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Abstract

The unichain condition requires that every policy in an MDP result in a single ergodic class, and guarantees that the
optimal average cost is independent of the initial state. We show that checking whether the unichain condition fails to hold is
an NP-complete problem. We conclude with a brief discussion of the merits of the more general weak accessibility condition.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We consider a finite-state, finite-action average cost
Markov decision process (MDP), specified in terms
of a state space S = {1, . . . , N}, an action space U =
{1, . . . , M}, transition probabilities pij (u) for every
i, j ∈ S and u ∈ U , and a cost ci(u) for every i ∈
S and u ∈ U . A function �: S �→ U specifies the
(stationary and Markovian) policy that selects action
�(i) whenever in state i. Let � be the set of all such
policies.
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A policy � ∈ � defines a homogeneous Markov
chain {X�

t } with transition probabilities

P(X
�
t+1 = j | X

�
t = i) = pij (�(i)).

The infinite horizon average cost associated with such
a policy is defined as
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where U
�
t =�(X

�
t ). The optimal average cost is defined

as

�∗(i) = min
�∈�

��(i).

As is well known, the problem of finding an optimal
policy, with respect to the average cost criterion, is
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best behaved when the optimal average cost �∗(i) is
the same for all initial states i. A simple criterion for
this to happen is provided by the following condition
[2,7].

Unichain condition (UC): For every policy � ∈ �,
the resulting Markov chain {X�

t } has a single ergodic
class.

Although the unichain condition is very intuitive, it
is not clear how to check it without enumerating all
policies (of which there are exponentially many). The
question of whether this can be done in polynomial
time is raised in [3], and is listed as an open problem
in [4]. While the problem is known to be polynomial
for deterministic MDPs [6], our main contribution is
to show that the general case is NP-hard.

2. NP-Completeness result

Formally, we introduce the following decision prob-
lem.

Problem MULTICHAIN. Input: Positive integers N
and M, and nonnegative rational numbers pij (u),
for i, j ∈ {1, . . . , N} and u ∈ {1, . . . , M}, such that∑N

j=1pij (u) = 1 for all i and u.
Question: Does there exist a policy under which the

resulting Markov chain has multiple ergodic classes?

Note that our description of an instance (the “input”)
does not include the cost coefficients ci(u). This is
because the costs are irrelevant as far as the unichain
condition is concerned.

In the sequel, we will be using the following
terminology. We say that a state j is accessible
from a state i if there exists a sequence of states
i = i1, i2, . . . , ik = j and a set of actions u1, . . . , uk−1
such that pit ,it+1(ut ) > 0 for t = 1, . . . , k − 1.

Theorem 1. The Problem MULTICHAIN is NP-
complete.

Proof. Suppose that there exists a policy that results
in multiple ergodic classes. Such a policy serves as
a certificate that the answer is “yes,” and therefore
the problem is in NP. (This is because the pol-
icy can be concisely described, and the multichain
property can be checked in polynomial time in a

straightforward manner, using a graph connectivity
algorithm.)

To prove that the problem is NP-complete we use
a reduction from the 3-satisfiability problem (3SAT).
An instance of 3SAT consists of n Boolean variables
x1, . . . , xn, and m clauses C1, . . . , Cm, with three lit-
erals per clause. Each clause is the disjunction of three
literals, where a literal is either a variable or its nega-
tion. (For example, x2∨x4∨x5 is such a clause, where
a bar stands for negation.) The question is whether
there exists an assignment of truth values (“true” or
“false”) to the variables such that all clauses are sat-
isfied.

Suppose that we are given an instance of 3SAT, with
n variables, and m clauses C1, . . . , Cm. We construct
an instance of the MULTICHAIN problem, with the fol-
lowing states:

(a) two special states a and b;
(b) for i = 1, . . . , n, states si, s

′
i , ti , fi ;

(c) for j = 1, . . . , m, states cj .

There are three actions available at each state, and
the transitions are as follows:

(a) Out of state a, there is equal probability 1/(n +
m), of transitioning to each state si and cj , in-
dependent of the action.

(b) At state cj , the action determines the next state
deterministically. In particular, if the kth literal
in clause Cj is of the form xi , action k moves
the state to ti ; if the kth literal in clause Cj is of
the form xi , action k moves the state to fi . (For
example, if the clause is of the form x2 ∨x4 ∨x5,
the action chooses whether the next state will be
t2, f4, or t5.)

(c) At any state of the form si or s′
i , the action de-

termines whether the next state will be ti or fi ,
deterministically. (For example, under action 1,
the next state is ti , and under action 2 or 3, the
next state is fi .)

(d) At any state of the form ti or fi , the action de-
termines whether the next state will be a or b,
deterministically.

(e) Out of state b, there is equal probability 1/n, of
transitioning to each state s′

i , independent of the
action.

The transition diagram is illustrated in Fig. 1.
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Fig. 1. Illustration of the reduction. The figure shows a representa-
tive fragment of the transition diagram. We only show one state of
the form c�, associated with a clause xi ∨xj ∨xk . Dashed lines in-
dicate transitions that happen with positive probability. Solid lines
indicate possible (deterministic) transitions, depending on the ac-
tion chosen. Let us focus on the top six states (a, si , ti , fi , s

′
i
, b),

and suppose for a moment that these are the only states. We
see that there exists a policy that results in two ergodic classes,
namely, {a, si , ti } and {b, s′

i
, fi } (think of this policy as setting

xi to “true”), as well as another policy that results in two ergodic
classes, namely, {a, si , fi } and {b, s′

i
, ti } (think of this policy as

setting xi to “false”).

We claim that we have a “yes” instance of
MULTICHAIN if and only if we have a “yes” instance of
3SAT. Indeed, suppose that we have a “yes” instance
of 3SAT. Consider an assignment of truth values
(“true” or “false”) to the variables such that all clauses
are satisfied. We then define the following policy:

(a) At every state of the form cj , consider the asso-
ciated clause and a literal in the clause which is
“true.” If that literal is unnegated (say, xk), pick
the action that moves the state to tk; if that literal
is negated (say xk), pick the action that moves
the state to fk .

(b) At every state of the form si , let the next state
be ti if xi is “true,” and fi if xi is “false.”

(c) At every state of the form s′
i , let the next state

be fi if xi is “true,” and ti if xi is “false.”
(d) At every state of the form ti , let the next state be

a if xi is “true,” and b if xi is “false.”
(e) At every state of the form fi , let the next state

be b if xi is “true,” and a if xi is “false.”

Suppose that the Markov chain is initialized at a. If
the next state is si , the subsequent states will be ti and

then a (if xi is “true”), or they will be fi and then a (if
xi is “false”). If the next state is cj and the unnegated
literal xk makes this clause true, the subsequent states
will be tk and then a; if the negated literal xk makes
this clause true, the subsequent states will be fk and
then a. We conclude that a is a recurrent state and that
starting from a, state b is never visited.

Suppose now that the Markov chain is initialized
at b, and that the next state is s′

i . If xi is “true,” the
subsequent states will be fi and then b. If xi is “false,”
the subsequent states will be ti and then b. We conclude
that b is also a recurrent state, and that the two states
a and b belong to different ergodic classes. Therefore,
we have a “yes” instance of MULTICHAIN.

For the converse, suppose that we have a “yes” in-
stance of MULTICHAIN, and fix a policy that results
in multiple ergodic classes. Given the structure of the
possible transitions, the state belongs to the set {a, b}
once every three transitions. Since we have multiple
ergodic classes, it follows that a and b are both recur-
rent but do not belong to the same ergodic class; in
particular, b is not accessible from a, and vice versa.
Consider the following truth assignment: if the transi-
tion out of state si leads to state ti (respectively, fi), set
xi to “true” (respectively, “false”). We need to show
that this truth assignment satisfies all clauses.

Suppose that the transition out of si leads to ti .
Since b is not accessible from a, it follows that b is not
accessible from ti , and therefore the action out of ti
leads back to a. Furthermore, since a is not accessible
from b, the transition out of s′

i leads to fi and then
back to b.

Similarly, suppose that the transition out of si leads
to fi . Since b is not accessible from a, it follows that
b is not accessible from fi , and therefore the action
out of fi leads back to a. Furthermore, since a is not
accessible from b, the transition out of s′

i leads to ti
and then back to b.

Consider now a clause Cj . Suppose that the transi-
tion out of cj leads to ti (note that this implies that xi

appears in Cj unnegated). In particular, ti is accessi-
ble from a. Since b is not accessible from a, it follows
that ti leads back to a. Using the remarks in the two
preceding paragraphs, it follows that the transition out
of si leads to ti , and therefore xi is set to “true,” and
the clause is satisfied.

Suppose now that the transition out of cj leads to fi

(note that this implies that xi appears in Cj negated).
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In particular, fi is accessible from a. Since b is not
accessible from a, it follows that fi leads back to a.
Using the earlier remarks, it follows that the transition
out of si also leads to fi , and therefore xi is set to
“false,” and the clause is satisfied.

We conclude that with the proposed truth assign-
ment, all clauses are satisfied, and we have a “yes”
instance of 3SAT, which completes the proof. �

3. Discussion

It is well known that if every state is accessible from
every other state, then the optimal average cost is the
same for every initial state [2,7]. In fact, this require-
ment need not be imposed on states that are transient
under all policies, since such states will only be vis-
ited a finite number of times anyway. In particular, the
optimal average cost is the same for every initial state
under the following condition [7].

Weak accessibility (WA): The state space can be par-
titioned into two subsets, S1 and S2, such that:

(a) Every state in S1 is transient, under every policy.
(b) For every two states i, j ∈ S2, j is accessible

from i.

We argue that Condition WA is the natural one for
the question of whether the optimal average cost is the
same for all initial states. Our argument rests on three
observations:

(a) Unlike the unichain condition, condition WA is
easy to check (in polynomial time, using standard
graph connectivity algorithms).

(b) It is more general than the unichain condition [7].
(c) It is the most general possible condition that does

not involve an explicit calculation of the optimal
average cost (Proposition 1).

Consider an MDP that involves two sets of states
that do not communicate with each other, no matter
which policy is used. Then, the optimal average cost
problem decouples into two independent subproblems.
The optimal average cost may still turn out to be con-
stant over the state space, if for some accidental rea-
son the optimal average costs in the two independent
subproblems happen to be equal. Determining whether

this will be the case or not is impossible without actu-
ally solving the two subproblems. This indicates that
one cannot hope for a necessary and sufficient con-
dition for a constant optimal average cost that is any
simpler than a complete solution of the problem. How-
ever, a necessary and sufficient condition is possible
if one is willing to disregard “numerical accidents.”

Definition 1. Suppose we are given positive inte-
gers N, M, and nonnegative numbers pij (u), for
i, j ∈ {1, . . . , N} and u ∈ {1, . . . , M}, such that∑N

j=1pij (u) = 1 for all i and u. We say that the
optimal average cost is generically constant if the
set of vectors (ci(u); i = 1, . . . , N; u = 1, . . . , M)

that result in nonconstant average cost has Lebesgue
measure zero.

Proposition 2. The optimal average cost is generi-
cally constant if and only if the WA condition holds.

Proof. If WA holds, then the optimal average cost is
always constant. Suppose that WA fails to hold. Let i
and j be states that can be made recurrent (under suit-
able policies) and such that j is not accessible from i.
Suppose that cj (u) < 0 and ck(u) ∈ [0, �], for all u and
k 	= j , where � is a small positive number. Starting
from state j, an optimal policy makes j recurrent and,
as long as � is sufficiently small, results in a negative
optimal average cost. Starting from state i, the pro-
cess will never reach j, and the optimal average cost
will be nonnegative. Thus, the optimal average cost is
not constant. Furthermore, the set of cost vectors that
satisfy the conditions we just introduced has positive
Lebesgue measure. �

Despite the above arguments, the unichain condi-
tion is not completely without interest. In particular,
consider a constrained average cost MDP, as in [1].
If the unichain condition holds, then there exists an
optimal (randomized) policy which is Markovian and
stationary [1]. On the other hand, if the unichain con-
dition fails to hold, there exists a choice of cost and
constraint coefficients under which an optimal Marko-
vian policy exists, but any such optimal policy must
be nonstationary; see, e.g., Example 3.1 in [5]. Thus,
the unichain condition is the natural one as far as the
structure of optimal policies in constrained MDPs is
concerned.
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