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Comments on “Coordination of Groups of Mobile
Autonomous Agents Using Nearest Neighbor Rules”

Dimitri P. Bertsekas and John N. Tsitsiklis

Abstract—We clarify the relation between the model and the convergence
results of Jadbabaie et al. to those of Bertsekas et al. We show that the up-
date equations in Jadbabaie et al. are a special case of those in Bertsekas et
al. Furthermore, the main convergence results in Sections II and III of Jad-
babaie et al. are essentially the same as those derived earlier in Bertsekas
et al.

Index Terms—Agreement algorithm, consensus, distributed systems.

I. INTRODUCTION

In the 1980s, [1], [5], and [6] studied various models of distributed
asynchronous iterations, motivated by the contexts of parallel compu-
tation, distributed optimization, and distributed signal processing. An
important “subroutine” in that context was the “agreement algorithm”
(see [1, Secs. 7.3 and 7.7]), whereby a set of agents reach consensus
on a common value by forming convex combinations of their current
values and possibly outdated values possessed by their neighbors. A
convergence analysis was provided at the time, including examples de-
lineating how convergence to consensus might fail in the absence of
certain assumptions on the communication delays, or on the time be-
tween consecutive processor communications (see, e.g., [1, Ex. 1.2, p.
485], and [1, Exer. 3.1, p. 517]).

Historically, the idea of reaching consensus through repeated aver-
aging was introduced earlier by De Groot [2], for a structured, time-in-
variant, and synchronous environment. In the absence of communica-
tion delays, convergence conditions for the time-varying case were pro-
vided by Chatterjee and Seneta [4], although without making a con-
nection between their conditions and more primitive assumptions on
the agents’ behavior (e.g., on the frequency of interagent communi-
cations, or on the connectivity properties of various graphs describing
these communications). From a technical point of view, [2] and [4], as
well as subsequent works in this area, were building on a large body of
work on Markov chains, ergodicity, and the convergence of products
of stochastic matrices.

In recent years, several papers have appeared that propose and ana-
lyze various consensus algorithms of a similar flavor. The motivation
for these works has come from diverse contexts, such as multiagent
coordination and flocking. For example, [3] aimed at providing a the-
oretical explanation for the observed convergence behavior in an ear-
lier simulation study [7] of autonomous agent behavior. Interestingly,
however, the resulting mathematical models and questions turned out
to be closely related to those in earlier works. As the relation of the
more recent works with [1], [5], and [6] has not been sufficiently elu-
cidated in the recent literature, we think it is important to clarify it.
Rather than attempting a survey paper, aimed at covering the quickly
growing recent literature, we will limit ourselves to a discussion of the
paper [3], which has received considerable attention and is also most
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closely related to our work in [1], [5], and [6]. Finally, let us note that
[3] contains some additional contributions (a continuous-time variant,
a discussion of graph Laplacians, and a discussion of whether conver-
gence can be established using a quadratic Lyapunov function). How-
ever, these topics are outside the scope of this note.

II. THE MODEL OF BERTSEKAS ET AL.

Consider a set N = f1; . . . ; ng of agents that try to reach agree-
ment on a common scalar value by exchanging tentative values,
and combining them by forming convex combinations. In par-
ticular, each agent i starts with a scalar value xi(0). The vector
x(t) = (x1(t); . . . ; xn(t)), with the values held by the agents at time
t, is updated according to the equation x(t + 1) = A(t)x(t), where
A(t) is a stochastic matrix with entries aij(t). In more detail, let Tij
be the set of times at which agent i receives a message from agent j,
containing the value of xj(t), which is used by i to update the value of
xi(t). We use the convention that t 2 Tii for every i and t. The update
equation is of the form

xi(t+ 1) =

n

j=1

aij(t)xj(t); (1)

where the coefficients aij(t) satisfy
i) aij(t) � 0, 8 i, j, t;

ii) n

j=1
aij(t) = 1, 8 i, t;

iii) aij(t) = 0, 8 i, j, t 62 Tij .
The update (1) corresponds to a simplified version of [5, eqs.
(2.1)–(2.4), p. 804]. The model in [5] is more general along the fol-
lowing dimensions: it allows messages to incur delays before reaching
their destination, and also allows for an additional exogenous input in
the right-hand side of (1).

Our formulation involves a subset D of the set of agents. Formally,
this can be any subset that happens to satisfy Assumption 1 below. In-
tuitively, it is to be interpreted as a set of agents i for which xi(0) will
have a long-term effect on the limit of every xj(t). (The elements of
D are called “computing processors” in [5] and “distinguished proces-
sors” in [1].) We define E(t) as the set of ordered pairs (j; i) such that
aij(t) > 0. Thus, an “edge” (j; i) 2 E(t) indicates a communica-
tion from j to i at time t, that is taken into account when forming the
updated value xi(t+1). Accordingly, (N;E(t)) is a directed graph in-
dicating the influences between agents at time t (the “communication
graph”). Let E be the set of (i; j) such that (i; j) 2 E(t) for infinitely
many t.

Assumption 1:
a) The set D is nonempty.
b) There is some � > 0 with the following property: if (j; i) 2

E(t), then aij(t) � �.
c) There exists some B such that for every t, we have E(t+ 1) [

� � � [ E(t + B) = E.
d) The graph (N;E) contains a directed path from every i 2 D to

every j 2 N . (In particular, if D = N , then (N;E) is strongly
connected.)

Assumption 1 is a special case of [5, Ass. 2.1, 2.2, and 2.4]. (The
assumptions in [5] are weaker in that they allow for communication
delays, and also allow aii(t) to be zero for certain processors.) Part (c)
of Assumption 1 is a rephrasing of the connectivity assumptions made
in [5], which had been stated therein as follows: i) for every i; j, the
set Tij is empty or infinite; and ii) if (j; i) 2 E, then the time between
consecutive transmissions from j to i is upper bounded by some B.

We now present a convergence result from [5].
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Theorem 1: There exist nonnegative coefficients �1; . . . ; �n such
that

lim
t!1

xi(t) =

n

j=1

�jxj(0) 8 i;

and convergence takes place at the rate of a geometric progression.
Furthermore, if j 2 D, then �j > 0.

Theorem 1 shows that allxi(t) converge to a common limit, resulting
in asymptotic consensus. It is a special case of [5, Lemma 2.1, pp.
805–806]. (To see this, set all the exogenous driving terms sjl (k) in
[5] to zero, and identify �j with �j

l (0).) The proof of Lemma 2.1 was
omitted from [5] as rather straightforward, but can be found in [6]. The
proof of a special case of Theorem 1 was included in Sec. 7.3 of [1].

The proof of Theorem 1 (see [6, pp. 248–255, App. A]) proceeds
as follows. Consider the matrix �(k) = k+nB�1

i=k A(i). Fix a “com-
puting processor” i� 2 D. Suppose that xi (0) = 1 and that xj(0) =
0 for every j 6= i�. Let Sm = fjjxj(mB) > 0g and note that S0 =
fi�g. Note that if a processor’s value is positive, it remains positive
in the future, which implies that Sm is a subset of Sm+1. If Sm 6= N ,
then, by Assumption 1, there is a communication from some j 2 Sm to
some l 62 Sm, at some time in the interval fmB; . . . ; (m+1)B� 1g.
It follows that the cardinality of Sm+1 exceeds that of Sm. This shows
that Sn = N , i.e., xj(nB) > 0 for all j 2 N . It follows that all entries
in the i�th column of �(0) are positive. A more careful bookkeeping
actually shows that all entries of �(0) are bounded below by some
� > 0 that only depends on n and the constant � in Assumption 1.
More generally, this argument shows that for every k, the matrix �(k)
“is a stochastic matrix with the property that all entries in some column
(corresponding to any computing processor) are positive and bounded
away from zero by a constant � > 0 that does not depend on k” [6, p.
253]. Using this fact, it is not hard to show (this is a standard argument
in Markov chain theory) that t

k=1 �(knB) converges, as t ! 1,
to a matrix with equal rows. This readily implies the convergence of

t

k=1 A(k) to a matrix with equal rows, i.e., asymptotic consensus.

III. RELATION WITH THE MODEL OF JADBABAIE ET AL.

The model in [3] is the following. At each time t, there is a setE(t) of
edges (i; j), and each agent i updates a scalar variable �i(t) according
to (cf. [3, eq. (2)]

�i(t+ 1) =
1

1 + ni(t)
�i(t) +

j2N (t)

�j(t) (2)

where Ni(t) is the set fj 2 N jj 6= i; (j; i) 2 E(t)g of “neighbors”
of i, and ni(t) is the cardinality of Ni(t). Reference [3] assumes an
undirected graph, which translates to the following symmetry assump-
tion: (i; j) 2 E(t) if and only if (j; i) 2 E(t). Finally, [3] makes the
following assumption. (The phrasing of this assumption, in [3, Th. 2],
is somewhat different, but equivalent to what follows.)

Assumption 2: There exists some B such that for every t, the graph
with edge set E(t+ 1) [ � � � [ E(t+ B) is strongly connected. Fur-
thermore, (i; j) 2 E(t) if and only if (j; i) 2 E(t).

It can be seen that (2) is a special case of our iteration (1), with
the correspondence D = f1; . . . ; ng, xi(t) = �i(t) and, aij(t) =
1=(1 + ni(t)) for every j 6= i such that (j; i) 2 E(t). Note that our
Assumption 1(b) is satisfied with � = 1=n.

Reference [3] establishes convergence to consensus under Assump-
tion 2 [3, Th. 2]. Given the previous discussion, this convergence result
is a special case of the results in [5] (cf. Theorem 1 above), except
for the difference between Assumptions 1(c)–(d) and Assumption 2.
In particular, [5] requires (N;E(t + 1) [ � � � [ E(t + B)) to be the
same strongly connected graph for all t, whereas [3] allows it to change
with t. It turns out that this “same strongly connected graph” restric-
tion is not used in the proof of Theorem 1 given in [6]. (This should
also be clear from the proof outline given above, at the end of Sec-
tion II.) The same comments apply to the generalization provided in
[3, Sec. II-A], which corresponds to the choice aij(t) = 1=g, when-
ever (j; i) 2 E(t), j 6= i, and where g is a constant larger than n.

Reference [3] then proceeds to consider a variant (“leader fol-
lowing”) in which one of the agents (say, agent 1) never updates its
own variable, but indirectly influences all of the other agents. This
{corresponds} to the model of [5], with D = f1g. Convergence to
consensus on the initial value of agent 1 [3, Th. 4] is again covered by
the results of [5] (Theorem 1). Once more, the connectivity assumption
in [3] is slightly weaker (in [3], E(t + 1) [ � � � [ E(t + B) is not
required to be the same for all t), but the convergence proof (the proof
of Theorem 1) goes through, unaffected by this weaker assumption.

IV. CONCLUSION

In summary, the relation between the results in [1], [5], [6] and the
convergence results in [3, Secs. II and III] are as follows.

a) The update equations in [3] are a special case of the agreement
algorithm in [5]; the latter allows a more general form of the co-
efficients aij(t), and does not require symmetry in the commu-
nication pattern.

b) The assumption on the intercommunication time intervals are
less stringent in [3], but the proof of the result in [5] (as given
in [6]) still applies.
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