding the nominal pmf used in the objective function, recall that we do not consider
uncertainty in these data. Since our metric is integral dose, the particular pmf used in the
objective becomes inconsequential as long as the phantom is large compared with the amplitude
of motion. While different pmfs in the objective will result in slightly different computed
integral doses, the difference will only be in the tails of the dose distributions (the dose outside
of V), which is small since the dose profiles of the beamlets fall off quickly (as error functions,
in our case). A mathematically rigorous proof of this claim will be presented elsewhere
(Chan 2007). For consistency across the three formulations, we used the same objective
function in each, even though the margin formulation does not need to explicitly include
a particular pmf. Typically, motion is implicitly included in the definition of the margin.

Our formulation is also compatible with other types of uncertainty such as setup error.
For example, consider the tumour plus a setup margin (van Herk et al 2000) as the ‘entire’
tumour in the development presented in this paper. Then, our formulation ensures that the
tumour plus margin receives the required dose under breathing motion uncertainty, as desired.
Another way to include setup uncertainty is to modify the way the error bars are derived. By
taking the pmfs used to create the error bars and shifting each one by amounts commensurate
with the size of the setup margin around the tumour, we can create upper and lower error
bars that protect against larger amplitudes of uncertain motion to compensate for the setup
margin. While these types of extensions require no change in our framework to implement, a
separate study will be needed to document the effects of including setup margins in our robust
approach.

One possible practical challenge associated with using our methodology is the availability
of suitable and reliable tumour motion data. In practice, a treatment planner is unlikely to
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have a lot of data about a particular patient prior to treatment. In this case, the planner can
use population data such as data from patients with similar breathing amplitudes, to construct
the error bars. By including the nominal pmf of the patient at hand, generating the error bars
according to section 3 guarantees that the nominal pmf is contained within the error bars.
An alternative would be to compare the variations around the nominal pmf for past patients,
and apply the relative deviations to each component of the current patient’s nominal pmf to
create the error bars. Also, it would be interesting to study whether or not we can create
‘class solutions’ for groups of individuals parameterized by, for example, similar breathing
amplitudes. These topics deserve a separate analysis and will be areas of future study.

7. Conclusion

In this paper, we introduced a new robust methodology for dealing with IMRT optimization
problems under uncertainty and considered the specific case of intrafractional uncertainty
induced by breathing motion. We used the idea of a motion probability mass function along
with an associated set describing the uncertainty of this pmf as our model of data uncertainty.
A linear programming formulation of the basic IMRT optimization problem was presented
and then systematically extended to the nominal, and finally, robust formulation. Our results
showed that the robust solution was better suited to protect against uncertainty than the
nominal solution, which did not account for uncertainty, while delivering less dose than the
corresponding margin solution, which typically overcompensates for uncertainty. Thus, our
robust framework produces what we term a ‘continuum of robustness’, allowing the user to
vary his or her level of conservatism based on the patient at hand to produce solutions with
features of both homogeneity and conformity. Overall, this work demonstrates the potential
of using our robust optimization methodology in IMRT treatment planning to improve the
sparing of healthy tissue while maintaining tumour coverage in the presence of uncertainty,
and also the flexibility afforded to the treatment planner to make suitable decisions regarding
trade-offs of conflicting objectives.

Future work will include using real tumour motion data in the optimization and applying
the robust methodology to a clinical, 3D case. Possible extensions include optimization of
proton therapy under uncertainty, considering the effects of fractionation on the delivered dose
and realized pmfs, incorporating setup errors into the robust framework, and developing robust
methodologies for gating and tracking.
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Appendix. Minimizing maximum dose as an objective

In this section, we show how to adapt the robust framework to serial organs, which may
require (part of) the objective function to minimize the maximum dose delivered to voxels of
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an organ-at-risk. We illustrate the method of constructing a linear formulation similar to (6)
where the objective is now

minimize max YY" Ay pp)w, (A.1)

pePy,veV
pefu beB xeX

and Py is defined as in (1). That is, the objective is to minimize the maximum dose that any
voxel in the phantom receives, for all realizable p in our model of pmf uncertainty defined
by Py. Naturally, V can be replaced by any other structure of interest. To recover a linear
formulation, we first replace the objective function in (A.1) by the scalar z and add the
constraints

22 ) ) Awpb@wy  YveVVpePy (A2)
beB xeX

to the formulation. Then, a manipulation similar to the one in section 4 allows us to represent
the problem as a linear program.
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