

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. CONTROL OPTIM. c© 2009 Society for Industrial and Applied Mathematics
Vol. 48, No. 1, pp. 33–55

CONVERGENCE SPEED IN DISTRIBUTED CONSENSUS AND
AVERAGING∗

ALEX OLSHEVSKY† AND JOHN N. TSITSIKLIS†

Abstract. We study the convergence speed of distributed iterative algorithms for the con-
sensus and averaging problems, with emphasis on the latter. We first consider the case of a fixed
communication topology. We show that a simple adaptation of a consensus algorithm leads to an
averaging algorithm. We prove lower bounds on the worst-case convergence time for various classes
of linear, time-invariant, distributed consensus methods, and provide an algorithm that essentially
matches those lower bounds. We then consider the case of a time-varying topology, and provide a
polynomial-time averaging algorithm.

Key words. consensus algorithms, distributed averaging, cooperative control

AMS subject classification. 93A14

DOI. 10.1137/060678324

1. Introduction. Given a set of autonomous agents—which may be sensors,
nodes of a communication network, cars, or unmanned aerial vehicles—the distributed
consensus problem asks for a distributed algorithm that the agents can use to agree on
an opinion (represented by a scalar or a vector), starting from different initial opinions
among the agents, and in the presence of possibly severely restricted communications.

Algorithms that solve the distributed consensus problem provide the means by
which networks of agents can be coordinated. Although each agent may have access
to different local information, the agents can agree on a decision (e.g., on a common
direction of motion, on the time to execute a move, etc.). Such synchronized behavior
has often been observed in biological systems [15].

The distributed consensus problem has historically appeared in many diverse
areas, such as parallel computation [30, 31, 3], control theory [18, 28], and commu-
nication networks [24, 22]. Recently, the problem has attracted significant attention
[18, 22, 2, 11, 24, 7, 14, 25, 26, 13, 8, 5, 1] motivated by new contexts and open prob-
lems in communications, sensor networks, and networked control theory. We briefly
describe some of the more recent applications.

Reputation management in ad hoc networks. It is often the case that
the nodes of a wireless multihop network are not controlled by a single authority
or do not have a common objective. Selfish behavior among nodes (e.g., refusing to
forward traffic meant for others) is possible, and some mechanism is needed to enforce
cooperation. One way to detect selfish behavior is reputation management; i.e., each
node forms an opinion by observing the behavior of its neighbors. One is then faced
with the problem of combining these different opinions into a single globally available
reputation measure for each node. The use of distributed consensus algorithms for

∗Received by the editors December 21, 2006; accepted for publication (in revised form) May 22,
2008; published electronically February 11, 2009. This research was supported by the National Sci-
ence Foundation under a Graduate Research Fellowship and grants ECS-0312921 and ECS-0426453.
A preliminary version of this paper was presented at the 45th IEEE Conference on Decision and
Control, San Diego, CA, 2006.

http://www.siam.org/journals/sicon/48-1/67832.html
†Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cam-

bridge, MA 02139 (alex o@mit.edu, jnt@mit.edu).

33

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

34 ALEX OLSHEVSKY AND JOHN N. TSITSIKLIS

doing this was explored in [22], where a variation of one of the methods we examine
here—the “agreement algorithm”—was used as a basis for an empirical investigation.

Sensor networks. A sensor network designed for detection or estimation needs
to combine various measurements into a decision or into a single estimate. Distributed
computation of this decision/estimate has the advantage of being fault-tolerant (net-
work operation is not dependent on a small set of nodes) and self-organizing (network
functionality does not require constant supervision) [31, 2, 11].

Control of autonomous agents. It is often necessary to coordinate collections
of autonomous agents (e.g., cars or unmanned aerial vehicles). For example, one may
wish for the agents to agree on a direction or speed. Even though the data related
to the decision may be distributed through the network, it is usually desirable that
the final decision depend on all the known data, even though most of the data are
unavailable at each node. A model motivated by such a context was empirically
investigated in [32].

In this paper, we focus on a special case of the distributed consensus problem, the
distributed averaging problem. Averaging algorithms guarantee that the final global
value will be the exact average of the initial individual values. Our general objective
is to characterize the worst-case convergence time of various averaging algorithms, as
a function of the number n of agents, and to understand their fundamental limitations
by providing lower bounds on the convergence time.

We now outline the remainder of this paper and preview the main contributions.
In section 2, we provide some background material by reviewing the agreement algo-
rithm of [30, 31] for the distributed consensus problem. In sections 3–8, we consider
the case of fixed graphs. In section 3, we discuss three different ways that the agree-
ment algorithm can provide a solution to the averaging problem. In particular, we
show how an averaging algorithm can be constructed based on two parallel executions
of the agreement algorithm. In section 4, we define the notions of convergence rate and
convergence time, and we provide a variational characterization of the convergence
rate.

In section 5, we use results from [23] to show that the worst-case convergence time
of an averaging algorithm introduced in section 3 is essentially Θ(n3).1 In section 6, we
show that for one of our methods, the convergence rate can be made arbitrarily fast.
On the other hand, under an additional restriction that reflects numerical stability
considerations, we show that the convergence time of a certain class of algorithms (and
by extension of a certain class of averaging algorithms) is Ω(n2), in the worst case.
We also provide a simple method (based on executing the agreement algorithm on a
spanning tree) whose convergence time essentially matches the Ω(n2) lower bound.
In section 7, we discuss briefly particular methods that employ doubly stochastic
matrices and their potential drawbacks.

Then, in section 8, we turn our attention to the case of dynamic topologies. For
the agreement algorithm, we show that its convergence time for the case of non-
symmetric topologies can be exponentially large in the worst case. On the other
hand, for the case of symmetric topologies, we provide a new averaging algorithm
(and therefore, an agreement algorithm as well), whose convergence time is O(n3).
To the best of our knowledge, none of the existing consensus or averaging algorithms

1Let f and g be two positive functions on the positive integers. We write f(n) = O(g(n))
(respectively, f(n) = Ω(g(n))) if there exists a positive constant c and some n0 such that f(n) ≤ cg(n)
(respectively, f(n) ≥ cg(n)) for all n ≥ n0. If f(n) = O(g(n)) and f(n) = Ω(g(n)) both hold, we
write f(n) = Θ(g(n)).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE SPEED IN DISTRIBUTED AVERAGING 35

in the literature has a similar guarantee of polynomial time convergence in the pres-
ence of dynamically changing topologies. In section 9, we report on some numerical
experiments illustrating the advantages of two of our algorithms. Section 10 contains
some brief concluding remarks.

2. The agreement algorithm. The “agreement algorithm” is an iterative pro-
cedure for the solution of the distributed consensus problem. It was introduced in [10]
for the time-invariant case, and in [30, 31] for the case of “asynchronous” and time-
varying environments. We briefly review this algorithm and summarize the available
convergence results.

Consider a set N = {1, 2, . . . , n} of nodes. Each node i starts with a scalar
value xi(0); the vector with the values of all nodes at time t is denoted by x(t) =
(x1(t), . . . , xn(t)). The agreement algorithm updates x(t) according to the equation
x(t + 1) = A(t)x(t), or

xi(t + 1) =
n∑

j=1

aij(t)xj(t),

where A(t) is a nonnegative matrix with entries aij(t). The row-sums of A(t) are
equal to 1, so that A(t) is a stochastic matrix. In particular, xi(t + 1) is a weighted
average of the values xj(t) held by the nodes at time t.

We next state some conditions under which the agreement algorithm is guaranteed
to converge.

Assumption 2.1. There exists a positive constant α such that
(a) aii(t) ≥ α for all i, t.
(b) aij(t) ∈ {0} ∪ [α, 1] for all i, j, t.
(c)

∑n
j=1 aij(t) = 1 for all i, t.

Intuitively, whenever aij(t) > 0, node j communicates its current value xj(t) to
node i. Each node i updates its own value by forming a weighted average of its own
value and the values it has just received from other nodes. We represent the sequence
of communications between nodes by a sequence G(t) = (N , E(t)) of directed graphs,
where (j, i) ∈ E(t) if and only if aij(t) > 0. Note that (i, i) ∈ E(t) for all t, and this
condition will remain in effect throughout the paper.

Our next assumption requires that, following an arbitrary time t, and for any i,
j, there is a sequence of communications through which node i will influence (directly
or indirectly) the value held by node j.

Assumption 2.2 (connectivity). For every t ≥ 0, the graph (N ,∪s≥tE(s) is
strongly connected.

Assumption 2.2 by itself is not sufficient to guarantee consensus (see Exercise 3.1,
on page 517 of [3]). This motivates the following stronger version.

Assumption 2.3 (bounded interconnectivity times). There is some B such that
for all k, the graph

(N , E(kB)∪E(kB+1)∪· · ·∪E((k+1)B−1)
)

is strongly connected.
We note various special cases of possible interest.
Time-invariant model. In this model, introduced by DeGroot [10], the set of arcs

E(t) is the same for all t; furthermore, the matrix A(t) is the same for all t. In this case,
we are dealing with the iteration x := Ax, where A is a stochastic matrix; in particular,
x(t) = Atx(0). Under Assumptions 2.1 and 2.2, A is the transition probability matrix
of an irreducible and aperiodic Markov chain. Thus, At converges to a matrix, all
of whose rows are equal to the (positive) vector π = (π1, . . . , πn) of steady-state
probabilities of the Markov chain. Accordingly, we have limt→∞ xi(t) =

∑n
i=1 πixi(0).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

36 ALEX OLSHEVSKY AND JOHN N. TSITSIKLIS

Bidirectional model. In this case, we have (i, j) ∈ E(t) if and only if (j, i) ∈ E(t),
and we say that the graph G is symmetric. Intuitively, whenever i communicates with
j, there is a simultaneous communication from j to i.

Equal-neighbor model. Here,

aij(t) =
{

1/di(t) if j ∈ Ni(t),
0 if j /∈ Ni(t),

where Ni(t) = {j | (j, i) ∈ E(t)} is the set of nodes j (including i) whose value is
taken into account by i at time t, and di(t) is its cardinality. This model is a linear
version of a model considered by Vicsek et al. [32]. Note that here the constant α of
Assumption 2.1 can be take to be 1/n.

Theorem 2.4. Under Assumptions 2.1 and 2.3, the agreement algorithm guar-
antees asymptotic consensus; that is, there exists some c (depending on x(0) and on
the sequence of graphs G(·)) such that limt→∞ xi(t) = c for all i.

Theorem 2.4 is presented in [31] and proved in [30], in a more general setting that
allows for communication delays, under a slightly stronger version of Assumption 2.3;
see also Chapter 7 of [3], and [31, 4], for extensions to the cases of communication
delays and probabilistic dropping of packets. The above version of Assumption 2.3
was introduced in [18]. Under the additional assumption of a bidirectional model, the
bounded interconnectivity time assumption is unnecessary, as established in [20, 6]
for the bidirectional equal-neighbor model, and in [17, 25] for the general case.

3. Averaging with the agreement algorithm in fixed networks. In this
section, as well as in sections 4–8, we assume that the network topology is fixed, i.e.,
G(t) = G for all t, and known. We consider the time-invariant version, x := Ax,
of the agreement algorithm and discuss various ways that it can be used to solve
the averaging problem. We show that an iteration x := Ax that solves the consensus
problem can be used in a simple manner to provide a solution to the averaging problem
as well.

3.1. Using a doubly stochastic matrix. As remarked in section 2, with the
time-invariant agreement algorithm x := Ax, we have

lim
t→∞xi(t) =

n∑
i=1

πixi(0) ∀ i,(3.1)

where πi is the steady-state probability of node i in the Markov chain associated with
the stochastic matrix A. It follows that we obtain a solution to the averaging problem
if and only if πi = 1/n or every i. Since π is a left eigenvector of A, with eigenvalue
equal to 1, this requirement translates into the property 1T A = 1T , where 1 is the
vector with all components equal to 1. Equivalently, the matrix A needs to be doubly
stochastic. A particular choice of a doubly stochastic matrix has been proposed in
[27] (see also [8]); it is discussed further in sections 7 and 9.

3.2. The scaled agreement algorithm. Suppose that the graph G is fixed a
priori and that there is a system designer or other central authority who chooses a
stochastic matrix A offline, computes the associated steady-state probability vector
(assumed unique and positive), and disseminates the value of nπi to each node i.

Suppose next that the nodes execute the agreement algorithm x := Ax, using the
matrix A, but with the initial value xi(0) of each node i replaced by

xi(0) =
xi(0)
nπi

.(3.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE SPEED IN DISTRIBUTED AVERAGING 37

Then, the value xi(t) of each node i converges to

lim
t→∞xi(t) =

n∑
i=1

πixi(0) =
1
n

n∑
i=1

xi(0),

and we therefore have a valid averaging algorithm. This establishes that any (time-
invariant) agreement algorithm for the consensus problem translates into an algorithm
for the averaging problem as well. The following are two possible drawbacks of the
scheme we have just described:

(a) If some of the nπi are very small, then some of the initial xi(0) will be very
large, which can lead to numerical difficulties [16].

(b) The algorithm requires some central coordination in order to choose A and
compute π.

The algorithm provided in the next subsection provides a remedy for both of the
above drawbacks.

3.3. Using two parallel passes of the agreement algorithm. Given a fixed
graph G, let A be the matrix that corresponds to the time-invariant, equal-neighbor,
bidirectional model (see section 2 for definitions); in particular, if (i, j) ∈ E , then
(j, i) ∈ E , and aij = 1/di, where di is the cardinality of Ni. Under Assumptions
2.1 and 2.2, the stochastic matrix A is irreducible and aperiodic (because aii > 0 for
every i). Let E =

∑n
i=1 di. It is easily verified that the vector π with components

πi = di/E satisfies πT = πT A and is therefore equal to the vector of steady-state
probabilities of the associated Markov chain.

The following averaging algorithm employs two parallel runs of the agreement
algorithm, with different, but locally determined, initial values.

Algorithm 3.1.

(a) Each node i sets yi(0) = 1/di and zi(0) = xi(0)/di.
(b) The nodes run the agreement algorithms y(t+1) = Ay(t) and z(t+1) = Az(t).
(c) Each node sets xi(t) = zi(t)/yi(t).
We have

lim
t→∞ yi(t) =

n∑
i=1

πiyi(0) =
n∑

i=1

di

E
· 1
di

=
n

E

and

lim
t→∞ zi(t) =

n∑
i=1

πizi(0) =
n∑

i=1

di

E
· xi(0)

di
=

1
E

n∑
i=1

xi(0).

This implies that

lim
t→∞xi(t) =

1
n

n∑
i=1

xi(0);

i.e., we have a valid averaging algorithm. Note that the iteration y := Ay need not
be repeated if the network remains unchanged and the averaging algorithm is to be
executed again with different initial opinions. Finally, if n and E are known by all
nodes, the iteration y := Ay is unnecessary, and we could just set yi(t) = n/E.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

38 ALEX OLSHEVSKY AND JOHN N. TSITSIKLIS

4. Definition of the convergence rate and the convergence time. The
convergence rate of any of the algorithms discussed in section 3 is determined by
the convergence rate of the matrix powers At. In this section, we give a definition
of the convergence rate (and convergence time) and provide a tool for bounding the
convergence rate. As should be apparent from the discussion in section 3, there is no
reason to restrict to doubly stochastic matrices, or even to nonnegative matrices. We
therefore start by specifying the class of matrices that we will be interested in.

Consider a matrix A with the following property: For every x(0), the sequence
generated by letting x(t+1) = Ax(t) converges to c1 for some scalar c. Such a matrix
corresponds to a legitimate agreement algorithm and can be employed in the scheme
of section 3.2 to obtain an averaging algorithm, as long as 1 is an eigenvalue of A
with multiplicity 1, and the corresponding left eigenvector, denoted by π, has nonzero
entries. Because of the above assumed convergence property, all other eigenvalues
must have magnitude less than 1. Note, however, that we allow A to have some
negative entries.

Suppose that A has the above properties. Let 1 = λ1, λ2, . . . , λn, be the eigenval-
ues of A, sorted in order of decreasing magnitude. We also let X be the set of vectors
of the form c1, i.e., with equal components. Given such a matrix A, we define its
convergence rate, ρ, by

ρ = sup
x(0)/∈X

lim
t→∞

(‖x(t) − x∗‖2

‖x(0) − x∗‖2

)1/t

,(4.1)

where x∗ stands for limt→∞ x(t). As is well known, we have ρ = max{|λ2|, |λn|}.
We also define the convergence time, Tn(ε), by

Tn(ε) = min
{

τ :
‖x(t) − x∗‖∞
‖x(0) − x∗‖∞ ≤ ε ∀ t ≥ τ, ∀ x(0) /∈ X

}
.

Although we use the infinity norm to define the convergence time, bounds for other
norms can be easily obtained from our subsequent results, by using the equivalence
of norms.

Under the above assumptions, a result from [33] states

ρ = max{|λ2|, |λn|}.

To study ρ, therefore, we must develop techniques to bound the eigenvalues of the
matrix A. To this end, we will be using the following result from [23]. We present
here a slightly more general version and include a proof for completeness.

Theorem 4.1. Consider an n × n matrix A, and let λ1, λ2, . . . , λn, be its eigen-
values, sorted in order of decreasing magnitude. Suppose that the following conditions
hold:

(a) We have λ1 = 1 and A1 = 1.
(b) There exists a positive vector π such that πT A = πT .
(c) For every i and j, we have πiaij = πjaji.

Let

S =

{
x

∣∣∣∣∣
n∑

i=1

πixi = 0,

n∑
i=1

πix
2
i = 1

}
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE SPEED IN DISTRIBUTED AVERAGING 39

Then, all eigenvalues of A are real, and

λ2 = 1 − 1
2

min
x∈S

n∑
i=1

n∑
j=1

πiaij(xi − xj)2.(4.2)

In particular, for any vector y that satisfies
∑n

i=1 πiyi = 0, we have

λ2 ≥ 1 −
∑n

i=1

∑n
j=1 πiaij(yi − yj)2

2
∑n

i=1 πiy2
i

.(4.3)

Proof. Let D be a diagonal matrix whose ith diagonal entry is πi. Condition (c)
yields DA = AT D. We define the inner product 〈·, ·〉π by 〈x, y〉π = xT Dy. We then
have

〈x, Ay〉π = xT DAy = xT AT Dy = 〈Ax, y〉π .

Therefore, A is self-adjoint with respect to this inner product, which proves that A
has real eigenvalues.

Since the largest eigenvalue is 1, with an eigenvector of 1, we use the variational
characterization of the eigenvalues of a self-adjoint matrix (see Chapter 7, Theorem
4.3 of [29]) to obtain

λ2 = max
x∈S

〈x, Ax〉π

= max
x∈S

n∑
i=1

n∑
j=1

πiaijxixj

=
1
2

max
x∈S

∑
i=1

∑
j=1

πiaij(x2
i + x2

j − (xi − xj)2).

For x ∈ S, we have

n∑
i=1

n∑
j=1

πiaij(x2
i + x2

j) = 2
n∑

i=1

n∑
j=1

πiaijx
2
i = 2

n∑
i=1

πix
2
i = 2〈x, x〉π =2,

which yields

λ2 = 1 − 1
2

min
x∈S

n∑
i=1

n∑
j=1

πiaij(xi − xj)2.

Finally, (4.3) follows from (4.2) by considering the vector

xi = yi/

√√√√√
⎛
⎝ n∑

j=1

πjy2
j

⎞
⎠.

Note that the bound of (4.3) does not change if we replace the vector y with αy
for any α
= 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

40 ALEX OLSHEVSKY AND JOHN N. TSITSIKLIS

5. Convergence time for Algorithm 3.1. For the equal-neighbor, time-invari-
ant, bidirectional model, tight bounds on the convergence rate were derived in [23].

Theorem 5.1 (see [23]). Consider the equal-neighbor, time-invariant, bidirec-
tional model on a connected graph with n nodes. The convergence rate satisfies

ρ ≤ 1 − γ1n
−3,

where γ1 is a constant independent of n. Moreover, there exists some γ2 > 0 such
that for every positive integer n, there exists an n-node connected symmetric graph
for which

ρ ≥ 1 − γ2n
−3.

Theorem 5.1 is proved in [23] for the case of symmetric graphs without self-arcs.
It is not hard to check that essentially the same proof holds when self-arcs are present,
with the only difference being in the values of the constants γ1 and γ2. This is intuitive
because the effect of the self-arcs is essentially a “slowing down” of the Markov chain
by a factor of at most 2, and therefore the convergence rate should stay the same.

Using some additional results on random walks, Theorem 5.1 leads to a tight
bound (within a logarithmic factor) on the convergence time.

Corollary 5.2. The convergence time for the equal-neighbor, time-invariant,
symmetric model on a connected graph on n nodes satisfies2

Tn(ε) = O(n3 log(n/ε)).

Furthermore, for every positive integer n, there exists an n-node connected graph for
which

Tn(ε) = Ω(n3 log(1/ε)).

Proof. The matrix A is the transition probability matrix for a random walk on
the given graph, where, given the current state i, the next state is equally likely to be
any of its neighbors (including i itself). Let pij(t) be the (i, j)th entry of the matrix
At. It is known that (see Theorem 5.13of [21])

|pij(t) − πj | ≤
√

dj

di
ρt.(5.1)

Since 1 ≤ di and dj ≤ n, we have

|pij(t) − πj | ≤
√

nρt

for all i, j, and t. Using the result of Theorem 5.1, we obtain

|pij(t) − πj | ≤
√

n(1 − n−3)t.(5.2)

This implies that by taking t = cn3 log(n/ε), where c is a sufficiently large absolute
constant, we will have |pij(τ) − πj | ≤ ε/n for all i, j, and τ ≥ t.

2Throughout, log will stand for the base-2 logarithm.
3Theorem 5.1 of [21] is proved for symmetric graphs without self-arcs. However, the proof does

not use the absence of self-arcs, and when they are present the same proof yields the same result.
We refer the reader to the derivation of [21, section 3.1] for details.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE SPEED IN DISTRIBUTED AVERAGING 41

Let A∗ = limt→∞ At, and let x∗ = limt→∞ Atx(0). Note that A∗x(0) = x∗ =
Atx∗ = A∗x∗ for all t. Then, with t chosen as above,

‖x(t) − x∗‖∞ = ‖At(x(0) − x∗)‖∞
= ‖(At − A∗)(x(0) − x∗)‖∞
≤ ‖At − A∗‖1 · ‖x(0) − x∗‖∞
≤ ε‖x(0) − x∗‖∞.

This establishes the upper bound on Tn(ε).
For the lower bound, note that for every (i, j) ∈ E , we have πiaij = (di/E)(1/di) =

1/E, so that condition (c) in Theorem 5.1 is satisfied. It follows that A has real
eigenvalues. Let x(0) be a (real) eigenvector of A corresponding to the eigenvalue ρ.
Then, x(t) = Atx(0) = ρtx(0), which converges to zero, i.e., x∗ = 0. We then have

‖x(t) − x∗‖∞
‖x(0) − x∗‖∞ = ρt.

By the second part of Theorem 5.1, there exists a graph for which ρ ≥ 1 − γn−3,
leading to the inequality Tn(ε) ≥ cn3 log(1/ε), for some absolute constant c.

The Ω(n3) convergence time of this algorithm is not particularly attractive. In
the next section, we explore possible improvements in the convergence time by using
different choices for the matrix A.

6. Convergence time for the scaled agreement algorithm. In this section,
we consider the scaled agreement algorithm introduced in section 3.2. As in [33], we
assume the presence of a system designer who chooses the matrix A so as to obtain a
favorable convergence rate, subject to the condition aij = 0 whenever (i, j) /∈ E . The
latter condition is meant to represent the network topology through which the nodes
are allowed to communicate. Our goal is to characterize the best possible convergence
rate guarantee. We will see that the convergence rate can be brought arbitrarily
close to zero. However, if we impose a certain “numerical stability” requirement, the
convergence time becomes Ω(n2 log(1/ε)) for a worst-case choice of the underlying
graph. Furthermore, this worst-case lower bound applies even if we allow for matrices
A in a much larger class than that considered in [33]. Finally, we will show that a
convergence time of O(n2 log(n/ε)) can be guaranteed in a simple manner, using a
spanning tree.

6.1. Favorable but impractical convergence rates. In this section, we show
that given a connected symmetric directed graph G = (N , E), there is an elementary
way of choosing a stochastic matrix A for which ρ is arbitrarily close to zero.

We say that a directed graph is a bidirectional spanning tree if (a) it is symmetric,
(b) it contains all self-arcs (i, i), and (c) we delete the self-arcs, ignore the orientation
of the arcs, and remove duplicate arcs, in which case we are left with a spanning tree.

Without loss of generality, we assume that G is a bidirectional spanning tree;
since G is symmetric and connected, this amounts to deleting some of its arcs, or,
equivalently, setting aij = 0 for all deleted arcs (i, j).

Pick an arbitrary node, denoted by r, and designate it as the root. Consider an
arc (i, j) and suppose that j lies on the path from i to the root. Let aij = 1 and
aji = 0. Finally, let arr = 1, and let aii = 0 for i
= r. This corresponds to a Markov
chain in which the state moves deterministically towards the root. We have A

t
= er1T

for all t ≥ n, where ei is the ith basis vector. It follows that ρ = 0 and Tn(ε) ≤ n.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

42 ALEX OLSHEVSKY AND JOHN N. TSITSIKLIS

However, this matrix A is not useful because the corresponding vector of steady-state
probabilities has mostly zero entries, which prohibits the scaling discussed in section
3.2. Nevertheless, this is easily remedied by perturbing the matrix A as follows. For
every (i, j) ∈ E with i
= j and aij = 0, let aij = δ, where δ is a small positive constant.
For every i, there exists a unique j for which aij = 1. For any such pair (i, j), we set
aij = 1 − ∑n

k=1 aik (which is nonnegative as long as δ is chosen small enough). We
have thus constructed a new matrix Aδ which corresponds to a Markov chain whose
transition diagram is a bidirectional spanning tree. Since the convergence rate ρ is an
eigenvalue of the iteration matrix, and eigenvalues are continuous functions of matrix
elements, we see that, for the matrix Aδ, the convergence rate ρ can be made as small
as desired by choosing δ sufficiently small. Finally, since Aδ is a positive matrix, the
corresponding vector of steady-state probabilities is positive.

To summarize, by choosing δ suitably small, we can choose a (stochastic) matrix
Aδ with an arbitrarily favorable convergence rate, and which allows the application of
the scaled agreement algorithm of section 3.2. It can be shown that the convergence
time is linear in the following sense: For every ε, there exists some δ such that,
for the matrix Aδ, the corresponding convergence time, denoted by Tn(ε; δ), satisfies
Tn(ε; δ) ≤ n. Indeed, this is an easy consequence of the facts limδ→0(An

δ − A
n
) = 0

and Tn(ε′; 0) ≤ n for every ε′ > 0.4

However, note that as n gets larger, nπi may approach 0 at the nonroot nodes.
The implementation of the scaling in (3.2) will involve division by a number which
approaches 0, possibly leading to numerical difficulties. Thus, the resulting averaging
algorithm may be undesirable. Setting averaging aside, the agreement algorithm based
on Aδ, with δ small, is also undesirable; i.e., despite its favorable convergence rate, the
final value on which consensus is reached is approximately equal to the initial value
xr(0) of the root node. Such a “dictatorial” solution runs contrary to the motivation
behind consensus algorithms.

6.2. A lower bound. In order to avoid the numerical issues raised above, we
will now impose a condition on the dominant (and positive) left eigenvector π of the
matrix A, and we require

nπi ≥ 1
C

∀ i,(6.1)

where C is a given constant with C > 1. This condition ensures that nπi does not
approach 0 as n gets large, so that the initial conditions in the scaled agreement
algorithm of section 3.2 are well behaved. Furthermore, in the context of consensus
algorithms, condition (6.1) has an appealing interpretation: it requires that the initial
value xi(0) of every node i have a nonnegligible impact on the final value limt→∞ xk(t),
on which consensus is reached.5

We will now show that, under the additional condition (6.1), there are graphs
for which the convergence time is Ω(n2 log(1/ε)). One may wonder whether a better
convergence time is possible by allowing some of the entries of A to be negative. As

4Indeed, it is easy to see that by suitably choosing the root, we can make sure that convergence
time is at most �d(G)/2� where d(G) is the diameter of the graph G defined as the largest distance
between any two vertices.

5In the case where A is the transition matrix of a reversible Markov chain, there is an additional
interpretation. A reversible Markov chain may be viewed as a random walk on an undirected graph
with edge-weights. Defining the degree of an vertex as the sum total of the weights incident upon
it, the condition nπi ≥ C is equivalent to requiring that each degree is lower bounded by a constant
times the average degree.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE SPEED IN DISTRIBUTED AVERAGING 43

the following result shows, negative entries do not help. The graph that we employ is
a line graph, with arc set E = {(i, j) | |i − j| ≤ 1}.

Theorem 6.1. Consider an n×n matrix A such that aij = 0 whenever |i−j| > 1,
and such that the graph with edge set {(i, j) ∈ E | aij
= 0} is connected. Let λ1, λ2, . . .
be its eigenvalues in order of decreasing modulus. Suppose that λ1 = 1 and A1 = 1.
Furthermore, suppose that there exists a vector π satisfying (6.1) such that πT A = πT .
Then, there exist absolute constants c1 and c2 such that

ρ ≥ 1 − c1
C

n2

and

Tn(ε) ≥ c2
n2

C
log

(
1
ε

)
.

Proof. If the entries of A were all nonnegative, we would be dealing with a birth-
death Markov chain. Such a chain is reversible, i.e., satisfies the detailed balance
equations πiaij = πjaji (condition (c) in Theorem 4.1). In fact the derivation of the
detailed balance equations does not make use of nonnegativity; thus, detailed balance
holds in our case as well.

Without loss of generality, we can assume that
∑n

i=1 πi = 1. For i = 1, . . . , n,
let yi = i − β, where β is chosen so that

∑n
i=1 πiyi = 0. We will make use of the

inequality (4.3). Since aij = 0 whenever |i − j| > 1, we have

n∑
i=1

n∑
j=1

πiaij(yi − yj)2 ≤
n∑

i=1

n∑
j=1

πiaij = 1.(6.2)

Furthermore,

n∑
i=1

πiy
2
i ≥ 1

nC

n∑
i=1

y2
i =

1
nC

n∑
i=1

(i − β)2 ≥ 1
nC

n∑
i=1

(
i − n + 1

2

)2

≥ n2

12C
.(6.3)

The next-to-last inequality above is an instance of the general inequality E[(X−β)2] ≥
var(X) applied to a discrete uniform random variable X . The last inequality follows
from the well-known fact var(X) = (n2 − 1)/12. Using the inequality (4.3) and (6.2)–
(6.3), we obtain the desired bound on ρ.

For the bound on Tn(ε), we let x(0) be a (real) eigenvector of A, associated with
the eigenvalue λ2, and proceed as in the end of the proof of Corollary 5.2.

Remark. Note that if the matrix A is as in the previous theorem, it is possible for
the iteration x(t+1) = Ax(t) to not converge at all. Indeed, nothing in the argument
precludes the possibility that the smallest eigenvalue is −1, for example. In such a
case, the lower bounds of the theorem—derived based on bounding the second largest
eigenvalue—still hold, as the convergence rate and time are infinite.

6.3. Convergence time for spanning trees. We finally show that an O(n2)
convergence time guarantee is easily obtained by restricting to a spanning tree.

Theorem 6.2. Consider the equal-neighbor, time-invariant, bidirectional model
on a bidirectional spanning tree. We have

ρ ≤ 1 − 1
3n2

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

44 ALEX OLSHEVSKY AND JOHN N. TSITSIKLIS

and

Tn(ε) = O
(
n2 log(n/ε)

)
.

Proof. In this context, we have πi = di/E, where E =
∑n

i=1 di = 2(n−1)+n < 3n.
(The factor 2 arises because we have arcs in both directions; the additional term n
corresponds to the self-arcs.) As in the proof of Theorem 6.1, the detailed balance
conditions πaij = πjaji hold, and we can apply Theorem 4.1. Note that (4.2) can be
rewritten in the form

λ2 = 1 − 1
2

min∑n
i dixi=0,

∑ n
i dix2

i =1

∑
(i,j)∈E

(xi − xj)2.(6.4)

We use the methods of [23] to show that for trees, λ2 can be upper bounded by
1 − 1/3n2. Indeed, suppose that x satisfies

∑n
i dixi = 0 and

∑n
i dix

2
i = 1, and let

xmax be such that |xmax| = maxi |xi|. Then,

1 =
∑

i

dix
2
i ≤ 3nx2

max,

and it follows that |xmax| ≥ 1/
√

3n. Without loss of generality, assume that xmax > 0
(otherwise, replace each xi by −xi). Since

∑
i dixi = 0, there exists some i for which

xi < 0; let us denote such a negative xi by xneg. Then,

1√
3n

≤ xmax − xneg = (xmax − xk1) + (xk1 − xk2) + · · · + (xkr−1 − xneg),(6.5)

where k1, k2, . . . , kr−1 are the nodes on the path from xmax to xneg. By the Cauchy–
Schwarz inequality,

1
3n

≤ n

2

∑
(i,j)∈E

(xi − xj)2.(6.6)

(The factor of 1/2 in the right-hand side arises because the sum includes both terms
(xki − xki+1)2 and (xki+1 − xki)2.) Thus,

∑
(i,j)∈E

(xi − xj)2 ≥ 2
3n2

,

which proves the bound for the second largest eigenvalue.
For the smallest eigenvalue, recall that aii ≥ 1/n for every i. It follows that the

matrix A is of the form I/n+Q, where I is the identity matrix and Q is a nonnegative
matrix whose row sums are equal to 1 − 1/n. Thus, all of the eigenvalues of Q have
magnitude bounded above by 1 − 1/n, which implies that the smallest eigenvalue of
Q is bounded below by −1 + 1/n. We conclude that λn, the smallest eigenvalue of
I/n + Q, satisfies

λn ≥ −1 +
2
n
≥ −1 +

2
n3

.

For the bound on the convergence time, we proceed as in the proof of Corollary
5.2. Let pij(t) be the (i, j)th entry of At. Then,

|pij(t) − πj | ≤
√

n

(
1 − 1

3
n−2

)t

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE SPEED IN DISTRIBUTED AVERAGING 45

For a suitable absolute constant c and for t ≥ cn2 log(n/ε), we obtain |pij(t)−π(j)| ≤
ε/n. The rest of the proof of Corollary 5.2 holds unchanged.

In light of the preceding theorem, we propose the following simple heuristic, with
worst-case convergence time O(n2 log(n/ε)), as an alternative to a more elaborate
design of the matrix A.

Algorithm 6.3. We are given a symmetric graph G. We delete enough arcs to
turn G into a bidirectional spanning tree, and then carry out the equal-neighbor, time-
invariant, bidirectional consensus algorithm, with initial value xi(0)/nπi at node i.

Let us remark that the O(n2 log(n/ε)) bound (Theorem 6.2) on the convergence
time of this heuristic is essentially tight (within a factor of log n). Indeed, if the
given graph is a line graph, then with our heuristic we have nπi = ndi/E ≥ 2/3, and
Theorem 6.1 provides an Ω(n2 log(1/ε)) lower bound.

7. Convergence time when using a doubly stochastic matrix. We provide
here a brief comparison of our methods with the following two methods that have been
proposed in the literature and that rely on doubly stochastic matrices. Recall that
doubly stochastic matrices give rise directly to an averaging algorithm, without the
need for scaling the initial values.

(a) Reference [33] considers the case where the graph G is given and studies the
problem of choosing a doubly stochastic matrix A for which the convergence
rate ρ is smallest. In order to obtain a tractable (semidefinite programming)
formulation, this reference imposes the further restriction that A be sym-
metric. For a doubly stochastic matrix, we have πi = 1/n for all i, so that
condition (6.1) holds with C = 1. According to Theorem 6.1, there exists a
sequence of graphs, for which we have Tn(ε) = Ω(n2 log(1/ε)). We conclude
that, despite the sophistication of this method, its worst-case guarantee is no
better (ignoring the log n factor) than the simple heuristic we have proposed
(Algorithm 6.3). On the other hand, for particular graphs, the design method
of [33] may yield better convergence times.

(b) The following method was proposed in [27]. The nodes first agree on some
value ε ∈ (0, 1/ maxi di). (This is easily accomplished in a distributed man-
ner.) Then, the nodes iterate according to the equation

xi(t + 1) = (1 − εdi)xi(t) + ε

n∑
j∈N (i)\{i}

xj(t).(7.1)

Assuming a connected graph, the iteration converges to consensus (this is a
special case of Theorem 2.4). Furthermore, this iteration preserves the sum∑n

i=1 xi(t). Equivalently, the corresponding matrix A is doubly stochastic,
as required in order to have an averaging algorithm.
This algorithm has the disadvantage of uniformly small step sizes. If many
of the nodes have degrees of the order of n, there is no significant theoretical
difference between this approach and our Algorithm 3.1, as both have effective
step sizes of order of 1/n. On the other hand, if only a small number of nodes
has large degree, then the algorithm in [27] will force all the nodes to take
small steps. This drawback is avoided by our Algorithms 3.1 (section 3.3)
and 6.3 (section 6.3). A comparison of the method of [27] with Algorithm 3.1
is carried out, through simulation experiments, in section 8.

8. Averaging with dynamic topologies. In this section, we turn our atten-
tion to the more challenging case where communications are bidirectional but the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

46 ALEX OLSHEVSKY AND JOHN N. TSITSIKLIS

network topology changes dynamically. Averaging algorithms for such a context have
been considered previously in [24, 26].

As should be clear from the previous sections, consensus and averaging algo-
rithms are intimately linked, with the agreement algorithm often providing a foun-
dation for the development of an averaging algorithm. For this reason, we start by
investigating the worst-case performance of the agreement algorithm in a dynamic
environment. Unfortunately, as shown in section 8.1, its convergence time is not
polynomially bounded, in general, even though it is an open question whether this is
also the case when we restrict to symmetric graphs. Motivated by this negative result,
we approach the averaging problem differently: we introduce an averaging algorithm
based on “load balancing” ideas (section 8.2) and prove a polynomial bound on its
convergence time (section 8.3).

8.1. Nonpolynomial convergence time for the agreement algorithm. We
begin by formally defining the notion of “convergence time” for the agreement algo-
rithm on dynamic graph sequences. Given a sequence of graphs G(t) on n nodes such
that Assumption 2.3 of section 2 is satisfied for some B > 0, and an initial condition
x(0), we define the convergence time TG(·)(x(0), ε) (for this particular graph sequence
and initial condition) as the first time t when each node is within an ε-neighborhood of
the final consensus, i.e., ‖x(t) − limt→∞ x(t)‖∞ ≤ ε. We then define the (worst-case)
convergence time, Tn(B, ε), as the maximum value of TG(·)(x(0), ε), over all graph
sequences G(·) on n nodes that satisfy Assumption 2.3 for that particular B, and over
all initial conditions that satisfy ‖x(0)‖∞ ≤ 1.

We focus our attention on the equal-neighbor version of the agreement algorithm.
The result that follows shows that its convergence time is not bounded by a polynomial
in n and B. In particular, if B is proportional to n, the convergence time increases
faster than an exponential in n. We note that the upper bound in Theorem 8.1 is not
a new result, but we include it for completeness, and for comparison with the lower
bound, together with a proof sketch. Similar upper bounds have also been provided
recently in [7], under slightly different assumptions on the graph sequence G(·).

Theorem 8.1. For the equal-neighbor agreement algorithm, there exist positive
constants c1 and c2 such that for every n, B, and 1 > ε > 0,

c1nB
(n − 1

2

)B−1

log
1
ε
≤ Tn(B, ε) ≤ c2BnnB log

1
ε
.(8.1)

Proof. The upper bound follows by inspecting the proof of convergence of the
agreement algorithm with the constant α of Assumption 2.1 set to 1/n (cf. [30, 4]).

We now prove the lower bound by exhibiting a sequence of graphs G(t) and an ini-
tial vector x(0), with ‖x(0)‖∞ ≤ 1 for which TG(·)(x(0), ε) ≥ c1nB(n/2)B−1 log(1/ε).
We assume that n is even and n ≥ 4. The initial condition x(0) is defined as xi(0) = 1
for i = 1, . . . , n/2, and xi(0) = −1 for i = n/2 + 1, . . . , n.

(i) The graph G(0), used for the first iteration, is shown in the left-hand side of
Figure 8.1.

(ii) For t = 1, . . . , B−2, we perform an equal-neighbor iteration, each time using
the graph G(t) shown in the right-hand side of Figure 8.1.

(iii) Finally, at time B − 1, the graph G(B − 1) consists of the complete graph
over the nodes {1, . . . , n/2} and the complete graph over the nodes {n/2 +
1, . . . , n}.

(iv) This sequence of B graphs is then repeated, i.e., G(t + kB) = G(t) for every
positive integer k.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE SPEED IN DISTRIBUTED AVERAGING 47

2 3 n/2

1

n

n/2+1 n/2+2 n-1

2 3 n/2

1

n

n/2+1 n/2+2 n-1

Fig. 8.1. The diagram on the left is the graph G(0). The diagram on the right is the graph
G(t) at times t = 1, . . . , B −2. Self-arcs are not drawn but should be assumed present at every node.

It is easily seen that this sequence of graphs satisfies Assumption 2.3, and that con-
vergence to consensus is guaranteed.

At the end of the first iteration, we have xi(1) = xi(0), for i
= 1, n, and

x1(1) =
(n/2) − 1
(n/2) + 1

= 1 − 4
n + 2

, xn(1) = −x1(1).(8.2)

Consider now the evolution of x1(t), for t = 1, . . . , B − 2, and let α(t) = 1 − x1(t).
We have

x1(t + 1) =
1 · (1 − α(t)) + (n/2 − 1) · 1

n/2
= 1 − (2/n)α(t),

so that α(t+1) = 2α(t)/n. From (8.2), α(1) = 4/(n+2), which implies that α(B−1) =
(2/n)B−2, or

x1(B − 1) = 1 − 4
n + 2

(2
n

)B−2

.

By symmetry,

xn(B − 1) = −1 +
4

n + 2

(2
n

)B−2

.

Finally, at time B − 1, we iterate on the complete graph over nodes {1, . . . , n/2}
and the complete graph over nodes {n/2 + 1, . . . , n}. For i = 2, . . . , n/2, we have
xi(B − 1) = 1, and we obtain

xi(B − 1) =
1 ·

(n

2
− 1

)
+ 1 − 4

n + 2

(2
n

)B−2

n/2
= 1 − 4

n + 2

(2
n

)B−1

.

Similarly, for i = (n/2) + 1, . . . , n, we obtain

xi(B − 1) = −1 +
4

n + 2

(2
n

)B−2

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

48 ALEX OLSHEVSKY AND JOHN N. TSITSIKLIS

Thus,

|maxi xi(B) − mini xi(B)|
|maxi xi(0) − mini xi(0)| = 1 − 4

n + 2
·
(2

n

)B−1

.

Moreover, because x(B) is simply a scaled version of x(0), it is clear that by repeating
this sequence of graphs, we will have

|maxi xi(kB) − mini xi(kB)|
|maxi xi(0) − mini xi(0)| =

(
1 − 4

n + 2
·
(2

n

)B−1)k

.

This readily implies that

TG(·)(t)(x(0), ε) = Ω
(
nB

(n

2

)B−1

log
1
ε

)
.

If n is odd, then n′ = n − 1 is even. We apply the same initial condition and
graph sequence as above to nodes {1, . . . , n′}. As for the additional node xn, we let
xn(0) = 0 and make extra connections by connecting node n to nodes 1 and n′ at
time 0 with a bidirectional link. By repeating the analysis above, it can be verified
that

TG(·)(t)(x(0), ε) = Ω
(
nB

(n − 1
2

)B−1

log
1
ε

)
.

This concludes the proof.
Both the upper and lower bounds in Theorem 8.1 display an exponential growth

of the convergence time as a function of B. It is unclear, however, which of the two
terms, nB or nnB, better captures the behavior of Tn(B, ε).

8.2. Polynomial time averaging in dynamic topologies. The algorithm
we present here is a variation of an old load balancing algorithm (see [9] and Chapter
7.3 of [3]). Intuitively, a collection of processors with different initial loads tries to
equalize its respective loads. As some of the highly loaded processors send some of
their loads to their less loaded neighbors, the loads at different nodes tend to become
equal. Similarly, at each step of our algorithm, each node offers some of its value to
its neighbors and accepts or rejects such offers from its neighbors. Once an offer from
i to j to send δ has been accepted, the updates xi := xi − δ and xj := xj + δ are
executed.

We assume a time-varying sequence of graphs G(t). We make only the following
two assumptions on G(·): symmetry and bounded interconnectivity times (see section
2 for definitions). The symmetry assumption is natural if we consider, for example,
communication between two nodes to be feasible whenever the nodes are within a
certain distance of each other. The assumption of bounded interconnectivity times is
necessary for an upper bound on the convergence time to exist (otherwise, we could
insert infinitely many empty graphs G(t), in which case convergence is arbitrarily slow
for any algorithm).

We next describe formally the steps that each node carries out at each time t.
For definiteness, we refer to the node executing the steps below as node A. Moreover,
the instructions below sometimes refer to the “neighbors” of node A; this always
means nodes other than A that are neighbors at time t, when the step is being
executed (since G(t) can change with t, the set of neighbors of A can also change).
Let Ni(t) = {j
= i : (i, j) ∈ E(t)}. Note that this is a little different from the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE SPEED IN DISTRIBUTED AVERAGING 49

definition of Ni(t) in earlier sections, in that i is no longer considered a neighbor of
itself.

Algorithm 8.2. If NA(t) is empty, node A does nothing at time t. Otherwise,
node A carries out the following steps:

1. Node A broadcasts its current value xA to all of its neighbors (every j with
j ∈ NA(t)).

2. Node A finds a neighboring node B with the smallest value: xB = min{xj :
j ∈ NA(t)}. If xA ≤ xB , then node A does nothing further at this step. If
xB < xA, then node A makes an offer of (xA − xB)/2 to node B.

3. If node A does not receive any offers, it does nothing further at this step.
Otherwise, it sends an acceptance to the sender of the largest offer and a
rejection to all the other senders. It updates the value of xA by adding the
value of the accepted offer.

4. If an acceptance arrives for the offer made by node A, node A updates xA by
subtracting the value of the offer.

For concreteness, we use xi(t) to denote the value possessed by node i at the
beginning of the above described steps. Accordingly, the value possessed by node i at
the end of the above steps will be xi(t + 1). The algorithm we have specified clearly
keeps the value of

∑n
i=1 xi(t) constant. Furthermore, it is a valid averaging algorithm,

as stated in Theorem 8.3 below. We do not provide a separate proof, because this
result follows from the convergence time bounds in the next subsection.

Theorem 8.3. Suppose that each G(t) is symmetric and that Assumption 2.3
(bounded interconnectivity times) holds. Then, limt→∞ xi(t) = 1

n

∑n
k=1 xk(0) for

all i.

8.3. Convergence time. We introduce the following “Lyapunov” function that
quantifies the distance of the state x(t) of the agents form the desired limit:

V (t) =

∥∥∥∥∥x(t) − 1
n

n∑
i=1

xi(0)1

∥∥∥∥∥
2

2

.

Intuitively, V (t) measures the variance of the values at the different nodes. Given
a sequence of graphs G(t) on n nodes, and an initial vector x(0), we define the
convergence time TG(·)(x(0), ε) as the first time t after which V (·) remains smaller
than εV (0):

TG(·)(x(0), ε) = min
{
t | V (τ) ≤ εV (0) ∀ τ ≥ t

}
.

We then define the (worst-case) convergence time, Tn(B, ε), as the maximum value
of TG(·)(x(0), ε) over all graph sequences G(·) on n nodes that satisfy Assumption 2.3
for that particular B, and over all initial conditions x(0).

Theorem 8.4. There exists a constant c > 0 such that for every n and 1 >ε > 0,
we have

Tn(B, ε) ≤ cBn3 log
1
ε
.(8.3)

Proof. The proof is structured as follows. Without loss of generality, we assume
that

∑n
i=1 xi(0) = 0; this is possible because adding a constant to each xi does not

change the sizes of the offers or the acceptance decisions. We will show that V (t) is
nonincreasing in t, and that

V ((k + 1)B) ≤
(
1 − 1

2n3

)
V (kB)(8.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

50 ALEX OLSHEVSKY AND JOHN N. TSITSIKLIS

for every nonnegative integer k. These two claims readily imply the desired result. To
see this, note that if V (t) decreases by a factor of 1 − (1/2n3) every B steps, then it
decreases by a Θ(1) factor in Bn3 steps. It follows that the time until V (t) becomes
less than εV (0) is O(Bn3 log(1/ε)). Finally, since V (t) is nonincreasing, V (t) stays
below εV (0) thereafter.

We first show that V (t) is nonincreasing. We argue that while rejected offers
clearly do not change V (t), each accepted offer at time t results in a decrease of
V (t + 1). While this would be straightforward to establish if there were a single
accepted offer, a more complicated argument is needed to account for the possibility
of multiple offers being simultaneously accepted. We will show that we can view the
changes at time t as a result of a series of sequentially accepted offers, each of which
results in a smaller value of V .

Let us focus on a particular time t. We order the nodes from smallest to largest,
so that x1(t) ≤ x2(t) ≤ · · · ≤ xn(t), breaking ties arbitrarily. Let Ai(t) be the size of
the offer accepted by node i at time t (if any). If the node accepted no offers at time
t, set Ai(t) = 0. Furthermore, if Ai(t) > 0, let Ai(t) be the index of the node whose
offer node i accepted.

Let us now break time t into n periods. The ith period involves the updates caused
by node i accepting an offer from node Ai(t). In particular, node i performs the update
xi(t) := xi(t)+Ai(t) and node Ai(t) performs the update xAi(t)(t) := xAi(t)(t)−Ai(t).

We note that every offer accepted at time t appears in some period in the above
sequence. We next argue that each offer decreases V . This will complete the proof
that V (t) is nonincreasing in t.

Let us suppose that in the ith period, node i accepts an offer from node Ai(t),
which for simplicity we will denote by j. Because nodes only send offers to lower
valued nodes, the inequality xj > xi must hold at the beginning of time t, before
time period 1. We claim that this inequality continues to hold when the ith time
period is reached. Indeed, xj is unchanged during periods 1, . . . , i − 1 (it can only
send one offer, which was to xi; and if it receives any offers, their effects will occur in
period j, which is after period i). Moreover, while the value of xi may have changed
in periods 1, . . . , i− 1, it cannot have increased (since i is not allowed to accept more
than one offer at any given time t). Therefore, the inequality xj > xi still holds at
the beginning of the ith period.

During the ith period, a certain positive amount is transferred from node j to
node i. Since the transfer takes place from a higher-valued node to a lower-valued
one, it is easily checked that the value of x2

i + x2
j (which is the contribution of these

two nodes to V) is reduced. To summarize, we have shown that we can serialize the
offers accepted at time t, in such a way that each accepted offer causes a reduction in
V . It follows that V (t) is nonincreasing.

We will now argue that at some time t in the interval 0, 1, . . . , B − 1, there will
be some update (acceptance of an offer) that reduces V (t) by at least 1/(2n3)V (0).
Without loss of generality, we assume maxi |xi(0)| = 1, so that all the values lie in
the interval [−1, +1]. It follows that V (0) ≤ n.

Since
∑n

i=1 xi(0) = 0, it follows that mini xi(0) ≤ 0. Hence, the largest gap
between any two consecutive xi(0) must be at least 1/n. Thus, there exist some
numbers a and b, with b − a ≥ 1/n, and the set of nodes can be partitioned into two
disjoint subsets S− and S+ such that xi(0) ≤ a for all i ∈ S−, and xi(0) ≥ b for
all i ∈ S+. By Assumption 2.3, the graph with arcs

⋃
s=0,...,B−1 E(s) is connected.

Thus, there exists a first time τ ∈ {0, 1, . . . , B−1} at which there is a communication

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE SPEED IN DISTRIBUTED AVERAGING 51

between some node i ∈ S− and some node j ∈ S+, resulting in an offer from j to i.
Up until that time, nodes in S− have not interacted with nodes in S+. It follows that
xk(τ) ≤ a for all k ∈ S−, and xk(τ) ≥ b for all k ∈ S+. In particular, xi(τ) ≤ a and
xj(τ) ≥ b. There are two possibilities: either i accepts the offer from j, or i accepts
some higher offer from some other node in S+. In either case, we conclude that there
is a first time τ ≤ B − 1, at which a node in S− accepts an offer from a node in S+.

Let us use plain xi and xj for the values at nodes i and j, respectively, at the
beginning of period i of time τ . At the end of that period, the value at both nodes is
equal to (xi + xj)/2. Thus, the Lyapunov function V decreases by

x2
i + x2

j − 2
(xi + xj

2

)2

=
1
2
(xi − xj)2 ≥ 1

2
(b − a)2 ≥ 1

2n2
.

At every other time and period, V is nonincreasing, as shown earlier. Thus, using the
inequality V (0) ≤ n,

V (B) ≤ V (0) − 1
2n2

≤ V (0)
(
1 − 1

2n3

)
.

By repeating this argument over the interval kB, . . . , (k +1)B, instead of the interval
0, . . . , B, we establish (8.4), which concludes the proof.

9. Simulations. We have proposed several new algorithms for the distributed
consensus and averaging problems. For one of them, namely the spanning tree heuris-
tic of section 6.3 (Algorithm 6.3), the theoretical performance has been characterized
completely—see Theorem 6.2 and the discussion at the end of section 6.3. In this
section, we provide simulation results for the remaining two algorithms.

9.1. Averaging in fixed networks with two passes of the agreement
algorithm. In section 3.3, we proposed a method for averaging in fixed graphs, based
on two parallel executions of the agreement algorithm (Algorithm 3.1). We speculated
in section 7 that the presence of a small number of high degree nodes would make the
performance of our algorithm attractive relative to the algorithm of [27], which uses
a step size proportional to the inverse of the largest degree. (Our implementation
used a step size of ε = 1/2dmax.) Figure 9.1 presents simulation results for the two
algorithms.

In each simulation, we first generate geometric random graph G(n, r) by placing
nodes randomly in [0, 1]2 and connecting two nodes if they are at most r apart. We
choose r = Θ(

√
log n/n), which is a standard choice for modeling wireless networks

(cf. [11]).
We then change the random graph G(n, r) by choosing nd nodes at random (nd =

10 in both parts of Figure 9.1) and adding edges randomly to make the degree of these
nodes linear in n; this is done by randomly inserting all possible edges incident to at
least one node in nd; each such edge in inserted independently with probability 1/3.
We run the algorithm, with random starting values, uniformly distributed in [0, 1],
until the largest deviation from the mean is at most ε = 10−3.

Each outcome recorded in Figure 9.1 (for different values of n) is the average of
three runs. We conclude that for such graphs, the convergence time of the algorithm
in [27] grows considerably faster than the one proposed in this paper.

9.2. Averaging in time-varying random graphs. We report here on simula-
tions involving the load-balancing algorithm (Algorithm 8.2) on time-varying random

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

52 ALEX OLSHEVSKY AND JOHN N. TSITSIKLIS

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

900

1000

Graph Size

Ite
ra

tio
ns

0 50 100 150 200 250 300
10

12

14

16

18

20

22

24

26

Graph Size

Ite
ra

tio
ns

Fig. 9.1. On the left: Comparison of averaging algorithms on a geometric random graph. The
top line corresponds to the algorithm of [27], and the bottom line (close to the horizontal axis)
corresponds to using two parallel passes of the agreement algorithm (Algorithm 3.1). On the right:
A blow-up of the performance of the agreement algorithm.

graphs. In contrast to our previous simulations on static geometric graph, we test
two time-varying models which simulate movement.

In both models, we select our initial vector x(0) by choosing each component
independently as a uniform random variable over [0, 1]. In our first model, at each
time t, we independently generate an Erdös–Renyi random graph G(t) = G(c, n)
with c = 3/4. In the second model, at each time step we independently generate
a geometric random graph with G(n, r) with r =

√
log n/n. In both models, if the

largest deviation from the mean is at most ε = 10−3, we stop; otherwise, we perform
another iteration of the load-balancing algorithm.

The results are summarized in Figure 9.2, where again each point represents the
average of three runs. We conclude that in these random models, only a sublinear
number of iterations appears to be needed.

0 50 100 150 200 250 300
32

34

36

38

40

42

44

46

Graph Size

Ite
ra

tio
sn

20 40 60 80 100 120 140 160 180 200
10

11

12

13

14

15

16

17

18

Graph Size

Ite
ra

tio
ns

Fig. 9.2. On the left: Averaging in time-varying Erdös–Renyi random graphs with the load
balancing algorithm. Here c = 3/4 at each time t. On the right: Averaging in time-varying geometric

random graphs with the load balancing algorithm. Here r =
√

log n/n.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE SPEED IN DISTRIBUTED AVERAGING 53

10. Concluding remarks. In this paper we have considered a variety of con-
sensus and averaging algorithms and studied their convergence rates. While our dis-
cussion was focused on averaging algorithms, several of our results pertain to the
closely related consensus problem.

For the case of a fixed topology, we showed that averaging algorithms are easy
to construct by using two parallel executions of the agreement algorithm for the
consensus problem. We also saw that a reasonable performance guarantee can be
obtained by using the equal-neighbor agreement algorithm on a spanning tree, as
opposed to a more sophisticated design.

For the case of a fixed topology, the choice of different algorithms is not a purely
mathematical issue; one must also take into account the extent to which one is able to
design the algorithm offline and provide suitable instructions to each node. After all, if
the nodes are able to set up a spanning tree, there are simple distributed algorithms,
involving two sweeps along the tree, in opposite directions, with which the sum of
their initial values can be computed and disseminated [3], thus eliminating the need
for an iterative algorithm. On the other hand, in less structured environments, with
the possibility of occasional changes in the system topology, iterative algorithms can
be more resilient. For example, the equal-neighbor agreement algorithm adjusts itself
naturally when the topology changes.

In the face of a changing topology (possibly at each time step), the agreement
algorithm continues to work properly, under minimal assumptions (see Theorem 2.4).
On the other hand, its worst-case convergence time may suffer severely (cf. section
8.1). Furthermore, it is not apparent how to modify the agreement algorithm and
obtain an averaging algorithm without sacrificing linearity and/or allowing some ad-
ditional memory at the nodes. In section 8, we introduced an averaging algorithm,
which is nonlinear but leads to a rather favorable (and, in particular, polynomial)
convergence time bound. In view of the favorable performance observed in our sim-
ulation results, it would also be interesting to characterize the average performance
of this algorithm, under a probabilistic mechanism for generating the graphs G(t),
similar to the one in our simulations.

Something to notice about Algorithm 8.2 is that it requires the topology to remain
fixed during the exchange of offers and acceptances/rejections that happens at each
step. On the other hand, without such an assumption, or without introducing a much
larger memory at each node (which would allow for flooding of individual values), an
averaging algorithm may well turn out to be impossible.

REFERENCES

[1] P.-A. Bliman and D. Angeli, Convergence Speed of Unsteady Distributed Consensus: De-
cay Estimate Along the Settling Spanning-Trees, http://arxiv.org/abs/math.OC/0610854
(2007).

[2] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, Randomized gossip algorithms, IEEE
Trans. Inform. Theory, 52 (2006), pp. 2508–2530.

[3] D. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Meth-
ods, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[4] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis, Convergence in
multiagent coordination, consensus, and flocking, in Proceedings of the Joint 44th IEEE
Conference on Decision and Control and European Control Conference (CDC-ECC’05),
Seville, Spain, 2005, pp. 2996–3000.

[5] J. Cortes, Finite-time convergent gradient flows with applications to network consensus, Au-
tomatica, 42 (2006), pp. 1993–2000.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

54 ALEX OLSHEVSKY AND JOHN N. TSITSIKLIS

[6] M. Cao, A. S. Morse, and B. D. O. Anderson, Coordination of an asynchronous, multi-agent
system via averaging, in Proceedings of the 16th International Federation of Automatic
Control World Congress (IFAC), Prague, Czech Republic, 2005.

[7] M. Cao, D. A. Spielman, and A. S. Morse, A lower bound on convergence of a distributed
network consensus algorithm, in Proceedings of the Joint 44th IEEE Conference on Deci-
sion and Control and European Control Conference (CDC-ECC’05), Seville, Spain, 2005,
pp. 2356–2361.

[8] C. Gao, J. Cortés, and F. Bullo, Notes on averaging over acyclic digraphs and discrete
coverage control, Automatica, 44 (2008), pp. 2120–2127.

[9] G. Cybenko, Dynamic load balancing for distributed memory multiprocessors, J. Parallel Dis-
tribut. Comput., 7 (1989), pp. 279–301.

[10] M. H. DeGroot, Reaching a Consensus, J. Amer. Statist. Assoc., 69 (1974), pp. 118–121.
[11] A. G. Dimakis, A. D. Sarwate, and M. J. Wainwright, Geographic gossip: Efficient ag-

gregation for sensor networks, in Proceedings of the Fifth International Conference on
Information Processing in Sensor Networks (IPSN), Nashville, TN, 2006, pp. 69–76.

[12] P. Erdös and A. Renyi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató
Int. Közl., 5 (1960), pp. 17–61.

[13] L. Fang and P. Antsaklis, On communication requirements for multi-agent consensus seek-
ing, in Proceedings of the Workshop on Networked Embedded Sensing and Control, Lecture
Notes in Control and Inform. Sci. 331, Springer, Berlin, 2006, pp. 53–67.

[14] A. Ganguli, S. Susca, S. Martinez, F. Bullo, and J. Cortes, On collective motion in
sensor networks: Sample problems and distributed algorithms, in Proceedings of the Joint
44th IEEE Conference on Decision and Control and European Control Conference (CDC-
ECC’05), Seville, Spain, 2005, pp. 4239–4244.

[15] D. Grünbaum, S. Viscido, and J. K. Parrish, Extracting interactive control algorithms from
group dynamics of schooling fish, in Cooperative Control, V. Kumar, N. Leonard, and
A. S. Morse, eds., Lecture Notes in Control and Inform. Sci. 309, Springer, New York,
2005, pp. 103–117.

[16] N. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia,
2002.

[17] J. M. Hendrickx and V. D. Blondel, Convergence of linear and non-linear versions of
Vicsek model, in Proceedings of 17th International Symposium on Mathematical Theory
of Networks and Systems (MTNS’06), Kyoto, Japan, pp. 1229–1240. Available online at
http://www-ics.acs.i.kyoto-u.ac.jp/mtns06/papers/0156.pdf.

[18] A. Jadbabaie, J. Lin, and A. S. Morse, Coordination of groups of mobile autonomous agents
using nearest neighbor rules, IEEE Trans. Automat. Control, 48 (2003), pp. 988–1001.

[19] Y. Kim and M. Mesbahi, On maximizing the second smallest eigenvalue of a state-dependent
graph Laplacian, IEEE Trans. Automat. Control, 51 (2006), pp. 116–120.

[20] S. Li and H. Wang, Multi-Agent Coordination Using Nearest-Neighbor Rules: Revisiting the
Vicsek Model, http://arxiv.org/abs/cs.MA/0407021 (2004).

[21] L. Lovász, Random walks on graphs: A survey, in Combinatorics, Paul Erdös is Eighty, Vol. 2,
D. Miklós, V. T. Sós, and T. Szõnyi, eds., János Bolyai Mathematical Society, Budapest,
1996, pp. 353–398.

[22] Y. Liu and Y. R. Yang, Reputation propagation and agreement in mobile ad hoc networks, in
Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC),
2003, pp. 1510–1515.

[23] H. J. Landau and A. M. Odlyzko, Bounds for eigenvalues of certain stochastic matrices,
Linear Algebra Appl., 38 (1981), pp. 5–15.

[24] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and R. M. Murray, Distributed av-
eraging on asynchronous communication networks, in Proceedings of the Joint 44th IEEE
Conference on Decision and Control and European Control Conference (CDC-ECC’05),
Seville, Spain, 2005, pp. 7446–7451.

[25] L. Moreau, Consensus seeking in multi-agent systems using dynamically changing interaction
topologies, IEEE Trans. Automat. Control, 50 (2005), pp. 169–182.

[26] C. Moallemi and B. Van Roy, Consensus propagation, IEEE Trans. Inform. Theory, 52
(2006), pp. 4753–4766.

[27] R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switch-
ing topology and time-delays, IEEE Trans. Automat. Control, 49 (2004), pp. 1520–1533.

[28] R. Olfati-Saber, J. A. Fax, and R. M. Murray, Consensus and cooperation in networked
multi-agent systems, in Proc. IEEE, 95 (2007), pp. 215–233.

[29] S. Treil, Linear Algebra Done Wrong, http://www.math.brown.edu/∼treil/papers/LADW/
LADW.html.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONVERGENCE SPEED IN DISTRIBUTED AVERAGING 55

[30] J. N. Tsitsiklis, Problems in Decentralized Decision Making and Computation, Ph.D. Thesis,
Department of EECS, MIT, Cambridge, MA, 1984.

[31] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, Distributed asynchronous deterministic
and stochastic gradient optimization algorithms, IEEE Trans. Automat. Control, 31 (1986),
pp. 803–812.

[32] T. Vicsek, E. Czirok, E. Ben-Jacob, I. Cohen, and O. Shochet, Novel type of phase
transitions in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), pp. 1226–1229.

[33] L. Xiao and S. Boyd, Fast linear iterations for distributed averaging, Systems Control Lett.,
53 (2004), pp. 65–78.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

