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Abstract—We consider the problem of decentralized binary
detection in a sensor network where the sensors have access to side
information that affects the statistics of their measurements, or re-
flects the quality of the available channel to a fusion center. Sensors
can decide whether or not to make a measurement and transmit a
message to the fusion center (“censoring”), and also have a choice
of the mapping from measurements to messages. We consider the
case of a large number of sensors, and an asymptotic criterion
involving error exponents. We study both a Neyman–Pearson and
a Bayesian formulation, characterize the optimal error exponent,
and derive asymptotically optimal strategies for the case where
sensor decisions are only allowed to depend on locally available
information. Furthermore, we show that for the Neyman–Pearson
case, global sharing of side information (“sensor cooperation”)
does not improve asymptotic performance, when the Type I error
is constrained to be small.

Index Terms—Censoring, cooperation, decentralized detection,
error exponent, sensor networks.

I. INTRODUCTION

Asensor network is often constrained by energy limitations,
because the sensors are typically low-cost battery-pow-

ered devices, and by communication limitations, because of
transmission costs or limited available radio resources. When
deploying a large-scale sensor network for the purposes of
detection, e.g., for environmental monitoring or for detecting
anomalies in industrial applications, we are often faced with a
tradeoff between energy efficiency and detection reliability. To
address this issue, “censoring networks” have been introduced
in [1] and later in [2]. These references consider a binary de-
tection problem, assume that the sensors obtain independent
measurements , and raise the question of deciding which
sensors should transmit their measurements to a fusion center,
subject to a constraint on the average number of transmitting
sensors. In particular, they assume that the sensors are operating
independently from each other, i.e., the censoring decisions do
not involve any sensor cooperation or exchange of information.
Their main results state that each sensor should base its deci-
sion on the likelihood ratio associated with its measurement,
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and should transmit only if the likelihood ratio falls outside
a “censoring interval.” Subsequently, [3] and [4] consider the
asymptotic performance of “constrained networks,” including
the case of an overall power constraint and the case of ca-
pacity-constrained communications. The question of deciding
which sensors should transmit is replaced by the question of
choosing the mode of sensor transmissions. There are differ-
ences between the problems considered in [1] and the problems
studied in [3] and [4], but there are also significant similarities,
suggesting that a unified treatment may be possible. Such a
unified treatment, at a higher level of generality, is one of the
objectives of this paper. However, we will be concerned with
sensor networks with an asymptotically large number of nodes,
unlike in [1], [2], where the problem of censoring is treated for
the case of a fixed number of nodes. In particular, we provide
a formulation that involves:

1) a general class of “network constraints,”
2) a general class of possible “transmission modes” that the

sensors can choose from, and
3) the possibility of having access to some side information

, which can be used to choose between transmission
modes.

We use the term “side information” in a very general way
to refer to some observable that affects the operation of each
sensor. In general, could provide information on the quality
of the channel from sensor to the fusion center, or on the
quality of the measurement available at sensor . The choice
of what side information is available depends on the specific
problem and its constraints. We illustrate our framework by pre-
senting two motivating examples, which will be revisited in Sec-
tion VIII.

Example 1 (Fading Channels): Consider a large number of
sensors deployed for the purposes of detection, that is, testing
between two hypotheses and . Each sensor obtains
an independent measurement (with a different distribution
under each hypothesis), which it can encode and transmit to a
fusion center through a noisy channel. The message received at
the fusion center is of the form

where is a stochastic fading coefficient, and is zero-mean
Gaussian noise with known variance , independent of every-
thing else. In order to conserve power, or to avoid divulging the
presence of the sensors, we introduce a constraint that under
“normal conditions” (that is, under the null hypothesis ),
the expected number of transmitting sensors is bounded by ,
where is a given constant. Then, the sensor network
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is faced with the problem of choosing which sensors should
transmit their measurements to the fusion center. Suppose that
the network has knowledge of the channel state information
and , . Obviously, we would like to choose only
those sensors that have a favorable channel to the fusion center,
so the choice should be based on . (In some cases,

is a known constant, then the choice is made based only on
.) Furthermore, we would like to examine and compare

a cooperative scheme (the decision to transmit or not by each
sensor depends on the channel parameters of all sensors) and a
distributed scheme (the decision of each sensor depends only on
the local channel parameters). Finally, we may want to optimize
the choice of the “transmission function” from within a class
of possible such functions.

Example 2 (Spatial Signal): Consider the problem of de-
tecting a spatial signal on the domain (or more generally
on a bounded subset of ). The sensors are placed randomly
and uniformly in the set , with the fusion center at the
origin. Let be the location of sensor . This serves as the
side information that is available. There are two possible spa-
tial signals and , and we wish to detect which of the
two is present. Each sensor makes a noisy measurement of the
local signal. We assume that the power required for a sensor
to transmit its measurement depends on the distance from the
sensor to the fusion center. Given a constraint on the total power
used by the sensors, which ones should be chosen to transmit? It
is not necessarily the case that the sensors closest to the fusion
center should be the ones transmitting; for instance, if the spa-
tial signals and are equal when is in the vicinity
of the fusion center, the sensors close to the fusion center do not
have any information worth transmitting. In Section VIII-B, we
will give an example where the transmitting sensors should be
the ones furthest away from the fusion center.

In this paper, we provide a framework that is general enough
to address the questions posed in the above examples. In partic-
ular, we generalize the idea of a censoring network presented in
[1], and introduce network constraints in the spirit of [3] and [4].
To be specific, we consider a Neyman–Pearson decentralized
binary detection problem where the sensors utilize side infor-
mation when deciding to transmit their measurements to the
fusion center. We introduce a cost function that depends only
on the side information and the transmission policy used, and
require that the expected average cost per sensor be below a
given threshold. Finding an optimal solution to such a problem
is rather intractable. For this reason, we focus on an asymptotic
analysis, involving a large number of sensors and the minimiza-
tion of the error exponent, in the spirit of [5], which introduced
and studied such a formulation in the context of unconstrained
sensor networks.

In our formulation, we allow the sensors to cooperate, in the
sense that the sensors’ censoring decisions can be made by the
fusion center, on the basis of the entire vector
of side-information values at each sensor. This can arise, for
example, when the local pieces of side information are some
low-resolution data that can be transmitted to the fusion center
inexpensively, or when the fusion center is able to monitor the
state of the channels from the sensors to itself. Nevertheless, we

will establish that when the Type I error probability is asymp-
totically small, optimal performance can be achieved even in
the absence of such cooperation, by having each sensor make
its censoring and transmission decisions only on the basis of
the locally available side information. Furthermore, all the sen-
sors can use the same policy, which shows that a simple dis-
tributed scheme is asymptotically optimal. The case where there
is no cooperation is the asymptotic counterpart of the censoring
problem considered in [1] (cf. Section V-C).

We then proceed to consider the Bayesian counterpart of the
above formulation, except that for reasons described in Sec-
tion IX, the cooperation among sensors is explicitly ruled out.
We characterize the asymptotically optimal performance and the
strategies that achieve it. We show that an optimal scheme is to
divide the sensors into two groups, each group using the same
policy. We also show how some of the results in [3] and [4] can
be derived by converting the problems studied therein to our
framework. Finally, we provide a generalization of some of the
results in [4].

The rest of the paper is organized as follows. In Section II,
we present our model in detail. In Section III, we state the
Neyman–Pearson version of the problem and our assumptions.
In Section IV, we consider the case where the side informa-
tion variables are independent and identically distributed
(i.i.d.) under either hypothesis, and prove the main results for
the Neyman–Pearson case. In Section V, we discuss some
variations of the results, and in Section VI, we provide an
extension to the case where the variables are stationary and
ergodic. In Section VII, we characterize optimal policies, and
in Section VIII, we revisit the two examples given in this Intro-
duction. In Section IX, we analyze the Bayesian formulation.
In Section X, we rederive some of the results in [3], and extend
some of the results in [4]. Finally, in Section XI, we summarize
and offer some closing comments.

II. PROBLEM FORMULATION

In this section, we introduce our model. With a few excep-
tions, we will be using upper case letters to denote random vari-
ables, and lower case letters to denote values of these random
variables. We will also be using the notation to denote a
vector , where the components of the vector may
be numbers, random variables, or functions.

A. The Basic Elements of the Model

We consider a hypothesis testing problem involving two hy-
potheses, and . There are sensors and a fusion center.
Each sensor observes some side information , which is a
random variable taking values in a set , and a measurement
taking values in a set . In addition, there is an auxiliary random
variable , taking values in a set of our own choosing, which
will be used as the “seed” whenever a randomized decision is to
be made. These are all the basic random variables in our model.
We assume a suitably large measurable space so that all
random variables can be defined on that space, for any number

of sensors. To avoid technical distractions, we will not delve
into measurability issues.
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Under each hypothesis , , we assume that we have
a measure on , and a corresponding expectation oper-
ator , with the following properties.

1) The random variable is distributed according to a given
marginal probability law , for every .

2) Conditioned on , the
measurements are (conditionally) independent, and
each is distributed according to a given regular condi-
tional distribution .

3) The random variable is independent of the random vari-
ables and , with a distribution that is the same under
both hypotheses, and which will be of our choosing.

Note that we have only specified the marginal distributions of the
variables .Regardingtheir jointdistribution,wewillbemaking
in the sequel one of the following alternative assumptions.

1) Under either hypothesis, the random variables are inde-
pendent (and therefore i.i.d.).

2) Under either hypothesis, the sequence is sta-
tionary and ergodic. In this case, we also assume ,
so that the variables provide no information about the
true hypothesis.

B. Sensor Policies and Strategies

There are two types of decisions to be made at each sensor:
deciding whether to make a measurement (not censoring), and
if a measurement is made, deciding what to transmit to the fu-
sion center. These decisions are to be made based on available
information, according to a set of rules (policies). We describe
here the types of policies to be considered.

We assume that is known at the fusion center (in a math-
ematically equivalent scenario, we could have each sensor com-
municate its side information to every other sensor) and that
the same is true for the auxiliary random variable . Based on

and , we let the fusion center decide which of the sen-
sors should make a measurement . (This is what we term as
cooperation: the decision depends on the side information of all
sensors.) Subsequently, each uncensored sensor is to generate a
message to the fusion center.

Formally, we define a pure censoring policy for sensor as a
function . Let the set of pure censoring poli-
cies be . A pure transmission policy for sensor is a function

, where is a (possibly infinite) transmis-
sion alphabet. These policies are called pure because they do
not make use of the randomization variable . We restrict pure
transmission policies to belong to a given set . The pair
is called a pure policy for sensor .

We allow censoring and transmission policies to be random-
ized. Let be a collection of pure policies
indexed by . We call a policy for sensor . We envisage the
following sequence of events. A realization of the random-
ization variable is generated (this can be done at the fusion
center, with the result communicated to all sensors, or at each
sensor using a common seed). Sensor then uses the pure policy

. It is censored (no measurement is made) if and only
if . If, on the other hand, , a
message is transmitted to the fusion center.
Although we say that the message is transmitted to the fu-
sion center, our formulation allows for the inclusion of channel

noise in the transmission function . More specifically, sup-
pose that the message is transmitted over
a noisy channel so that is received at the
fusion center. Here, is the channel transfer function and
is a random variable conditionally independent of , given

. Then, we can define , and the transmission
function as . As an ex-
ample, consider Example 1 of Section I. In our present notation,
we have , , and

. Therefore, in the sequel, we will assume that
the message received at the fusion center is the same as .
For convenience, we also assume that and are
always defined, even if sensor is censored and nothing gets
transmitted.

A collection of policies, one for each sensor, all of which
involve the same set and the same randomization variable ,
together with the distribution of , will be called a strategy. We
will often abuse terminology, however, and will be referring to

as a strategy.

C. Resource Constraints

We assume that when sensor makes a measurement
and transmits to the fusion center, certain resources are
consumed, and therefore a cost is incurred, possibly depending
on the side information at that sensor. To model such costs,
we introduce a function , and interpret

as the cost incurred by a sensor that uses a pure policy
, if the side information at that sensor takes on the

value , and the sensor is not censored, i.e., . When
the sensor is censored, we assume that no cost is incurred, so
that the resulting expected cost at sensor (under ) equals

. For a more general (random-
ized) policy , is defined to be equal
to , where the expectation is taken
with respect to both and . We will say that a strategy

is admissible if

(1)

where is a given constant.
Note that the resource constraint is in place only under .

The presumption here is that (the “null hypothesis”) cor-
responds to a “normal” situation. Thus, we are constraining
the resource utilization to be low under normal circumstances,
but allow higher resource utilization under exceptional circum-
stances. However, in a Bayesian formulation, we will define

, where is the prior probability of hypoth-
esis , and will replace with in the definition of .

The following are two examples of resource constraints.
Many other choices are possible, to reflect particular con-
straints of interest to a system designer.

Example 3 (Proportional Censoring): If for all
and all , then (1) becomes a constraint on the

average proportion of sensors that make a measurement.

Example 4 (Power Constraints): Suppose that
. In this case, (1) becomes a con-

straint on the average transmission power.
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D. The Fusion Center

The fusion center receives the messages from each sensor.
Based on this information, together with the side information

and the random variable , it decides between the two hy-
potheses. Recall that in classical (centralized) Neyman–Pearson
hypothesis testing, randomization can reduce the Type II error
probability. Accordingly, we assume that the fusion center has
access to another random variable which is uniformly dis-
tributed in , and independent of everything else. We then
let the fusion center use a randomized fusion rule

to select one of the two hypotheses.
Let , which is a binary random vari-
able indicating the selected hypothesis. In the above expression,
and in order to keep notation simple, we assume that whenever
sensor is censored, is set to a special symbol .

We summarize the elements of our model in the following
definition.

Definition 1: An overall strategy consists of the following.
1) A set , and the distribution of a -valued random variable

.
2) An admissible strategy (i.e., one that satisfies the re-

source constraints).
3) A fusion rule .

For given and , and a given overall strategy, the Type
I error and the Type II error probabilities and

are well defined. In a Neyman–Pearson formu-
lation (Section III), we will aim at minimizing the probability
of the Type II error (more precisely, its error exponent), subject
to a constraint on the Type I error probability. In a Bayesian for-
mulation (Section IX), we will aim at minimizing a weighted
average of these two error probabilities.

E. Independent Randomization

Our model allows for randomization based on a globally
known randomization variable , whose distribution is subject
to our choice. Such a can be generated at each sensor using
a common seed, or it can be generated at the fusion center and
communicated to the sensors. As discussed in [6], the above
model of dependent randomization includes the special case of
independent randomization, where the sensors rely on locally
generated independent random variables.

Formally, we will say that we have independent randomiza-
tion if the set is a Cartesian product of copies of another set

, i.e., , and is endowed with a product measure, so
that is of the form , where the
are independent.

F. Local and Homogeneous Strategies

Loosely speaking, in a local strategy every sensor has access
only to an independent, locally generated random variable
and its own side information , thus allowing for distributed
implementation. Furthermore, in a homogeneous local strategy,
every sensor responds in the same way to its local variables. In
the definition below, .

Definition 2:
1) A policy is said to be local (for sensor ),

if i) independent randomization is used; ii) can be
expressed as a function of only and ; and iii)
can be expressed as a function of only , , and .

2) A strategy is said to be local if each
is a local policy for sensor .

A local policy for sensor is denoted as
, where the functions and are now

functions whose arguments are the local random variables
and .

Definition 3: A local strategy is said to be homogeneous if
the independent random variables are identically distributed,
and if the policy of every sensor is identified with the same local
policy.

Let us remark that for a homogeneous local strategy associ-
ated with a common local policy , the resource constraint (1)
simplifies to . We let be the set of local policies
that satisfy this constraint.

For the reader’s convenience, we summarize the notation in-
troduced so far:

Measurement of sensor
Side information of sensor
Randomization variable.
Pure censoring policy for sensor

Pure transmission policy
for sensor
A policy for sensor Given

is a pure censoring
policy, and is a pure
transmission policy.

A strategy

Expected cost of policy

Set of local policies satisfying
the resource constraint

III. THE NEYMAN–PEARSON PROBLEM

Given an overall strategy for the -sensor problem, we will
use to denote the resulting Type II error probability

. For any given , , and , we define

where the infimum is taken over all overall strategies that
satisfy the resource constraint (1), as well as the constraint

.
The above optimization problem is intractable, even in the

absence of censoring. Even if it were tractable, implementing
an optimal cooperative censoring strategy would involve com-
plicated feedback from the fusion center to the sensors. We will
see, however, that the problem becomes tractable if is large
and is small, and under an asymptotic optimality criterion.
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Furthermore, the resulting strategy will take a simple form that
allows for distributed implementation.

For any reasonable overall strategy, the resulting Type II error
probability falls exponentially with . For this reason, as in
[5], we are interested in the optimal error exponent. Further-
more, we will focus on the case of an asymptotically small Type
I error probability and the associated optimal error exponent

A. Assumptions and Notation

Recall that under , the measure describes the distribu-
tion of , and describes the conditional distribution
of given . We use the notation to indicate that a
measure is absolutely continuous with respect to another mea-
sure .

Assumption 1: We have , and for every ,
.

This assumption results in little loss of generality. For ex-
ample, suppose that for some measurable set , we have

and . Consider then the fusion rule
that decides in favor of if and only if there exists some
for which . Clearly, the Type I error probability equals

for all , and converges to zero, so that the con-
straint is satisfied for large enough . In
addition, the Type II error probability is equal to zero. Thus,
the optimal error exponent is equal to and is achieved by a
very simple overall strategy.

Let be the Radon–Nikodym derivative (likelihood
ratio) of the measures and . Similarly, we define a function

, so that for every , is
the likelihood ratio between the two hypotheses, when is ob-
served, given that . Formally, this is the Radon–Nikodym
derivative of the measures and on the set .

In the same vein, for any pure transmission policy , we
define a function , so that for every ,

is the likelihood ratio between the two hypotheses,
when is received at the fusion center, given that

. Formally, this is the Radon–Nikodym derivative of the
measures and on the set , where ,
is the measure restricted to the -algebra generated by

.
Let us fix a strategy , and recall that

is the resulting pure policy of sensor , as deter-
mined by . With the above introduced notation, the likelihood
ratio calculated at the fusion center, on the basis of the available
information , is

(2)

For convenience, we define the random variables and
by

(3)

and

(4)

so that is the negative of the log-likelihood ratio at the fusion
center.

The amount of relevant information contained in , given
that and that sensor employs a pure transmission policy

, is quantified by the Kullback–Leibler (KL) divergence,
defined by

Our last assumption is introduced for the same technical rea-
sons as in [5].

Assumption 2: We have

We record a consequence of Assumption 2.

Lemma 1: We have . Furthermore,
for every , we have , -a.s., and

-a.s.

for some function that satisfies .
Proof: This follows from Jensen’s inequality, as in the

proof of Proposition 3 in [5].1

IV. THE I.I.D. CASE

In this section, we characterize the optimal exponent for the
Neyman–Pearson problem. Furthermore, we show that the op-
timal exponent does not change when we restrict to homoge-
neous local strategies. Throughout this section, we assume that
under either hypothesis, the random variables are i.i.d.

According to Stein’s lemma [7], in the absence of censoring
or side information, and if all sensors use the same pure trans-
mission policy, the error exponent is the negative of the associ-
ated KL divergence. By a similar argument, if the sensors use a
common local policy , we expect to
obtain an error exponent equal to

It is then natural to optimize over all admissible local policies
, and define

where the optimization includes the choice of the local random-
ization variable and its distribution.

1In reference to that proof, the argument needs to be carried out by using the
function t 7! (t log t)1(t � 1), which is convex for t � 0, together with the
fact that t log t < 1 when t 2 [0; 1).
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We will show that is the optimal error exponent, even
if we remove the restriction to homogeneous local strategies, in
the limit as goes to zero. In deriving the required lower bound,
we will not be able to invoke standard results from Large Devia-
tions Theory, because the summands in the log-likelihood ratio
are all affected by the overall side information , and are not
independent. For this reason, the proof of the lower bound will
proceed from first principles.

Our main result is as follows.

Theorem 1: Suppose that Assumptions 1 and 2 hold, and that
the random variables are i.i.d., under either hypothesis.

i) For every and , the optimal error ex-
ponent is bounded below by

.
ii) For every and , there exists a sequence of

admissible homogeneous local strategies (one for each )
that satisfy the Type I error constraint, and such that the
corresponding Type II error probabilities satisfy

iii) For every ,

Furthermore, if the random variables are stationary and er-
godic, and , then iii) still holds.

We record an elementary fact that will be used later.

Lemma 2: The function is convex,
and in particular, continuous on .

Proof: Suppose that for some .
Fix some and consider two local policies ,

(so that ), which satisfy

Consider a new local policy that uses with probability ,
and with probability . We then have

so that . Furthermore

The result follows by letting decrease to zero.

A. Proof of the Lower Bound

In this subsection, we prove the first part of Theorem 1.
Throughout this subsection, is held at a fixed value.

Suppose that a strategy has been fixed. Since we
are interested in a lower bound on the resulting error expo-
nent, we assume that the fusion center uses the best possible
fusion rule. As the fusion center is faced with a classical
Neyman–Pearson problem, where the information available is

, a corresponding optimal fusion rule is a
likelihood ratio test of the form

if and only if

where is a possibly randomized threshold (determined by
). It is convenient to consider the expected value of the log-

likelihood ratio, given that the side information has been re-
vealed and the randomization variable has been realized. We
thus define

where the second equality follows from (3)–(4) and the defini-
tion of . We start by showing that is asymptotically
close (in probability) to .

Lemma 3: For every , .

Proof: We condition on and . Then
becomes a sum of (conditionally) independent random vari-
ables, each having (conditional) variance bounded by (cf.
Lemma 1). Chebychev’s inequality yields

(5)

Taking unconditional expectations of both sides, we obtain

which converges to zero because .

The next lemma is crucial in that it relates the amount of infor-
mation provided by an admissible strategy to the best possible
exponent under local admissible strategies. The key idea
is that as far as sensor is concerned, the side information at the
other sensors has the same effect as using additional local ran-
domization variables.

Lemma 4: For any sequence of admissible strategies (one for
each ), and for every sequence of measurable subsets of ,
we have

Proof: Suppose that a sequence of admissible strategies
has been fixed, and let be the policy of

sensor . We have

(6)
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To bound the first term, we have

(7)

In the limit as , the first term in the right-hand side (RHS)
of (7) converges to (because the are i.i.d. and the ergodic
theorem applies), which leaves the term .

For any , let . Then

(8)

(9)

The equality in (8) follows from the stationarity of . The
inequality in (9) is obtained by considering a local policy

, where , defined as fol-
lows. Let , where is uniform on ,

is uniform on , and , , and are independent. Let
, and for every , let

if
otherwise.

In particular, if , , and , the new local
policy applies the pure transmission policy ,
and censors if , when the local side information is
. Then, and the RHS of (8) is equal to

. Hence, (9) follows.
Combining the above with (7), we obtain

and the lemma is proved.

Lemma 5: For all and , we have

Proof: Fix some . For every , consider an admis-
sible strategy and a fusion rule with .
We use a change of measure argument, similar to that in the
proof of Stein’s lemma in [7], to get

(10)

Let . Then

where we have made use of Lemma 3. Hence, for sufficiently
large , we can condition on and obtain

(11)

where the last step follows from Jensen’s inequality. Applying
Lemma 4, we have

The result follows by letting .

Lemma 5 concludes the proof of the lower bound [part i) of
Theorem 1].

B. Proof of the Upper Bound

In this subsection, we construct a sequence of admissible ho-
mogeneous local strategies (one for each ), under which the
lower bound is asymptotically attained.

For each , consider a strategy involving a common local
policy , such that

(12)

Consider the fusion rule that selects
if and only if

Let

(13)
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Since the random variables are i.i.d., with mean
and variance bounded by some constant (cf. Assumption 2),
we have

and hence

(14)

This implies that as . It follows that
for any given , the constraint will be
satisfied for large . We let be the minimum possible Type
II error (over all fusion rules), when we use the common local
policy at all sensors. In particular, .

The next lemma is a modification of Stein’s lemma. The proof
is almost the same as the standard proof (see [8]) but we include
it for completeness, and because we want to check that it re-
mains valid in the case where and the variables are
stationary and ergodic (as opposed to i.i.d.), as will be discussed
in Section VI.

Lemma 6: For the above defined common local policy ,
we have

Proof: We have

Hence

Recall that on the set , we have
, which yields

Thus

(15)

To show the lower bound, we mimic the proof of Lemma 5,
with replacing in that proof. Then from (10), with
as the threshold for the optimal Neyman–Pearson test, we obtain

Taking logarithms, dividing by , and then letting , and
using (14)

(16)

The lemma is proved.

This concludes the proof of the upper bound [part ii) of The-
orem 1]. Part iii) is an immediate consequence of parts i) and
ii). The last part, involving a stationary and ergodic sequence of
random variables will be discussed in Section VI.

C. The Role of Randomization

Suppose that the cost function is independent of the transmis-
sion function, i.e., for some nonnegative function

. Suppose also that the set of pure transmission policies is of
the form , where is a set of allowed pure
transmission policies , when the side information takes
the value . We interpret this as each sensor being able to
choose its own transmission policy separately for each possible
value of the side information . Then, finding an asymptoti-
cally optimal strategy is simplified because

where the first supremum is taken over all local censoring poli-
cies that satisfy

In particular, a pure transmission policy can be used. In
achieving , we choose transmission policies that max-
imize the KL divergence between the distributions of the
messages , separately for each possible value of . It is intu-
itively clear that this has to be the case, since the KL divergence
quantifies the discrimination between two distributions.

Randomization goes a long way to simplify the form of an
optimal policy, as can be seen in the proof of Lemma 4. If we are
restricted to pure strategies, then homogeneous local strategies
need not be asymptotically optimal. Indeed, suppose that and

are finite, so that we have to choose from a finite set of pure
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local policies . We are then faced
with the optimization problem

s.t.

where is the proportion of sensors that use the pure policy
. This is a linear program with two constraints, and

generically, an optimal solution will have two nonzero variables.
Let and be the optimal values of these two variables,
and assume (to simplify the discussion) that is integer. As
long as we are restricted to pure local strategies, then we have to
divide the sensors into two groups, one group consisting of
sensors that use one local policy and another group consisting
of sensors that use another local policy. Thus, in the
Neyman–Pearson problem randomization and nonhomogeneity
are alternatives to each other.

V. DISCUSSION OF THE NEYMAN–PEARSON RESULTS

In this section, we discuss some variations, extensions and
generalizations of the results in Section IV.

A. Cooperation Can Improve Performance

We observe that if is held fixed, there is a gap
between the upper and lower bounds in Theorem 1. We dis-
cuss here the extent to which cooperation among the sensors
improves detection performance.

If we do not allow cooperation among the sensors, i.e., if
is local, we can use an argument similar to the proof of Lemma
6 to show that is a lower bound, for any fixed .
In particular, homogeneous local strategies are asymptotically
optimal.

If cooperation is allowed, and is fixed, the optimal exponent
can be less than , as shown in Proposition 1 below. In that
case, asymptotically optimal strategies are difficult to find, and
we do not believe that a simple closed-form expression for the
optimal error exponent is possible.

Proposition 1: For a fixed , we have

Proof: Let us fix and , and some . Consider
the following strategy. With probability , we use the
censoring policy for all , and always declare . In this
case, we satisfy the resource constraint (1) with replaced by

, and have a Type I error probability of . Let

With probability , we use a homogeneous local strategy
involving a common local policy that satisfies

and a fusion rule that achieves a Type I error probability of .
Note that and , so
that the composite strategy we have constructed is admissible.
Using Lemma 6, its Type II error probability satisfies

Taking and using the continuity of , we obtain the
desired result.

From Proposition 1, the improvement in the error exponent
when using cooperation instead of using homogeneous, local
strategies has a magnitude of at least

which is strictly positive when is small enough, and is upper-
bounded by (cf. Lemma 5)

We see that in a severely constrained network (small ), the price
paid for not cooperating is positive but not very large. Thus,
the communications overhead and resulting complexity may not
justify the use of cooperative censoring.

B. Generalized Sensor Policies

In this subsection, we provide a generalization of our frame-
work, by allowing a more general class of policies. In the pre-
ceding, each sensor could choose separately a censoring policy
and a transmission policy. Here, these two choices will be sub-
sumed under a single choice of a “generalized policy” . We
will see that when specialized to our earlier setting, the gen-
eralized formulation will also allow the choice of transmission
functions to be made cooperatively, on the basis of the global
side-information vector .

Formally, we define a (generalized) policy as a function
. A sensor that uses policy , transmits

to the fusion center. Assuming independent ran-
domization, the notion of a local policy for sensor is defined as
before, namely, the dependence on is only through

. Once more, a local strategy is called homogeneous if
every sensor uses the same mapping from to .

Let be the vector after removing the th component.
As before, for every and for every , we
require that the function , defined by

be in a given set of functions from
to . The function is called a pure local policy. A

generalized policy can be viewed as a random choice of a
pure local policy , based on the value of and .
We assume that every pure local policy consumes an amount

of a certain resource. Given a generalized policy for
sensor , the policy of that sensor is chosen to be . The
cost is defined to be , where the expectation
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is taken over and . Similar to (1), we are interested
in admissible strategies , that satisfy the constraint

.

Example 5 (Censoring): Consider the setting of Section II,
and assume without loss of generality, that there is a special
element of that is never used, i.e., , for every

, , and . Given a pure local policy , we
will represent a sensor that decides to censor
as one that transmits a “dummy” message equal to . Such
a dummy message carries the same information to the fusion
center as censoring (the absence of a message). We let

whenever , and otherwise. If
is the resource function used in our earlier formulation, it

is natural to define .

Example 6 (Power Constraints): Suppose that , and
that the cost of a pure local policy at sensor is

. Then, corresponds to the expected power
consumed by . In this setting, a message with value equal to
zero can also be viewed as a censoring decision.

When specialized to the censoring problem of earlier sec-
tions, the main difference introduced by the current framework
is the following: the transmission function used by sensor

can now be chosen on the basis of not only the randomiza-
tion variable , but also the side information at the other
sensors.

For any pure local policy for sensor 1, let be the KL
divergence associated with the measurement .
For a randomized local policy for sensor
1, let be a random variable whose realized value is the pure
local policy whenever . We have the
following generalization of Theorem 1, where is, as
before, the optimal error probability.

Theorem 2: Suppose that Assumptions 1 and 2 hold, and that
the random variables are i.i.d. under either hypothesis. Then,
for every

where the supremum is taken over all local policies for sensor
1 that satisfy . Furthermore, there exists a sequence
of homogeneous local strategies that asymptotically achieves
the optimal error exponent.

The proof of Theorem 2 is similar to the proof of Theorem 1.
The main difference is that we need to replace the transmission
policies with generalized policies , and eliminate the cen-
soring policies. However, with generalized policies, an exten-
sion to the case where the are stationary and ergodic is not
apparent (in contrast to the results of Section VI).

C. Unknown Side Information

So far, we have been assuming that even in the case of no
cooperation (local strategies), the fusion center has access to
the entire vector . We will now consider the case of no

cooperation when the fusion center does not have access to
. Thus, the only information available at the fusion center

is , the identity of the sensors that are cen-
soring, and the messages of the sensors that do not censor. (Note
that just the act of censoring provides some information to the
fusion center.) Reference [1] considers a setting in which (when
translated to our framework) we have equal to the local-like-
lihood ratio of the measurement , and the
transmission policy is . Reference [1] shows
that for any fixed , it is optimal to choose the censoring re-
gions to be intervals, i.e., if falls within some interval

, then the sensor does not send its measurement to the
fusion center. Note that [1] assumes only that the measurements

are independent, but even when they have identical distri-
butions, each sensor uses a different censoring interval. Opti-
mizing over , for all , can be a daunting task even if
the number of sensors is moderate [1]. Hence, it is of interest
to examine whether the problem simplifies when the variables

are i.i.d. and is large.
From our discussion in Section V-A, we expect that homo-

geneous local censoring strategies are asymptotically optimal.
This is indeed the case if we assume that the fusion center knows
each sensor’s policy. For example, can be determined be-
forehand, and made known at every sensor and the fusion center,
while the fusion center has a table of all the censoring policies
employed by the sensors. For , let be the distribution
of , under hypothesis . Let

We have the following result.

Proposition 2: Suppose Assumptions 1 and 2 hold and that
the random variables are i.i.d., under either hypothesis. Sup-
pose that the fusion center knows but not , and that we
are restricted to local strategies. Then, homogeneous strategies
are asymptotically optimal as , for every .
Furthermore, the optimal exponent is equal to , defined by

Proof: (Outline) We first note that using Assumption 2, and
an argument as in Lemma 1, there exists , such that

for all we have .
In the current setting, a censoring decision can be viewed as

a transmission of a special symbol to the fusion center. We re-
define so that

We first check the inequality , which is
obtained as in Lemma 4. The rest of the proof proceeds as in
Section IV.
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VI. THE ERGODIC CASE

We now consider the case where is a stationary and
ergodic sequence, and each has the same distribution under
either hypothesis. This case is of interest, because in many sit-
uations, the side information at the sensors is correlated. For
example, in the sensor network described in Example 1 of Sec-
tion I, if the sensors are geographically densely colocated, then
we would expect the fading channels from the sensors to the fu-
sion center to have correlated characteristics. Note also that in
that example, the side information does not provide any infor-
mation on the true hypothesis.

We now assume that .2 We have the following result,
which shows that cooperation is unnecessary in the asymptotic
regime of large and small .

Theorem 3: Suppose is a stationary and ergodic se-
quence , and Assumptions 1 and 2 hold. Then

The proof of the above theorem is similar to that in Sec-
tion IV. The proof of the lower bound in Section IV-A still holds.
For the upper bound, we require the following result.

Lemma 7: Suppose that is a stationary ergodic se-
quence, and that Assumptions 1 and 2 hold. Then under hy-
pothesis , for any homogeneous local strategy involving a
common local policy , we have in probability.

Proof: We have

(17)

Since the sequence is stationary and ergodic, the first
term on the RHS of (17) converges in prob-
ability to (cf. Birkhoff’s Ergodic Theorem [10]). For the
second term, we have for each

(18)

(19)

(20)

2One of the reasons for this assumption is that the asymptotic KL rate of the
stochastic process (R ) may not exist [9].

where (18) follows because ,
and (19) follows because given , the are independent.
The last inequality (20) follows from Lemma 1. Therefore, as

, the second term on the RHS of (17) converges in
probability to , and the lemma is proved.

To complete the proof of Theorem 3, we proceed as in Sec-
tion IV-B, except that we fix an and consider a homoge-
neous local strategy involving a common local policy
that satisfies . With this strategy, from Lemma
7, in probability under hypothesis . Hence,
we have the same result as (14) with replacing , and re-
placing , for some fixed . Corresponding changes
are made in Lemma 6. The proof of Theorem 3 is now complete.

VII. OPTIMAL CENSORING

To find an optimal common local policy , we need to
maximize over all

, i.e., over all that satisfy
. We now show that it is sufficient

to consider local policies that randomize between only two
pure local policies. In particular, each sensor need only use an
extra bit to communicate to the fusion center which policy it
has chosen.

Suppose that a common local policy has been fixed, in-
cluding the range of the randomization variable , except
that the distribution of is left unspecified. Let be the
pure local policy obtained when . To optimize the dis-
tribution of , we have to maximize , subject to

, over all measures on . If were finite,
this would be a linear programming problem over the unit sim-
plex, together with one additional constraint. As is well known,
the optimum would be attained on an edge of the feasible set,
that is, there would exist an optimal whose support consists of
at most two points [11]. The lemma that follows states that the
optimality of two-point distributions remains valid even when

is infinite (except that the optimum need not be attained),
and establishes our claim that we only need to consider local
policies that randomize between two pure local policies. (As in
the rest of the paper, we omit the standard measurability condi-
tions that are needed in this lemma.) The proof is provided in
the Appendix for completeness.

Lemma 8: Let be the set of probability measures on a set
, and let , be given nonnegative functions from into

. Then

(21)

(22)

Furthermore, if the supremum in (21) is finite and is attained,
then the supremum in (22) is also attained.

We close with a characterization of an optimal local cen-
soring policy , given that a local transmission policy

and the distribution of have been fixed. Let
, , and .
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We then need to optimize over all

that satisfy .
It is an easy exercise (whose proof is omitted) to show that there
exists an optimal censoring policy of the following form. There
is a threshold such that if and

if . Randomization is only used
to make a censoring decision when , and a
binary randomization variable at each sensor suffices. This is
a solution of the “water-filling” type, whereby the uncensored
“states” are chosen starting with those with a higher value
of , and continuing until the resource constraint
is met. Note also that for a pure transmission policy , the
relevant ratio is , which has the intuitive inter-
pretation of information content per unit resource consumed.

VIII. APPLICATIONS

In this section, we revisit Examples 1 and 2 from Section I,
and illustrate the form of an optimal censoring policy. Given our
focus on the censoring policy, we will assume that all sensors
send their observations “in the clear” to the fusion center, i.e.,
the pure local transmission policy is employed at all
the sensors. Accordingly, will be suppressed in our notation
below.

A. Fading Channels

We will focus on a special case of the problem posed in Ex-
ample 1. We consider a wireless sensor network transmitting
measurements to a fusion center over slowly fading Gaussian
channels. We assume that for all , so that we are only
concerned with restricting the number of sensors transmitting.
Depending on the condition of the channel, we will naturally
want to allow sensors to transmit over good channels and allow
sensors that have bad channels to censor. This raises the issue
of identifying the key parameters of the channel on the basis of
which censoring decisions should be made.

Suppose that

and that the fusion center receives

where is the fading coefficient, with a known density ,
and . Assume that the channel characteristics

are stationary and ergodic, with the same sta-
tionary distribution under either hypotheses. This can be used
to model the case where sensors are placed in a line so that
an ergodic assumption on the distribution of the variables
is reasonable. (Random (i.i.d.) placement of sensors is another
example.) Since this is a slow-fading channel, each sensor can
measure . From Theorem 3, the important design parameter is

According to Theorem 3 and the discussion in the previous sec-
tion, we want to censor when is small. Thus, an asymp-
totically optimal censoring policy (where censoring is based on
the channel characteristics) is of the form

if

otherwise

where depends on the value of and the density . Note
that randomization when is unnecessary, because
this event happens with zero probability.

B. Detection of Spatial Signals

Consider sensor nodes, placed uniformly and indepen-
dently in , with the fusion center at the origin, for the
purpose of detecting a spatial signal. Consider the hypotheses

where each is a known spatial signal, and
is Gaussian noise. When sensor sends its measurement
to the fusion center, it consumes power (assumed posi-
tive), which depends on its relative position to the fusion center.
We constrain the overall average power to be less than a given
positive constant . From Theorem 1, each sensor should use
a common local censoring policy , obtained by max-
imizing subject to .
According to the discussion in Section VII, a sensor should be
censored when is below a threshold. As a specific
illustration, let and . Then

Suppose , where . (This is in line with
standard models used for power decay in a wireless network,
see [12]. The unit cost is due to the power used to make the
measurement .) Then, we have

A specific case is shown in Fig. 1. We have taken , ,
, and a constraint of . As shown, only sensors at

a large enough distance from the fusion center should transmit
their measurements .

IX. THE BAYESIAN PROBLEM WITH LOCAL CENSORING

We now consider the decentralized detection problem with
censoring in the Bayesian context. Let the prior probability of

be , for . We define and
let be the expectation operator with respect to (w.r.t.) . As in
the Neyman–Pearson case, we allow sensors to use randomized
sensor policies. In contrast to unconstrained Bayesian problems,
simple examples show that randomization results in improved
performance when the number of sensors is finite. However,
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Fig. 1. The top graph shows the spatial signals plotted as a function of sensor
location. Let c = 19=12. The bottom graph shows a plot of I(r)=�(r). A sensor
is censored unless its location is in [�1;�0:5] or [0:5;1].

we will show that for the asymptotic problem considered here
(no cooperation), randomization is unnecessary. In the process,
we will also characterize the optimal error exponent and asso-
ciated local policies.

A strategy is admissible if (1) is satisfied, with re-
placing . For any admissible strategy , let de-
note the resulting probability of error at the fusion center. We
will always assume that the fusion center uses an optimal fu-
sion rule, namely the maximum a posteriori probability (MAP)
rule. Let be the infimum of over all admissible
strategies. We are interested in finding asymptotically optimal
local strategies that achieve

Before we launch into the analysis, let us consider a simple
example that shows that cooperation among the sensors is
strictly better than using local strategies.

Example 7: Suppose that the random variables belong to
, are i.i.d. under either hypothesis, and that

, for . We assume that all sensors
are restricted to using the transmission function .

We assume that the distribution of under the two hy-
potheses is the same when , but different when .
Thus, it is only those sensors with that have useful
information to transmit. Under mild conditions (including the
special case where has a finite range), it is a well-known
consequence of the Chernoff bound that if exactly sensors
have and transmit to the fusion center, the probability of
error is of the form , where is a negative constant
determined by the distributions of and where satisfies

. In particular, for every , we can

find some positive , , such that .
Let and . Thus, the resource constraint

(1) becomes , where is the (random) number of
sensors that are not censored.

Assume for simplicity that is an integer. Consider the
following cooperative censoring strategy.

1) If , sensor transmits if only if .
2) If , among those sensors with ,

arbitrarily choose of them to transmit.
Using the Chernoff bound, we have for
some positive constant . Let be the probability of error at
the fusion center. We have

Suppose that when , the distribution of is such that
, which is certainly possible. Since is arbitrary,

we obtain .
Consider now a local and pure censoring strategy. In a best

strategy of this kind, every sensor with is censored, and
. The only way to achieve this is as follows:

sensors are always censored; the remaining sensors are censored
if and only if . Thus, is binomial with parameters

and . After averaging over all possible values of , the
probability of error satisfies

Since is arbitrary, we obtain

This is strictly greater than , which shows that the coop-
erative strategy constructed earlier has a better error exponent.
Later on, we show that randomization cannot improve perfor-
mance, bringing the conclusion that cooperative strategies can
be strictly better than local ones.

The essence of this example is that in the local case, we have
much less control over the tails of the distribution of ; the pos-
sibility of having a large deviation results in a deterioration
in the error exponent.
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In general, optimal cooperative strategies are difficult to
find. As the cooperative strategy may also be practically infea-
sible, we will focus our attention on finding an optimal local
strategy. For the remainder of this paper, the words “policy”
and “strategy” will always mean “local policy” and “local
strategy,” respectively.

A. Notation and Assumptions

Let be the Radon–Nikodym derivative of the mea-
sure w.r.t. . For , let be
the Radon–Nikodym derivative of the measure w.r.t.

. Let , and for any , and
pure local transmission policy , let

Finally, for a randomized local policy , let

(23)

For a policy , if for all
and , we will write . We will make the
following assumptions.

Assumption 3:
i) Conditioned on either hypothesis, the random variables

are i.i.d. Furthermore, and are equivalent mea-
sures.

ii) The (regular) conditional distributions and
are equivalent for every .

iii) We are restricted to local strategies.
iv) We have , for every and pure policy

.
v) There exists an open interval ,

such that for all pure policies , we have
. Furthermore, for

and , the following holds:

vi) For the same open interval as in v) above, there exists a
such that

and

for all and all .

Note that there is little loss of generality in imposing Assump-
tion 3 iv). Indeed, if for some and some pure policy

, then we can always transmit when , without incur-
ring any cost. So instead of censoring in the state , the
sensor can always choose to transmit using this particular .

Assumptions 3 v) and vi) are required for the same tech-
nical reasons as in [5], which also gives rather general
conditions under which they are satisfied.3 In general, the
open interval can be taken to be . Indeed, it can
be shown that, under Assumptions 3 i) and ii), and for
any pure transmission policy , the minimizer
of is in the interior of . If we
take , Assumption 3 v) reduces to the condition
that the KL divergences and

are bounded. But we only need
the weaker version of Assumptions 3 v) and vi), as stated. This
allows us to include cases where Assumptions 3 v) and vi)
hold automatically. For example, if is a finite set of trans-
mission policies, the interval only needs to include certain,
finitely many, values of , and we can choose , where

. Then, it is easy to show that under Assumptions
3 i) and ii), Assumptions 3 v)and vi) hold automatically. We
will make use of this fact in Sections X-C and D. Another suf-
ficient condition for Assumptions 3 v) and vi) are Assumptions
3 i) and ii) together with an assumption similar to Assumption
2 (see [5, Proposition 3]).

The main reason for introducing Assumption 3 is the fol-
lowing lemma, which is proved in the Appendix.

Lemma 9: Suppose that Assumption 3 holds. Then, there ex-
ists some such that for all and for all ,

, , and .

We record a result from [5], based on the results in [13], which
will underlie the rest of our development. This result can also be
obtained from [14, Theorem 1.3.13]. The result states that, if the
conclusion of Lemma 9 holds, then

(24)

where stands for a term that vanishes as , uniformly
over all sequences . Given this result, we can just focus on
the problem of optimizing the RHS of (24), while ignoring the

term.

B. Optimal Strategy

In this subsection, we prove that asymptotic optimality can be
obtained by dividing the sensors into two groups with sensors
in each group using a common pure policy.

Theorem 4: Under Assumption 3

(25)
where the infimum is taken over all , and all pure
policies and that satisfy .

3Although [5] deals with the case of a finite transmission alphabet Y , the
results therein can be easily generalized to the case of infinite alphabets.
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Proof: Fix some . Let be some (pos-
sibly randomized) policies. Let be the pure policy obtained
when . Using the definition (23) of and Jensen’s
inequality, we have

(26)

Similarly

Note that taking the average over all in the above expressions
is equivalent to taking an expectation over a uniformly chosen
random . Let , where is chosen uniformly over

. We minimize the RHS of (26), , sub-
ject to the constraint . Applying Lemma 8, with

and , we obtain

where the infimum is taken over all , and pure poli-
cies , , satisfying the resource constraint

. Hence, from (24),

(27)
To achieve the lower bound, suppose that and , ,

attain the infimum in (27) to within and that is a
minimizing value of in (27). We assign sensors to use
policy , and sensors to use policy . We censor
any remaining sensor. Then, from (24)

and taking completes the proof.

Let us remark that similar results are easily obtained for the
case where the side information is not transmitted to the fusion
center (cf. Section V-C).

C. Characterization of the Optimal Exponent

In this subsection and the next, we will consider the case
where is finite, for two reasons. First, in many practical cases,
because of the limited channel between each sensor and the fu-
sion center, the side information can be assumed to take values
from a finite alphabet. Second, when is finite, the analysis is

simplified and results in a simple form for the censoring policies.
So without loss of generality, we will take .
Let and .

Let us fix two pure local transmission policies and . Let

(28)

where the infimum is taken over all and pure cen-
soring policies , that satisfy

From Theorem 4 and under Assumption 3, we have

(29)

Note that given and , the minimization in (28) has an
optimal solution. (This is because is finite, and therefore
there are only finitely many possible pure censoring policies.)
Let be the value of in such an optimal
solution. It follows that must minimize (and,
therefore, as well), subject to the constraint

. Note that is
equal to

where .
We can now give a characterization of the optimal , similar

to the one at the end of Section VII. For any , let

Proposition 3: Suppose Assumption 3 holds. Suppose that
is finite and that optimal choices of , , , have been fixed.
Then, there exist thresholds , such that the corresponding
optimal censoring functions , satisfy the following: for each

, if , then , otherwise .

X. SPECIAL CASES AND EXAMPLES FOR THE

BAYESIAN PROBLEM

We now examine some special cases that will lead to simpli-
fied versions of Theorem 4.

A. No Side Information

In this subsection, we consider the case of no side informa-
tion, which is equivalent to having . Accordingly,
will be suppressed from our notation below. For example, the
cost incurred by a sensor making a measurement and transmit-
ting it via a transmission function is denoted by .
We will show that when in the resource constraint (1) is suf-
ficiently small, we can restrict all uncensored sensors to use the
same policy.

Note that there are only two possible pure censoring policies,
and . In the absence of side information, the likeli-
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hood ratio is identically equal to . Using the defini-
tion of , for and , respectively, we
obtain and . Let

.

Corollary 1: Suppose that Assumption 3 holds, and
. Then, in the absence of side information, the op-

timal exponent is equal to . This remains
the optimal error exponent even under the additional restriction
that censored sensors are chosen in advance, and all uncensored
sensors use the same policy.

Proof: From Theorem 4, we know that at most two dif-
ferent pure policies , , need be consid-
ered. Suppose that one of those policies, say , involves cen-
soring, namely, . Then, and .
Clearly, the other policy should not censor, so that .
For any choice of , the optimal choice of in (25) is to let

, leading to an exponent of .
Optimizing over all , we obtain the claimed error expo-
nent.

Suppose now that neither of the policies and involves
censoring. Since for all , in order to satisfy
the resource constraint , we must
have . In this case, for all and all

,
. The corollary is now proven.

B. Finite Transmission Policy Sets

In Sections X-C and D, we study problem formulations in
which there is no side information, and in which we temporarily
restrict transmission policies to belong to a finite subset of

. According to the discussion in Section IX-A, this restriction
implies that under Assumptions 3 i) and ii), Assumptions 3 v)
and vi) hold automatically. This will allow us to apply Corol-
lary 1 to two problems that have been considered in [3] and [4].
Let be the minimum error probability, when we are re-
stricted to transmission policies in .

C. Total Power Constraint

In [3], the authors consider the Bayesian problem with no side
information and a power constraint of the form

(30)

where , the number of sensors, is not fixed in advance. The
cost is assumed to be positive for all .

Let be a finite subset of , and let be the collection of all
such subsets . Let be the minimum probability of
error when using transmission policies from that satisfy (30).
Recall that we define . Reference
[3] shows that

(31)

so that it is asymptotically optimal to have all sensors use the
same transmission policy. We will rederive (31) from Corol-
lary 1.

To see the connection with our framework, fix a . Note
that for all , there exists a such that .
Under the constraint (30), the number of sensors that can be
used is bounded by . With defined in this manner,
the constraint (30) is equivalent to the constraint

where . Note that the limit , considered in
[3], is equivalent to the limit in our framework.

Therefore, under Assumptions 3 i), ii), and iv), Corollary 1
shows that the optimal error exponent is

By taking the infimum over all , we recover (31). This ar-
gument shows that it is asymptotically optimal to use
sensors, all of which employ the same pure transmission policy

, chosen by carrying out the minimization in the RHS of (31).
This discussion elucidates the relationship of a power con-

straint (in which the number of transmitting sensors is not fixed)
to our constrained censoring problem. The decentralized detec-
tion problem considered in [5] can be viewed as one where
is so large that censoring is never needed. The problem in this
subsection can be viewed as one involving a very small . In
this case, one group of sensors sets , and another uses the
transmission policy that asymptotically achieves (31). In com-
parison, the general formulation in this paper also gives the so-
lution for all , in between these two extremes.

D. Constrained Capacity

Yet another connection can be made to the problem consid-
ered in [4], which is summarized as follows. Consider a network
of sensors, , . Each sensor observes a se-
quence of measurements , and there is
no side information. All the measurements are assumed to be
conditionally i.i.d. given the hypothesis, over time and across
sensors. At each time , sensor sends to the
fusion center, where the transmission function is a -bit quan-
tizer, where is a positive integer. Let the set of allowed -bit
transmission functions be . We are interested in minimizing
the error exponent

where is the probability of error at the fusion center,
assuming that a MAP fusion rule is used. The minimization is
to be carried out over the number of sensors and transmission
strategies satisfying the overall capacity constraint

(32)

where is a given positive integer. Let us call the above
problem Q1. This problem, in general, does not have a
closed-form solution. Reference [4] finds sufficient conditions
under which using identical sensors (sensors using the same
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transmission policy), each sending one bit of information, is
optimal. We will apply our results to arrive at the same con-
ditions as in [4], and also characterize the solution for special
values of .

As a first step, we will relax the constraints in problem Q1.
We view each sensor over the time periods , as

different sensors , and hence remove the constraint that
all must use the same transmission policy . Because of
(32), . Hence, we can imagine that we are starting with

sensors, some of which will be censored, and rewrite
(32) as

(33)

where . For each for which is
nonempty, consider a nonempty finite subset of , and use to
denote the union of these subsets over . Let be the collection
of all such . With , we wish to minimize

We will obtain an optimal solution to the latter problem,
which we call problem Q2. If from that optimal solution we
can derive a strategy that does not change the error exponent
and yet meets the constraints that and for
all , then we will have found an optimal solution to problem
Q1. In particular, sufficient conditions for problem Q2 to have
all sensors using the same one-bit transmission policy are also
sufficient for problem Q1 to have identical one-bit sensors.

To put problem Q2 into our constrained censoring context,
let for every , and note that . Let

. (If is empty, we set .)

Proposition 4: Suppose Assumptions 3 i) and ii) hold.
i) For problem Q2,

In particular, using the same one-bit transmission func-
tion at all uncensored sensors is asymptotically optimal
iff .

ii) Let . For problem Q1, if
is an integer, we can restrict to using

sensors, all of them using the same -bit transmission
policy, without affecting the optimal exponent.

Proof: Part i) follows from Corollary 1. For part ii), let
achieve to within . Let each of the sensors

in problem Q1 use . This comes within of the optimal ex-
ponent for problem Q2, and therefore for problem Q1 as well.

Let , and note that

. Hence, for any

So if , we meet the sufficient conditions for
problem Q2 to achieve the optimal error exponent with iden-
tical one-bit sensors. In that case, it is also optimal for problem
Q1 to have identical one-bit sensors. This recovers Proposi-
tion 2 of [4].

On the other hand, suppose that is an even integer and that
. Then, it is strictly suboptimal to use identical

one-bit sensors for problem Q1. This is the content of [4, Propo-
sition 3 ]. For a general that is not an integer multiple of , the
solution to Q1 involves an integer program, which can be diffi-
cult to solve for large . However, as increases to infinity, we
can approach the optimal performance by using -bit
sensors.

E. Independent of the Transmission Function

Suppose that for every value of the side information, all the
transmission functions in have the same cost, e.g., that the
process of transmission under state requires the same energy
for all . Then, we can assume for some non-
negative function . Suppose also that the set of transmission
policies is of the form , where is the set
of allowed transmission policies , when the side informa-
tion takes the value . Let

and

Corollary 2: Assume that for all ,
and that Assumption 3 holds. Then

(34)
where the infimum is taken over all and censoring
policies that satisfy

Furthermore, it is optimal to use the same transmission policy
for all sensors.

Proof: The result is obtained from Theorem 4, by ob-
serving that the constraints do not affect the optimization with
respect to and , and that

In this case, we use the same transmission policy at all sen-
sors, and at most two different censoring policies. Suppose that

is a minimizing value of in (34). Then, for any , we
can use a transmission function that minimizes

, if the minimum is attained.

XI. CONCLUSION

We have formulated a general framework involving censoring
in a sensor network, and resource constraints. We allow the sen-
sors to censor based on some side information, while taking into
account a general cost function that depends only on the side
information and the transmission policy used by the sensor. We
allow the sensors to cooperate with each other and show that for
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a Neyman–Pearson formulation, such cooperation is not nec-
essary in the asymptotic regime of a large number of sensors
and small Type I error. Every sensor can independently use the
same (generally, randomized) local policy. An optimal policy
is found by maximizing subject to the
constraint that . This maximization
captures the tradeoff between the Type II error exponent and the
resource constraint.

In the Bayesian context, we have shown that, in the absence
of sensor cooperation, asymptotic optimality is obtained by di-
viding the sensors into two groups, with every sensor in each
group using the same pure policy. We have also shown how to
find optimal strategies in some special cases, and the relation-
ship of our results to other works.

Most of our results can be extended in various directions. For
example, we may have multiple resource constraints. With
constraints, we will generally need the local randomization vari-
able to have a range of cardinality (Neyman–Pearson
case), or to divide the sensors into groups, with every
sensor in each group using the same policy (Bayesian case). Ex-
tensions to the case of more than two hypotheses are also pos-
sible, along the lines of [5].

APPENDIX

Proof of Lemma 8: Let

and

Clearly, . It remains to show that . Assume that
, and fix an . Choose a such that

, and

(35)

Let be the convex hull of the set .
It can be shown that the point

(see, for example, [15, p. 25]). Therefore, there exists a fi-
nite set of points , and nonnegative scalars

summing to , such that

and

Consider the linear program in which we maximize
over the nonnegative scalars so

that and . From a well-known
result in linear programming [11], there exists an optimal
solution to this linear program with at most two of the
being nonzero. Hence, . From (35), we have

, and since is arbitrary, we obtain . The case
where has a similar proof. The proof is now complete.

Proof of Lemma 9: For any fixed pure policy and a given
, it is well known that the first and second

derivatives of , w.r.t. , are finite. What needs to be
proved is that these derivatives are uniformly bounded for all
policies .

For a given , let

(36)

so that . Then, for each ,

(37)

To prove the lemma, it suffices to show that for all policies and
all , is uniformly bounded away from , and
and are uniformly bounded. We do this in several steps
below. To keep the notation simple, we will abbreviate

to , to , and to .
a) For every pure transmission policy , and every

and , we have , because
, and is a convex

function of for each (see [7, Lemma 2.2.5]). There-
fore, using Jensen’s inequality

(38)

Using the same technique as in the proof of Proposition 3
of [5], we can show that , for all ,
hence, . This implies that ,
for all .

b) Let . Then, from (38), for all

It is easily shown that
, and that both functions are convex in .

Then, for

(39)

(We used here the convexity of , which implies that the
magnitude of its derivative is maximized at one of the end
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points .) The finiteness of the RHS of (39) follows from
Assumption 3 v).

c) From b) above, for all . So, for the
same reason as in [7, Lemma 2.2.5 (c)], we can differen-
tiate twice under the expectation operator. Hence,
from (36), we have

from Assumption 3 vi).
The steps above show that is uniformly bounded and
completes the proof of the lemma.
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